metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­amino-5,5′-di­methyl-4,4′-bi-1,3-thia­zolium tetra­chlorido­zincate(II)

aEngineering Science, University of Tehran, Tehran, 11365-4563, Iran, and bDepartment of Chemistry, Tarbiat Modares University, Tehran, 14115-175, Iran
*Correspondence e-mail: hoseinian@ut.ac.ir, mahjoubaa@modares.ac.ir

(Received 2 September 2009; accepted 13 October 2009; online 28 October 2009)

In the dianion of the title compound, (C8H12N4S2)[ZnCl4], the ZnII ion is in a slightly distorted tetra­hedral environment. In the cation, the mean planes of the thia­zole rings form a dihedral angle of 67.81 (6) Å. In the crystal structure, anions and cations are linked into a three-dimensional network via inter­molecular N—H⋯Cl hydrogen bonds.

Related literature

For the potential applications of metal-organic coordination compounds as anti­tumor drugs, polymers and luminescent materials, see: Hosseinian & Mahjoub (2006[Hosseinian, A. & Mahjoub, A. R. (2006). Z. Anorg. Allg. Chem. 632, 2505-2509.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H12N4S2)[ZnCl4]

  • Mr = 435.51

  • Triclinic, [P \overline 1]

  • a = 8.9149 (6) Å

  • b = 9.6487 (7) Å

  • c = 11.7361 (8) Å

  • α = 65.754 (5)°

  • β = 89.126 (5)°

  • γ = 62.496 (5)°

  • V = 797.22 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.46 mm−1

  • T = 120 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.484, Tmax = 0.535

  • 6168 measured reflections

  • 3368 independent reflections

  • 3152 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.05

  • 3368 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—Cl1 2.2531 (6)
Zn1—Cl3 2.2642 (6)
Zn1—Cl2 2.2707 (6)
Zn1—Cl4 2.2788 (6)
Cl1—Zn1—Cl3 110.69 (3)
Cl1—Zn1—Cl2 110.34 (2)
Cl3—Zn1—Cl2 106.06 (2)
Cl1—Zn1—Cl4 111.25 (3)
Cl3—Zn1—Cl4 108.19 (3)
Cl2—Zn1—Cl4 110.16 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.87 2.78 3.440 (3) 133
N2—H2A⋯Cl4ii 0.89 2.79 3.487 (2) 137
N3—H3A⋯Cl4iii 0.87 2.50 3.322 (3) 156
N3—H3B⋯Cl2iv 0.83 2.36 3.196 (3) 179
N4—H4A⋯Cl1v 0.87 2.44 3.280 (3) 162
N4—H4B⋯Cl3ii 0.89 2.38 3.189 (2) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) -x, -y+2, -z+1; (iv) x-1, y, z-1; (v) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In coordination chemistry there are many studies on the interaction of ZnII ions with biomolecules (Hosseinian & Mahjoub, 2006: and references cited therein). Coordination between an organic ligand and ZnII ions improves or modifies the properties of biological molecules. In the human body the second abundant trace metal is zinc and it can be considered as a non toxic metal. The presence of zinc is vital to 300 enzyme structures, regulations and catalytic actions. As part of our research in the field of ZnII complexes of organic molecules the crystal structure of the title complexes is presented herein.

The asymmetric unit of the title compound is shown in Fig. 1. The bond lengths have normal values (Allen et al., 1987). In the crystal structure, anions and cations are linked into a three-dimensional network via intermolecular N-H···Cl hydrogen bonds. In addition, there are fairly close intermolecular S···Cl contacts ca. 3.24Å.

Related literature top

For the potential applications of metal-organic coordination compounds as antitumor drugs, polymers and luminescent materials, see: Hosseinian & Mahjoub (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

To a methanol solution of ZnCl2 (1 mmol, 0. 136 g) was added, 2,2'-Diamino-5,5'-Dimethyl-4,4'-bithiazole (dadmbtz) (1 mmol, 0. 226 g). The mixture was refluxed for 2 h. The solution was cooled and filtrate was slow evaporated at room temperature. After 12 days, yellow block shaped crystals of the title compound were obtained.

Refinement top

The hydrogen atoms boned to N atoms were located in difference Fourier maps and refined in 'as found' positions in a riding-model approximation with Uiso(H) = 1.2Ueq(N). H atoms boned to C atoms were placed in calculated positions and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

In coordination chemistry there are many studies on the interaction of ZnII ions with biomolecules (Hosseinian & Mahjoub, 2006: and references cited therein). Coordination between an organic ligand and ZnII ions improves or modifies the properties of biological molecules. In the human body the second abundant trace metal is zinc and it can be considered as a non toxic metal. The presence of zinc is vital to 300 enzyme structures, regulations and catalytic actions. As part of our research in the field of ZnII complexes of organic molecules the crystal structure of the title complexes is presented herein.

The asymmetric unit of the title compound is shown in Fig. 1. The bond lengths have normal values (Allen et al., 1987). In the crystal structure, anions and cations are linked into a three-dimensional network via intermolecular N-H···Cl hydrogen bonds. In addition, there are fairly close intermolecular S···Cl contacts ca. 3.24Å.

For the potential applications of metal-organic coordination compounds as antitumor drugs, polymers and luminescent materials, see: Hosseinian & Mahjoub (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure with dashed lines indicating hydrogen bonds. Only H atoms involved in hydrogen bonds are shown.
2,2'-Diamino-5,5'-dimethyl-4,4'-bi-1,3-thiazolium tetrachloridozincate(II) top
Crystal data top
(C8H12N4S2)[ZnCl4]Z = 2
Mr = 435.51F(000) = 436
Triclinic, P1Dx = 1.814 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9149 (6) ÅCell parameters from 5086 reflections
b = 9.6487 (7) Åθ = 2.5–28.0°
c = 11.7361 (8) ŵ = 2.46 mm1
α = 65.754 (5)°T = 120 K
β = 89.126 (5)°Prism, yellow
γ = 62.496 (5)°0.30 × 0.30 × 0.25 mm
V = 797.22 (12) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3368 independent reflections
Radiation source: normal-focus sealed tube3152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.484, Tmax = 0.535k = 1212
6168 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.040P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3368 reflectionsΔρmax = 0.66 e Å3
173 parametersΔρmin = 0.82 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0179 (16)
Crystal data top
(C8H12N4S2)[ZnCl4]γ = 62.496 (5)°
Mr = 435.51V = 797.22 (12) Å3
Triclinic, P1Z = 2
a = 8.9149 (6) ÅMo Kα radiation
b = 9.6487 (7) ŵ = 2.46 mm1
c = 11.7361 (8) ÅT = 120 K
α = 65.754 (5)°0.30 × 0.30 × 0.25 mm
β = 89.126 (5)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3368 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3152 reflections with I > 2σ(I)
Tmin = 0.484, Tmax = 0.535Rint = 0.022
6168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.05Δρmax = 0.66 e Å3
3368 reflectionsΔρmin = 0.82 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.77593 (3)0.86751 (3)0.75845 (2)0.00894 (10)
Cl10.97516 (7)0.91131 (8)0.83034 (6)0.01767 (14)
Cl20.74022 (9)0.66200 (8)0.92201 (5)0.01983 (15)
Cl30.86565 (9)0.76054 (8)0.61574 (5)0.02216 (15)
Cl40.51769 (7)1.12209 (8)0.66076 (6)0.02434 (16)
S10.09151 (6)0.72895 (7)0.35203 (5)0.00929 (13)
S20.63717 (7)0.43870 (7)0.16847 (5)0.01112 (13)
N10.0383 (2)0.6517 (3)0.17917 (18)0.0122 (4)
H1A0.05060.63340.11180.015*
N20.4708 (3)0.3426 (3)0.33075 (19)0.0131 (4)
H2A0.43950.27850.39410.016*
N30.2658 (3)0.7787 (3)0.1413 (2)0.0169 (4)
H3A0.35690.81790.17310.020*
H3B0.26350.74750.08460.020*
N40.7579 (3)0.1184 (3)0.3653 (2)0.0194 (4)
H4A0.84690.09610.32980.023*
H4B0.74760.04110.43540.023*
C10.1143 (3)0.7216 (3)0.2097 (2)0.0111 (4)
C20.1792 (3)0.6012 (3)0.2685 (2)0.0106 (4)
C30.1324 (3)0.6365 (3)0.3667 (2)0.0101 (4)
C40.6262 (3)0.2791 (3)0.3020 (2)0.0118 (4)
C50.3552 (3)0.5195 (3)0.2475 (2)0.0111 (4)
C60.4236 (3)0.5932 (3)0.1553 (2)0.0099 (4)
C70.2430 (3)0.6131 (3)0.4750 (2)0.0159 (5)
H7A0.36440.55910.46820.024*
H7B0.23040.53700.55640.024*
H7C0.20660.72760.47150.024*
C80.3418 (3)0.7794 (3)0.0535 (2)0.0145 (5)
H8A0.22260.84530.06100.022*
H8B0.34110.78210.03090.022*
H8C0.40810.83250.06380.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01114 (14)0.00947 (15)0.00651 (15)0.00633 (11)0.00174 (10)0.00251 (11)
Cl10.0133 (3)0.0225 (3)0.0240 (3)0.0108 (2)0.0033 (2)0.0142 (3)
Cl20.0385 (3)0.0201 (3)0.0117 (3)0.0224 (3)0.0131 (2)0.0079 (2)
Cl30.0459 (4)0.0147 (3)0.0096 (3)0.0169 (3)0.0118 (3)0.0070 (2)
Cl40.0107 (3)0.0210 (3)0.0218 (3)0.0008 (2)0.0008 (2)0.0011 (2)
S10.0094 (2)0.0116 (3)0.0101 (3)0.0057 (2)0.00321 (19)0.0072 (2)
S20.0108 (2)0.0074 (3)0.0111 (3)0.0043 (2)0.00468 (19)0.0010 (2)
N10.0165 (9)0.0154 (10)0.0116 (9)0.0103 (8)0.0072 (7)0.0096 (8)
N20.0187 (9)0.0095 (9)0.0126 (9)0.0087 (8)0.0098 (8)0.0047 (8)
N30.0162 (9)0.0258 (11)0.0145 (10)0.0111 (8)0.0032 (8)0.0134 (9)
N40.0217 (10)0.0070 (9)0.0184 (10)0.0043 (8)0.0096 (8)0.0001 (8)
C10.0161 (10)0.0096 (10)0.0106 (10)0.0081 (9)0.0045 (8)0.0052 (8)
C20.0124 (10)0.0098 (10)0.0135 (11)0.0081 (8)0.0058 (8)0.0059 (9)
C30.0107 (9)0.0075 (10)0.0143 (11)0.0058 (8)0.0029 (8)0.0054 (8)
C40.0168 (10)0.0091 (10)0.0110 (10)0.0076 (9)0.0059 (8)0.0047 (9)
C50.0128 (10)0.0099 (10)0.0150 (11)0.0072 (8)0.0056 (8)0.0077 (9)
C60.0101 (9)0.0085 (10)0.0116 (10)0.0044 (8)0.0018 (8)0.0053 (9)
C70.0121 (10)0.0199 (12)0.0187 (12)0.0077 (9)0.0019 (9)0.0116 (10)
C80.0125 (10)0.0106 (11)0.0130 (11)0.0035 (9)0.0001 (9)0.0016 (9)
Geometric parameters (Å, º) top
Zn1—Cl12.2531 (6)N3—H3B0.8322
Zn1—Cl32.2642 (6)N4—C41.317 (3)
Zn1—Cl22.2707 (6)N4—H4A0.8693
Zn1—Cl42.2788 (6)N4—H4B0.8932
S1—C11.720 (2)C2—C31.340 (3)
S1—C31.746 (2)C2—C51.466 (3)
S2—C41.729 (2)C3—C71.495 (3)
S2—C61.752 (2)C5—C61.340 (3)
N1—C11.330 (3)C6—C81.497 (3)
N1—C21.403 (3)C7—H7A0.9800
N1—H1A0.8730C7—H7B0.9800
N2—C41.334 (3)C7—H7C0.9800
N2—C51.402 (3)C8—H8A0.9800
N2—H2A0.8877C8—H8B0.9800
N3—C11.324 (3)C8—H8C0.9800
N3—H3A0.8747
Cl1—Zn1—Cl3110.69 (3)N1—C2—C5119.60 (19)
Cl1—Zn1—Cl2110.34 (2)C2—C3—C7128.8 (2)
Cl3—Zn1—Cl2106.06 (2)C2—C3—S1110.42 (16)
Cl1—Zn1—Cl4111.25 (3)C7—C3—S1120.71 (16)
Cl3—Zn1—Cl4108.19 (3)N4—C4—N2126.2 (2)
Cl2—Zn1—Cl4110.16 (3)N4—C4—S2122.76 (17)
C1—S1—C391.07 (10)N2—C4—S2110.99 (17)
C4—S2—C691.00 (11)C6—C5—N2113.51 (19)
C1—N1—C2114.04 (18)C6—C5—C2127.9 (2)
C1—N1—H1A123.1N2—C5—C2118.63 (19)
C2—N1—H1A122.8C5—C6—C8128.4 (2)
C4—N2—C5114.14 (18)C5—C6—S2110.35 (17)
C4—N2—H2A123.8C8—C6—S2121.27 (16)
C5—N2—H2A121.9C3—C7—H7A109.5
C1—N3—H3A117.0C3—C7—H7B109.5
C1—N3—H3B116.7H7A—C7—H7B109.5
H3A—N3—H3B123.6C3—C7—H7C109.5
C4—N4—H4A114.3H7A—C7—H7C109.5
C4—N4—H4B119.7H7B—C7—H7C109.5
H4A—N4—H4B125.8C6—C8—H8A109.5
N3—C1—N1125.5 (2)C6—C8—H8B109.5
N3—C1—S1123.29 (17)H8A—C8—H8B109.5
N1—C1—S1111.22 (16)C6—C8—H8C109.5
C3—C2—N1113.22 (18)H8A—C8—H8C109.5
C3—C2—C5127.2 (2)H8B—C8—H8C109.5
C2—N1—C1—N3179.8 (2)C6—S2—C4—N4178.7 (2)
C2—N1—C1—S10.0 (2)C6—S2—C4—N20.43 (18)
C3—S1—C1—N3179.3 (2)C4—N2—C5—C61.1 (3)
C3—S1—C1—N10.85 (17)C4—N2—C5—C2178.5 (2)
C1—N1—C2—C31.2 (3)C3—C2—C5—C6112.4 (3)
C1—N1—C2—C5179.0 (2)N1—C2—C5—C667.4 (3)
N1—C2—C3—C7175.7 (2)C3—C2—C5—N268.0 (3)
C5—C2—C3—C74.1 (4)N1—C2—C5—N2112.2 (2)
N1—C2—C3—S11.8 (2)N2—C5—C6—C8177.4 (2)
C5—C2—C3—S1178.40 (18)C2—C5—C6—C83.0 (4)
C1—S1—C3—C21.52 (18)N2—C5—C6—S21.3 (2)
C1—S1—C3—C7176.21 (19)C2—C5—C6—S2178.20 (18)
C5—N2—C4—N4179.3 (2)C4—S2—C6—C51.01 (17)
C5—N2—C4—S20.2 (2)C4—S2—C6—C8177.88 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.872.783.440 (3)133
N2—H2A···Cl4ii0.892.793.487 (2)137
N3—H3A···Cl4iii0.872.503.322 (3)156
N3—H3B···Cl2iv0.832.363.196 (3)179
N4—H4A···Cl1v0.872.443.280 (3)162
N4—H4B···Cl3ii0.892.383.189 (2)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+2, z+1; (iv) x1, y, z1; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C8H12N4S2)[ZnCl4]
Mr435.51
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.9149 (6), 9.6487 (7), 11.7361 (8)
α, β, γ (°)65.754 (5), 89.126 (5), 62.496 (5)
V3)797.22 (12)
Z2
Radiation typeMo Kα
µ (mm1)2.46
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.484, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
6168, 3368, 3152
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.05
No. of reflections3368
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.82

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—Cl12.2531 (6)Zn1—Cl22.2707 (6)
Zn1—Cl32.2642 (6)Zn1—Cl42.2788 (6)
Cl1—Zn1—Cl3110.69 (3)Cl1—Zn1—Cl4111.25 (3)
Cl1—Zn1—Cl2110.34 (2)Cl3—Zn1—Cl4108.19 (3)
Cl3—Zn1—Cl2106.06 (2)Cl2—Zn1—Cl4110.16 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.872.783.440 (3)133
N2—H2A···Cl4ii0.892.793.487 (2)137
N3—H3A···Cl4iii0.872.503.322 (3)156
N3—H3B···Cl2iv0.832.363.196 (3)179
N4—H4A···Cl1v0.872.443.280 (3)162
N4—H4B···Cl3ii0.892.383.189 (2)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+2, z+1; (iv) x1, y, z1; (v) x+2, y+1, z+1.
 

Acknowledgements

Financial support of this work by Tarbiat Modares University and the University of Tehran is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationHosseinian, A. & Mahjoub, A. R. (2006). Z. Anorg. Allg. Chem. 632, 2505–2509.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds