organic compounds
2-[(2-Carboxyphenyl)disulfanyl]benzoate (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)ammonium
aCollege of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: luckyms@126.com
In the title molecular salt, C11H14N3O+·C14H9O4S2−, one of the carboxylic groups of the 2,2′-dithiodibenzoic acid is deprotonated and the exocyclic amino N atom of the 4-aminoantipyrine is protonated. In the anion, the dihedral angle between the two benzene rings is 73.51 (5)° and in the cation the dihedral angle between the phenyl ring and the five-membered ring is 65.79 (9)°. In the intermolecular N—H⋯O and O—H⋯O hydrogen bonds connect the anions and cations into chains along [010].
Related literature
For molecular recognition by intermolecular non-covalent interactions, see Rebek (1990); Remenar et al. (2003). For the properties and applications of 4-aminoantipyrine and its derivatives, see Wang et al. (2008b); Ismail et al. (1997); Selvakumar et al. (2007); Meffin et al. (1977). For the structures and properties of 2,2′-dithiodibenzoic acid-based metal complexes and cocrystals, see Basiuk et al. (1999); Murugavel et al. (2001); Broker et al. (2007; 2008); Meng et al. (2008); Wang et al, (2008a, 2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536809036952/lh2900sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809036952/lh2900Isup2.hkl
To a hot ethanol solution (5 ml) containing 2,2'-dithiodibenzoic acid (15.3 mg, 0.05 mmol) was slowly added an ethanol solution (5 ml) of 4-aminoantipyrine (20.3 mg 0.1 mmol) with constant stirring. The resulting mixture was further heated for one hour and then filtered. Upon slow evaporation of the filtrate at room temperature, yellow block-shaped crystals suitable for X-ray analysis were generated within ten days in 60% yield (based on 2,2'-dithiodibenzoic acid). Elemental analysis calculated for C25H23N3O5S2: C, 58.92; H, 4.55; N, 8.25%; found: C, 58.93; H, 4.58; N, 8.35%.
H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C—H = 0.93 (aromatic) or 0.96 (methyl), O—H = 0.82, and N—H = 0.89 Å. All H-atoms were allocated displacement parameters related to those parent atoms [Uiso(H)= 1.2 Ueq (C) or Uiso(H)= 1.5 Ueq (Cmethyl,N,O) ].
Molecular recognition by intermolecular non-covalent interactions such as hydrogen-bonding, π···π stacking and electrostatic interactions, has been receiving more and more attention in diverse research fields (Rebek, 1990). The hydrogen-bonded adducts of active pharmaceutical ingredients with small molecules have rapidly becoming one of intense interest in medicine and crystal engineering fields (Remenar et al., 2003).
In this regard, 4-aminoantipyrine (AP) and its versatile Schiff base derivatives have been extensively used in clinical and pharmacological areas to treat various virus diseases (Meffin et al., 1977; Wang et al., 2008b; Ismail et al., 1997; Selvakumar et al., 2007). And the active ingredients may be the individual organic molecules or their metal complexes. On the other hand, 2,2'-dithiodibenzoic acid (H2L) is one of the multifunctional molecules containing both carboxylic groups and rotational S—S bond, and can be potentially afforded various hydrogen-bonding sites and diverse supramolecular architectures (Broker et al., 2007). In fact, many hydrogen-bonded H2L-involved adducts with controllable deprotonation degree and flexible conformations have been obtained by far (Basiuk et al., 1999; Murugavel et al., 2001; Broker et al., 2008; Meng et al. 2008; Wang et al., 2008a; Wang et al., 2009).
Herein, to fully explore the solid molecular recognition behavior by hydrogen-bonding interactions, the unsubstituted AP and flexible H2L components were selected as building blocks for creating a cocrystal. As a result, a 1:1 adduct with proton transfer, (I), was obtained in ethanol medium.
As shown in Fig. 1, the
of (I) comprises one mono-deprotonated HL- anion and one protonated HAP+ ion for charge balance. The two components in the are connected by an N3–H3C···O2 hydrogen bond between the exocyclic amino group of HAP+ and the deprotonated carboxylate of HL-. In the cation, the mean plane of the phenyl ring is rotated by 65.79 (9) ° with respect to the five-membered pyrazoline ring. When viewed along the central S–S bond, the HL- anion adopts a characteristic L-shaped conformation. The torsion angle of C13—S1—S2—C20 is -83.03 (1)°, and the dihedral angle between the two benzene rings is 73.51 (5)Å. The carboxylic residues of HL- are essentially co-planar with respect to the benzene rings.In the
of I, two hydrogen-bonded dimers from the adjacent asymmetric units are further aggregated together by a pair of N3–H3A··· O3 interactions, leading to the formation of the centro-symmetric tetramer. The tetramers are then extended along the crystallographic b-axis by N3–H3B··· O4 and O5–H5··· O1 recognition patterns (Table 1). As a result, an extended ribbon-like supramolecular assembly was obtained (Fig. 2). There are no interactions between adjacent ribbons. (Fig. 3).For molecular recognition in diverse research fields, see Rebek (1990); Remenar et al. (2003). For the properties and applications of 4-aminoantipyrine and its derivatives, see Wang et al. (2008b); Ismail et al. (1997); Selvakumar et al. (2007); Meffin et al. (1977). For the structures and properties of 2,2'-dithiodibenzoic acid-based metal complexes and cocrystals, see Basiuk et al. (1999); Murugavel et al. (2001); Broker et al. (2007; 2008); Meng et al. (2008); Wang et al., (2008a, 2009).
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C11H14N3O+·C14H9O4S2− | Z = 2 |
Mr = 509.58 | F(000) = 532 |
Triclinic, P1 | Dx = 1.392 Mg m−3 |
a = 9.661 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.283 (4) Å | Cell parameters from 4106 reflections |
c = 13.829 (7) Å | θ = 2.4–27.8° |
α = 99.872 (7)° | µ = 0.26 mm−1 |
β = 91.929 (7)° | T = 296 K |
γ = 115.244 (5)° | Block, yellow |
V = 1215.5 (9) Å3 | 0.30 × 0.28 × 0.22 mm |
Brucker APEXII CCD area-detector diffractometer | 4227 independent reflections |
Radiation source: fine-focus sealed tube | 3634 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
phi and ω scans | θmax = 25.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.926, Tmax = 0.945 | k = −5→12 |
6173 measured reflections | l = −16→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0499P)2 + 0.3886P] where P = (Fo2 + 2Fc2)/3 |
4227 reflections | (Δ/σ)max < 0.001 |
320 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C11H14N3O+·C14H9O4S2− | γ = 115.244 (5)° |
Mr = 509.58 | V = 1215.5 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.661 (3) Å | Mo Kα radiation |
b = 10.283 (4) Å | µ = 0.26 mm−1 |
c = 13.829 (7) Å | T = 296 K |
α = 99.872 (7)° | 0.30 × 0.28 × 0.22 mm |
β = 91.929 (7)° |
Brucker APEXII CCD area-detector diffractometer | 4227 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3634 reflections with I > 2σ(I) |
Tmin = 0.926, Tmax = 0.945 | Rint = 0.012 |
6173 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.20 e Å−3 |
4227 reflections | Δρmin = −0.23 e Å−3 |
320 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.79625 (6) | 0.30246 (6) | 0.41198 (4) | 0.04987 (15) | |
S2 | 0.77232 (6) | 0.46456 (5) | 0.35447 (3) | 0.04581 (14) | |
O2 | 0.87236 (18) | 0.12722 (17) | 0.49915 (11) | 0.0596 (4) | |
O3 | 0.78833 (18) | 0.04135 (19) | 0.63321 (12) | 0.0653 (4) | |
O4 | 0.78550 (16) | 0.67278 (14) | 0.25767 (10) | 0.0518 (3) | |
O5 | 0.6376 (2) | 0.65050 (16) | 0.12387 (11) | 0.0703 (5) | |
H5 | 0.6937 | 0.7388 | 0.1319 | 0.105* | |
C12 | 0.6718 (2) | 0.17200 (19) | 0.56767 (12) | 0.0379 (4) | |
C13 | 0.6661 (2) | 0.26280 (19) | 0.50372 (12) | 0.0385 (4) | |
C14 | 0.5566 (2) | 0.3168 (2) | 0.51215 (14) | 0.0450 (4) | |
H14 | 0.5522 | 0.3773 | 0.4705 | 0.054* | |
C15 | 0.4543 (2) | 0.2822 (2) | 0.58140 (15) | 0.0516 (5) | |
H15 | 0.3816 | 0.3192 | 0.5859 | 0.062* | |
C16 | 0.4590 (2) | 0.1929 (2) | 0.64402 (15) | 0.0523 (5) | |
H16 | 0.3897 | 0.1693 | 0.6906 | 0.063* | |
C17 | 0.5674 (2) | 0.1390 (2) | 0.63682 (14) | 0.0452 (4) | |
H17 | 0.5708 | 0.0791 | 0.6793 | 0.054* | |
C18 | 0.7866 (2) | 0.1099 (2) | 0.56449 (14) | 0.0435 (4) | |
C19 | 0.5772 (2) | 0.44117 (19) | 0.19213 (12) | 0.0411 (4) | |
C20 | 0.6068 (2) | 0.36948 (19) | 0.26285 (12) | 0.0399 (4) | |
C21 | 0.5030 (2) | 0.2243 (2) | 0.26044 (14) | 0.0504 (5) | |
H21 | 0.5192 | 0.1761 | 0.3076 | 0.060* | |
C22 | 0.3767 (3) | 0.1507 (2) | 0.18949 (16) | 0.0577 (5) | |
H22 | 0.3083 | 0.0542 | 0.1899 | 0.069* | |
C23 | 0.3508 (3) | 0.2184 (2) | 0.11810 (16) | 0.0591 (5) | |
H23 | 0.2675 | 0.1673 | 0.0690 | 0.071* | |
C24 | 0.4498 (3) | 0.3629 (2) | 0.12028 (14) | 0.0537 (5) | |
H24 | 0.4314 | 0.4095 | 0.0728 | 0.064* | |
C25 | 0.6773 (2) | 0.5980 (2) | 0.19429 (13) | 0.0432 (4) | |
O1 | 0.7722 (2) | −0.07506 (15) | 0.13515 (11) | 0.0708 (5) | |
N1 | 1.0500 (2) | 0.28242 (17) | 0.21502 (13) | 0.0522 (4) | |
N2 | 0.9294 (2) | 0.17231 (17) | 0.14899 (12) | 0.0544 (4) | |
N3 | 0.95999 (18) | −0.01942 (17) | 0.33782 (11) | 0.0420 (4) | |
H3A | 1.0521 | −0.0163 | 0.3517 | 0.063* | |
H3B | 0.8939 | −0.1104 | 0.3082 | 0.063* | |
H3C | 0.9266 | 0.0071 | 0.3936 | 0.063* | |
C1 | 0.8789 (2) | 0.0433 (2) | 0.18279 (14) | 0.0479 (5) | |
C2 | 0.9719 (2) | 0.07944 (19) | 0.27335 (13) | 0.0381 (4) | |
C3 | 1.0727 (2) | 0.2242 (2) | 0.29096 (14) | 0.0451 (4) | |
C4 | 1.1063 (3) | 0.4359 (2) | 0.2109 (2) | 0.0746 (7) | |
H4A | 1.0228 | 0.4630 | 0.2147 | 0.112* | |
H4B | 1.1488 | 0.4519 | 0.1499 | 0.112* | |
H4C | 1.1847 | 0.4947 | 0.2654 | 0.112* | |
C5 | 0.8733 (2) | 0.1957 (2) | 0.05991 (14) | 0.0473 (5) | |
C6 | 0.9637 (3) | 0.2291 (3) | −0.01490 (19) | 0.0736 (7) | |
H6 | 1.0623 | 0.2347 | −0.0089 | 0.088* | |
C7 | 0.9072 (4) | 0.2545 (3) | −0.09933 (19) | 0.0868 (9) | |
H7 | 0.9685 | 0.2780 | −0.1501 | 0.104* | |
C8 | 0.7649 (4) | 0.2455 (3) | −0.10844 (19) | 0.0796 (8) | |
H8 | 0.7295 | 0.2661 | −0.1646 | 0.096* | |
C9 | 0.6711 (4) | 0.2065 (3) | −0.0363 (2) | 0.0816 (8) | |
H9 | 0.5709 | 0.1966 | −0.0449 | 0.098* | |
C10 | 0.7251 (3) | 0.1817 (3) | 0.04980 (17) | 0.0643 (6) | |
H10 | 0.6623 | 0.1562 | 0.0996 | 0.077* | |
C11 | 1.1906 (3) | 0.3128 (3) | 0.37761 (18) | 0.0691 (6) | |
H11A | 1.2875 | 0.3677 | 0.3551 | 0.104* | |
H11B | 1.2017 | 0.2486 | 0.4169 | 0.104* | |
H11C | 1.1586 | 0.3793 | 0.4168 | 0.104* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0581 (3) | 0.0600 (3) | 0.0518 (3) | 0.0376 (3) | 0.0180 (2) | 0.0287 (2) |
S2 | 0.0526 (3) | 0.0423 (3) | 0.0456 (3) | 0.0208 (2) | 0.0031 (2) | 0.0176 (2) |
O2 | 0.0725 (10) | 0.0751 (10) | 0.0613 (9) | 0.0521 (8) | 0.0246 (8) | 0.0331 (8) |
O3 | 0.0657 (9) | 0.0869 (11) | 0.0742 (10) | 0.0483 (9) | 0.0208 (8) | 0.0522 (9) |
O4 | 0.0579 (8) | 0.0390 (7) | 0.0534 (8) | 0.0144 (6) | −0.0025 (7) | 0.0175 (6) |
O5 | 0.1014 (13) | 0.0418 (8) | 0.0523 (8) | 0.0151 (8) | −0.0180 (8) | 0.0205 (7) |
C12 | 0.0403 (9) | 0.0369 (9) | 0.0357 (9) | 0.0164 (8) | −0.0008 (7) | 0.0082 (7) |
C13 | 0.0435 (9) | 0.0384 (9) | 0.0352 (9) | 0.0197 (8) | 0.0010 (7) | 0.0081 (7) |
C14 | 0.0530 (11) | 0.0489 (11) | 0.0423 (10) | 0.0299 (9) | 0.0030 (8) | 0.0128 (8) |
C15 | 0.0510 (11) | 0.0622 (13) | 0.0517 (11) | 0.0343 (10) | 0.0082 (9) | 0.0115 (10) |
C16 | 0.0507 (11) | 0.0627 (13) | 0.0483 (11) | 0.0273 (10) | 0.0135 (9) | 0.0159 (10) |
C17 | 0.0496 (11) | 0.0457 (10) | 0.0424 (10) | 0.0204 (9) | 0.0045 (8) | 0.0158 (8) |
C18 | 0.0467 (10) | 0.0448 (10) | 0.0442 (10) | 0.0230 (9) | 0.0022 (8) | 0.0148 (8) |
C19 | 0.0538 (11) | 0.0369 (9) | 0.0336 (9) | 0.0197 (8) | 0.0073 (8) | 0.0099 (7) |
C20 | 0.0527 (10) | 0.0356 (9) | 0.0341 (9) | 0.0210 (8) | 0.0085 (8) | 0.0092 (7) |
C21 | 0.0682 (13) | 0.0366 (10) | 0.0459 (10) | 0.0204 (9) | 0.0075 (9) | 0.0143 (8) |
C22 | 0.0692 (14) | 0.0354 (10) | 0.0555 (12) | 0.0116 (10) | 0.0069 (10) | 0.0074 (9) |
C23 | 0.0633 (13) | 0.0485 (12) | 0.0496 (12) | 0.0130 (10) | −0.0064 (10) | 0.0035 (10) |
C24 | 0.0676 (13) | 0.0500 (12) | 0.0406 (10) | 0.0222 (10) | −0.0005 (9) | 0.0134 (9) |
C25 | 0.0579 (12) | 0.0404 (10) | 0.0343 (9) | 0.0219 (9) | 0.0082 (9) | 0.0136 (8) |
O1 | 0.0899 (11) | 0.0384 (8) | 0.0604 (9) | 0.0052 (8) | −0.0302 (8) | 0.0196 (7) |
N1 | 0.0551 (10) | 0.0353 (8) | 0.0576 (10) | 0.0109 (7) | −0.0019 (8) | 0.0138 (7) |
N2 | 0.0644 (11) | 0.0375 (9) | 0.0512 (9) | 0.0111 (8) | −0.0097 (8) | 0.0177 (7) |
N3 | 0.0460 (8) | 0.0442 (8) | 0.0392 (8) | 0.0217 (7) | 0.0008 (6) | 0.0134 (7) |
C1 | 0.0586 (12) | 0.0371 (10) | 0.0438 (10) | 0.0152 (9) | −0.0030 (9) | 0.0153 (8) |
C2 | 0.0412 (9) | 0.0383 (9) | 0.0375 (9) | 0.0188 (8) | 0.0030 (7) | 0.0110 (7) |
C3 | 0.0457 (10) | 0.0430 (10) | 0.0463 (10) | 0.0194 (9) | 0.0020 (8) | 0.0096 (8) |
C4 | 0.0852 (17) | 0.0384 (12) | 0.0888 (18) | 0.0133 (11) | 0.0020 (14) | 0.0231 (12) |
C5 | 0.0616 (12) | 0.0379 (10) | 0.0455 (10) | 0.0216 (9) | 0.0034 (9) | 0.0175 (8) |
C6 | 0.0665 (15) | 0.0874 (18) | 0.0727 (16) | 0.0297 (13) | 0.0191 (12) | 0.0403 (14) |
C7 | 0.104 (2) | 0.086 (2) | 0.0589 (15) | 0.0217 (17) | 0.0183 (15) | 0.0382 (14) |
C8 | 0.119 (2) | 0.0490 (13) | 0.0605 (15) | 0.0255 (14) | −0.0183 (15) | 0.0213 (11) |
C9 | 0.094 (2) | 0.0870 (19) | 0.0804 (18) | 0.0587 (17) | −0.0129 (15) | 0.0139 (15) |
C10 | 0.0746 (15) | 0.0760 (16) | 0.0574 (13) | 0.0460 (13) | 0.0114 (11) | 0.0161 (11) |
C11 | 0.0650 (14) | 0.0538 (13) | 0.0676 (15) | 0.0113 (11) | −0.0175 (12) | 0.0049 (11) |
S1—C13 | 1.7901 (19) | O1—C1 | 1.260 (2) |
S1—S2 | 2.0580 (9) | N1—C3 | 1.350 (2) |
S2—C20 | 1.796 (2) | N1—N2 | 1.387 (2) |
O2—C18 | 1.231 (2) | N1—C4 | 1.446 (3) |
O3—C18 | 1.280 (2) | N2—C1 | 1.376 (2) |
O4—C25 | 1.214 (2) | N2—C5 | 1.427 (2) |
O5—C25 | 1.311 (2) | N3—C2 | 1.435 (2) |
O5—H5 | 0.8200 | N3—H3A | 0.8900 |
C12—C17 | 1.390 (3) | N3—H3B | 0.8900 |
C12—C13 | 1.407 (2) | N3—H3C | 0.8900 |
C12—C18 | 1.496 (3) | C1—C2 | 1.412 (3) |
C13—C14 | 1.389 (3) | C2—C3 | 1.359 (3) |
C14—C15 | 1.379 (3) | C3—C11 | 1.487 (3) |
C14—H14 | 0.9300 | C4—H4A | 0.9600 |
C15—C16 | 1.378 (3) | C4—H4B | 0.9600 |
C15—H15 | 0.9300 | C4—H4C | 0.9600 |
C16—C17 | 1.377 (3) | C5—C6 | 1.370 (3) |
C16—H16 | 0.9300 | C5—C10 | 1.377 (3) |
C17—H17 | 0.9300 | C6—C7 | 1.383 (4) |
C19—C24 | 1.396 (3) | C6—H6 | 0.9300 |
C19—C20 | 1.410 (2) | C7—C8 | 1.337 (4) |
C19—C25 | 1.479 (3) | C7—H7 | 0.9300 |
C20—C21 | 1.393 (3) | C8—C9 | 1.365 (4) |
C21—C22 | 1.379 (3) | C8—H8 | 0.9300 |
C21—H21 | 0.9300 | C9—C10 | 1.390 (3) |
C22—C23 | 1.375 (3) | C9—H9 | 0.9300 |
C22—H22 | 0.9300 | C10—H10 | 0.9300 |
C23—C24 | 1.376 (3) | C11—H11A | 0.9600 |
C23—H23 | 0.9300 | C11—H11B | 0.9600 |
C24—H24 | 0.9300 | C11—H11C | 0.9600 |
C13—S1—S2 | 105.53 (6) | C1—N2—N1 | 109.44 (15) |
C20—S2—S1 | 105.13 (6) | C1—N2—C5 | 127.62 (16) |
C25—O5—H5 | 109.5 | N1—N2—C5 | 122.93 (15) |
C17—C12—C13 | 118.95 (17) | C2—N3—H3A | 109.5 |
C17—C12—C18 | 118.54 (16) | C2—N3—H3B | 109.5 |
C13—C12—C18 | 122.51 (16) | H3A—N3—H3B | 109.5 |
C14—C13—C12 | 118.82 (16) | C2—N3—H3C | 109.5 |
C14—C13—S1 | 121.61 (14) | H3A—N3—H3C | 109.5 |
C12—C13—S1 | 119.55 (13) | H3B—N3—H3C | 109.5 |
C15—C14—C13 | 121.01 (17) | O1—C1—N2 | 122.29 (17) |
C15—C14—H14 | 119.5 | O1—C1—C2 | 132.74 (17) |
C13—C14—H14 | 119.5 | N2—C1—C2 | 104.97 (16) |
C16—C15—C14 | 120.43 (18) | C3—C2—C1 | 109.02 (16) |
C16—C15—H15 | 119.8 | C3—C2—N3 | 125.26 (16) |
C14—C15—H15 | 119.8 | C1—C2—N3 | 125.71 (16) |
C17—C16—C15 | 119.23 (18) | N1—C3—C2 | 108.82 (16) |
C17—C16—H16 | 120.4 | N1—C3—C11 | 122.47 (18) |
C15—C16—H16 | 120.4 | C2—C3—C11 | 128.71 (18) |
C16—C17—C12 | 121.57 (18) | N1—C4—H4A | 109.5 |
C16—C17—H17 | 119.2 | N1—C4—H4B | 109.5 |
C12—C17—H17 | 119.2 | H4A—C4—H4B | 109.5 |
O2—C18—O3 | 124.23 (18) | N1—C4—H4C | 109.5 |
O2—C18—C12 | 120.14 (16) | H4A—C4—H4C | 109.5 |
O3—C18—C12 | 115.62 (17) | H4B—C4—H4C | 109.5 |
C24—C19—C20 | 119.15 (17) | C6—C5—C10 | 120.4 (2) |
C24—C19—C25 | 119.83 (16) | C6—C5—N2 | 121.0 (2) |
C20—C19—C25 | 121.01 (16) | C10—C5—N2 | 118.60 (19) |
C21—C20—C19 | 118.20 (17) | C5—C6—C7 | 119.6 (3) |
C21—C20—S2 | 121.18 (14) | C5—C6—H6 | 120.2 |
C19—C20—S2 | 120.61 (14) | C7—C6—H6 | 120.2 |
C22—C21—C20 | 121.23 (18) | C8—C7—C6 | 120.4 (3) |
C22—C21—H21 | 119.4 | C8—C7—H7 | 119.8 |
C20—C21—H21 | 119.4 | C6—C7—H7 | 119.8 |
C23—C22—C21 | 120.71 (19) | C7—C8—C9 | 120.8 (2) |
C23—C22—H22 | 119.6 | C7—C8—H8 | 119.6 |
C21—C22—H22 | 119.6 | C9—C8—H8 | 119.6 |
C22—C23—C24 | 119.10 (19) | C8—C9—C10 | 120.1 (3) |
C22—C23—H23 | 120.4 | C8—C9—H9 | 119.9 |
C24—C23—H23 | 120.4 | C10—C9—H9 | 119.9 |
C23—C24—C19 | 121.53 (19) | C5—C10—C9 | 118.6 (2) |
C23—C24—H24 | 119.2 | C5—C10—H10 | 120.7 |
C19—C24—H24 | 119.2 | C9—C10—H10 | 120.7 |
O4—C25—O5 | 122.76 (17) | C3—C11—H11A | 109.5 |
O4—C25—C19 | 122.53 (16) | C3—C11—H11B | 109.5 |
O5—C25—C19 | 114.70 (17) | H11A—C11—H11B | 109.5 |
C3—N1—N2 | 107.74 (15) | C3—C11—H11C | 109.5 |
C3—N1—C4 | 128.07 (19) | H11A—C11—H11C | 109.5 |
N2—N1—C4 | 122.29 (18) | H11B—C11—H11C | 109.5 |
C13—S1—S2—C20 | −83.01 (9) | C20—C19—C25—O5 | 179.46 (17) |
C17—C12—C13—C14 | 0.2 (3) | C3—N1—N2—C1 | −1.6 (2) |
C18—C12—C13—C14 | −179.47 (17) | C4—N1—N2—C1 | −167.0 (2) |
C17—C12—C13—S1 | −178.34 (13) | C3—N1—N2—C5 | 179.52 (19) |
C18—C12—C13—S1 | 2.0 (2) | C4—N1—N2—C5 | 14.1 (3) |
S2—S1—C13—C14 | 11.17 (17) | N1—N2—C1—O1 | −178.3 (2) |
S2—S1—C13—C12 | −170.30 (13) | C5—N2—C1—O1 | 0.6 (4) |
C12—C13—C14—C15 | −0.3 (3) | N1—N2—C1—C2 | 1.1 (2) |
S1—C13—C14—C15 | 178.23 (15) | C5—N2—C1—C2 | 179.9 (2) |
C13—C14—C15—C16 | 0.1 (3) | O1—C1—C2—C3 | 179.0 (2) |
C14—C15—C16—C17 | 0.2 (3) | N2—C1—C2—C3 | −0.2 (2) |
C15—C16—C17—C12 | −0.3 (3) | O1—C1—C2—N3 | −2.3 (4) |
C13—C12—C17—C16 | 0.0 (3) | N2—C1—C2—N3 | 178.49 (17) |
C18—C12—C17—C16 | 179.76 (18) | N2—N1—C3—C2 | 1.4 (2) |
C17—C12—C18—O2 | 174.18 (18) | C4—N1—C3—C2 | 165.8 (2) |
C13—C12—C18—O2 | −6.1 (3) | N2—N1—C3—C11 | −177.9 (2) |
C17—C12—C18—O3 | −6.3 (3) | C4—N1—C3—C11 | −13.6 (3) |
C13—C12—C18—O3 | 173.36 (17) | C1—C2—C3—N1 | −0.8 (2) |
C24—C19—C20—C21 | −2.7 (3) | N3—C2—C3—N1 | −179.45 (17) |
C25—C19—C20—C21 | 176.19 (17) | C1—C2—C3—C11 | 178.5 (2) |
C24—C19—C20—S2 | 178.30 (15) | N3—C2—C3—C11 | −0.2 (3) |
C25—C19—C20—S2 | −2.9 (2) | C1—N2—C5—C6 | −113.0 (3) |
S1—S2—C20—C21 | 16.17 (17) | N1—N2—C5—C6 | 65.7 (3) |
S1—S2—C20—C19 | −164.81 (13) | C1—N2—C5—C10 | 66.0 (3) |
C19—C20—C21—C22 | 1.6 (3) | N1—N2—C5—C10 | −115.3 (2) |
S2—C20—C21—C22 | −179.32 (16) | C10—C5—C6—C7 | 2.5 (4) |
C20—C21—C22—C23 | 0.8 (3) | N2—C5—C6—C7 | −178.5 (2) |
C21—C22—C23—C24 | −2.3 (4) | C5—C6—C7—C8 | −0.5 (4) |
C22—C23—C24—C19 | 1.2 (3) | C6—C7—C8—C9 | −2.2 (4) |
C20—C19—C24—C23 | 1.3 (3) | C7—C8—C9—C10 | 2.8 (4) |
C25—C19—C24—C23 | −177.6 (2) | C6—C5—C10—C9 | −1.9 (4) |
C24—C19—C25—O4 | 176.68 (19) | N2—C5—C10—C9 | 179.1 (2) |
C20—C19—C25—O4 | −2.2 (3) | C8—C9—C10—C5 | −0.7 (4) |
C24—C19—C25—O5 | −1.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O1i | 0.82 | 1.72 | 2.527 (2) | 166 |
N3—H3A···O3ii | 0.89 | 1.68 | 2.561 (2) | 170 |
N3—H3B···O4iii | 0.89 | 2.00 | 2.865 (2) | 165 |
N3—H3C···O2 | 0.89 | 1.98 | 2.834 (2) | 161 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y, −z+1; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C11H14N3O+·C14H9O4S2− |
Mr | 509.58 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 9.661 (3), 10.283 (4), 13.829 (7) |
α, β, γ (°) | 99.872 (7), 91.929 (7), 115.244 (5) |
V (Å3) | 1215.5 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.30 × 0.28 × 0.22 |
Data collection | |
Diffractometer | Brucker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.926, 0.945 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6173, 4227, 3634 |
Rint | 0.012 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.100, 1.06 |
No. of reflections | 4227 |
No. of parameters | 320 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.23 |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O1i | 0.82 | 1.72 | 2.527 (2) | 165.9 |
N3—H3A···O3ii | 0.89 | 1.68 | 2.561 (2) | 169.9 |
N3—H3B···O4iii | 0.89 | 2.00 | 2.865 (2) | 165.3 |
N3—H3C···O2 | 0.89 | 1.98 | 2.834 (2) | 160.5 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y, −z+1; (iii) x, y−1, z. |
Acknowledgements
The author gratefully acknowledge financial support from Tianjin Normal University.
References
Basiuk, E. V., Gómez-Lara, J., Basiuk, V. A. & Toscano, R. A. (1999). J. Chem. Crystallogr. 29, 1157–1163. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm. 10, 879–887. Web of Science CSD CrossRef CAS Google Scholar
Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm. 9, 1096–1109. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ismail, K. Z., El-Dissouky, A. & Shehada, A. Z. (1997). Polyhedron, 16, 2909–2916. CrossRef CAS Web of Science Google Scholar
Meffin, P. J., Williams, R., Blaschke, T. F. & Rowland, M. (1977). J. Pharm. Sci. 66, 135–137. CrossRef CAS PubMed Web of Science Google Scholar
Meng, X.-G., Xiao, Y.-L., Zhang, H. & Zhou, C.-S. (2008). Acta Cryst. C64, o261–o263. Web of Science CSD CrossRef IUCr Journals Google Scholar
Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870–6878. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rebek, J. Jr (1990). Acc. Chem. Res. 23, 399–404. CrossRef CAS Web of Science Google Scholar
Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmán, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. 125, 8456–8457. Web of Science CSD CrossRef PubMed CAS Google Scholar
Selvakumar, P. M., Suresh, E. & Subramanian, P. S. (2007). Polyhedron, 26, 749–756. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L.-L., Chang, H. & Yang, E.-C. (2009). Acta Cryst. C65, o492–o494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, Z.-L., Wei, L.-H., Li, M.-X. & Wang, J.-P. (2008a). Chin. J. Struct. Chem. 27, 1327–1332. CAS Google Scholar
Wang, Q., Wu, M.-J., Yang, E.-C., Wang, X.-G. & Zhao, X.-J. (2008b). J. Coord. Chem. 61, 595–604. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Molecular recognition by intermolecular non-covalent interactions such as hydrogen-bonding, π···π stacking and electrostatic interactions, has been receiving more and more attention in diverse research fields (Rebek, 1990). The hydrogen-bonded adducts of active pharmaceutical ingredients with small molecules have rapidly becoming one of intense interest in medicine and crystal engineering fields (Remenar et al., 2003).
In this regard, 4-aminoantipyrine (AP) and its versatile Schiff base derivatives have been extensively used in clinical and pharmacological areas to treat various virus diseases (Meffin et al., 1977; Wang et al., 2008b; Ismail et al., 1997; Selvakumar et al., 2007). And the active ingredients may be the individual organic molecules or their metal complexes. On the other hand, 2,2'-dithiodibenzoic acid (H2L) is one of the multifunctional molecules containing both carboxylic groups and rotational S—S bond, and can be potentially afforded various hydrogen-bonding sites and diverse supramolecular architectures (Broker et al., 2007). In fact, many hydrogen-bonded H2L-involved adducts with controllable deprotonation degree and flexible conformations have been obtained by far (Basiuk et al., 1999; Murugavel et al., 2001; Broker et al., 2008; Meng et al. 2008; Wang et al., 2008a; Wang et al., 2009).
Herein, to fully explore the solid molecular recognition behavior by hydrogen-bonding interactions, the unsubstituted AP and flexible H2L components were selected as building blocks for creating a cocrystal. As a result, a 1:1 adduct with proton transfer, (I), was obtained in ethanol medium.
As shown in Fig. 1, the asymmetric unit of (I) comprises one mono-deprotonated HL- anion and one protonated HAP+ ion for charge balance. The two components in the asymmetric unit are connected by an N3–H3C···O2 hydrogen bond between the exocyclic amino group of HAP+ and the deprotonated carboxylate of HL-. In the cation, the mean plane of the phenyl ring is rotated by 65.79 (9) ° with respect to the five-membered pyrazoline ring. When viewed along the central S–S bond, the HL- anion adopts a characteristic L-shaped conformation. The torsion angle of C13—S1—S2—C20 is -83.03 (1)°, and the dihedral angle between the two benzene rings is 73.51 (5)Å. The carboxylic residues of HL- are essentially co-planar with respect to the benzene rings.
In the crystal structure of I, two hydrogen-bonded dimers from the adjacent asymmetric units are further aggregated together by a pair of N3–H3A··· O3 interactions, leading to the formation of the centro-symmetric tetramer. The tetramers are then extended along the crystallographic b-axis by N3–H3B··· O4 and O5–H5··· O1 recognition patterns (Table 1). As a result, an extended ribbon-like supramolecular assembly was obtained (Fig. 2). There are no interactions between adjacent ribbons. (Fig. 3).