organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Carboxyphenyl)disulfanyl]benzoate (1,5-di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)ammonium

aCollege of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: luckyms@126.com

(Received 3 September 2009; accepted 12 September 2009; online 10 October 2009)

In the title molecular salt, C11H14N3O+·C14H9O4S2, one of the carboxylic groups of the 2,2′-dithio­dibenzoic acid is deprotonated and the exocyclic amino N atom of the 4-amino­anti­pyrine is protonated. In the anion, the dihedral angle between the two benzene rings is 73.51 (5)° and in the cation the dihedral angle between the phenyl ring and the five-membered ring is 65.79 (9)°. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds connect the anions and cations into chains along [010].

Related literature

For mol­ecular recognition by intermolecular non-covalent interactions, see Rebek (1990[Rebek, J. Jr (1990). Acc. Chem. Res. 23, 399-404.]); Remenar et al. (2003[Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmán, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. 125, 8456-8457.]). For the properties and applications of 4-amino­anti­pyrine and its derivatives, see Wang et al. (2008b[Wang, Q., Wu, M.-J., Yang, E.-C., Wang, X.-G. & Zhao, X.-J. (2008b). J. Coord. Chem. 61, 595-604.]); Ismail et al. (1997[Ismail, K. Z., El-Dissouky, A. & Shehada, A. Z. (1997). Polyhedron, 16, 2909-2916.]); Selvakumar et al. (2007[Selvakumar, P. M., Suresh, E. & Subramanian, P. S. (2007). Polyhedron, 26, 749-756.]); Meffin et al. (1977[Meffin, P. J., Williams, R., Blaschke, T. F. & Rowland, M. (1977). J. Pharm. Sci. 66, 135-137.]). For the structures and properties of 2,2′-dithio­dibenzoic acid-based metal complexes and cocrystals, see Basiuk et al. (1999[Basiuk, E. V., Gómez-Lara, J., Basiuk, V. A. & Toscano, R. A. (1999). J. Chem. Crystallogr. 29, 1157-1163.]); Murugavel et al. (2001[Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870-6878.]); Broker et al. (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm. 9, 1096-1109.]; 2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm. 10, 879-887.]); Meng et al. (2008[Meng, X.-G., Xiao, Y.-L., Zhang, H. & Zhou, C.-S. (2008). Acta Cryst. C64, o261-o263.]); Wang et al, (2008a[Wang, Z.-L., Wei, L.-H., Li, M.-X. & Wang, J.-P. (2008a). Chin. J. Struct. Chem. 27, 1327-1332.], 2009[Wang, L.-L., Chang, H. & Yang, E.-C. (2009). Acta Cryst. C65, o492-o494.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N3O+·C14H9O4S2

  • Mr = 509.58

  • Triclinic, [P \overline 1]

  • a = 9.661 (3) Å

  • b = 10.283 (4) Å

  • c = 13.829 (7) Å

  • α = 99.872 (7)°

  • β = 91.929 (7)°

  • γ = 115.244 (5)°

  • V = 1215.5 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.22 mm

Data collection
  • Brucker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.945

  • 6173 measured reflections

  • 4227 independent reflections

  • 3634 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.06

  • 4227 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1i 0.82 1.72 2.527 (2) 166
N3—H3A⋯O3ii 0.89 1.68 2.561 (2) 170
N3—H3B⋯O4iii 0.89 2.00 2.865 (2) 165
N3—H3C⋯O2 0.89 1.98 2.834 (2) 161
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecular recognition by intermolecular non-covalent interactions such as hydrogen-bonding, π···π stacking and electrostatic interactions, has been receiving more and more attention in diverse research fields (Rebek, 1990). The hydrogen-bonded adducts of active pharmaceutical ingredients with small molecules have rapidly becoming one of intense interest in medicine and crystal engineering fields (Remenar et al., 2003).

In this regard, 4-aminoantipyrine (AP) and its versatile Schiff base derivatives have been extensively used in clinical and pharmacological areas to treat various virus diseases (Meffin et al., 1977; Wang et al., 2008b; Ismail et al., 1997; Selvakumar et al., 2007). And the active ingredients may be the individual organic molecules or their metal complexes. On the other hand, 2,2'-dithiodibenzoic acid (H2L) is one of the multifunctional molecules containing both carboxylic groups and rotational S—S bond, and can be potentially afforded various hydrogen-bonding sites and diverse supramolecular architectures (Broker et al., 2007). In fact, many hydrogen-bonded H2L-involved adducts with controllable deprotonation degree and flexible conformations have been obtained by far (Basiuk et al., 1999; Murugavel et al., 2001; Broker et al., 2008; Meng et al. 2008; Wang et al., 2008a; Wang et al., 2009).

Herein, to fully explore the solid molecular recognition behavior by hydrogen-bonding interactions, the unsubstituted AP and flexible H2L components were selected as building blocks for creating a cocrystal. As a result, a 1:1 adduct with proton transfer, (I), was obtained in ethanol medium.

As shown in Fig. 1, the asymmetric unit of (I) comprises one mono-deprotonated HL- anion and one protonated HAP+ ion for charge balance. The two components in the asymmetric unit are connected by an N3–H3C···O2 hydrogen bond between the exocyclic amino group of HAP+ and the deprotonated carboxylate of HL-. In the cation, the mean plane of the phenyl ring is rotated by 65.79 (9) ° with respect to the five-membered pyrazoline ring. When viewed along the central S–S bond, the HL- anion adopts a characteristic L-shaped conformation. The torsion angle of C13—S1—S2—C20 is -83.03 (1)°, and the dihedral angle between the two benzene rings is 73.51 (5)Å. The carboxylic residues of HL- are essentially co-planar with respect to the benzene rings.

In the crystal structure of I, two hydrogen-bonded dimers from the adjacent asymmetric units are further aggregated together by a pair of N3–H3A··· O3 interactions, leading to the formation of the centro-symmetric tetramer. The tetramers are then extended along the crystallographic b-axis by N3–H3B··· O4 and O5–H5··· O1 recognition patterns (Table 1). As a result, an extended ribbon-like supramolecular assembly was obtained (Fig. 2). There are no interactions between adjacent ribbons. (Fig. 3).

Related literature top

For molecular recognition in diverse research fields, see Rebek (1990); Remenar et al. (2003). For the properties and applications of 4-aminoantipyrine and its derivatives, see Wang et al. (2008b); Ismail et al. (1997); Selvakumar et al. (2007); Meffin et al. (1977). For the structures and properties of 2,2'-dithiodibenzoic acid-based metal complexes and cocrystals, see Basiuk et al. (1999); Murugavel et al. (2001); Broker et al. (2007; 2008); Meng et al. (2008); Wang et al., (2008a, 2009).

Experimental top

To a hot ethanol solution (5 ml) containing 2,2'-dithiodibenzoic acid (15.3 mg, 0.05 mmol) was slowly added an ethanol solution (5 ml) of 4-aminoantipyrine (20.3 mg 0.1 mmol) with constant stirring. The resulting mixture was further heated for one hour and then filtered. Upon slow evaporation of the filtrate at room temperature, yellow block-shaped crystals suitable for X-ray analysis were generated within ten days in 60% yield (based on 2,2'-dithiodibenzoic acid). Elemental analysis calculated for C25H23N3O5S2: C, 58.92; H, 4.55; N, 8.25%; found: C, 58.93; H, 4.58; N, 8.35%.

Refinement top

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C—H = 0.93 (aromatic) or 0.96 (methyl), O—H = 0.82, and N—H = 0.89 Å. All H-atoms were allocated displacement parameters related to those parent atoms [Uiso(H)= 1.2 Ueq (C) or Uiso(H)= 1.5 Ueq (Cmethyl,N,O) ].

Structure description top

Molecular recognition by intermolecular non-covalent interactions such as hydrogen-bonding, π···π stacking and electrostatic interactions, has been receiving more and more attention in diverse research fields (Rebek, 1990). The hydrogen-bonded adducts of active pharmaceutical ingredients with small molecules have rapidly becoming one of intense interest in medicine and crystal engineering fields (Remenar et al., 2003).

In this regard, 4-aminoantipyrine (AP) and its versatile Schiff base derivatives have been extensively used in clinical and pharmacological areas to treat various virus diseases (Meffin et al., 1977; Wang et al., 2008b; Ismail et al., 1997; Selvakumar et al., 2007). And the active ingredients may be the individual organic molecules or their metal complexes. On the other hand, 2,2'-dithiodibenzoic acid (H2L) is one of the multifunctional molecules containing both carboxylic groups and rotational S—S bond, and can be potentially afforded various hydrogen-bonding sites and diverse supramolecular architectures (Broker et al., 2007). In fact, many hydrogen-bonded H2L-involved adducts with controllable deprotonation degree and flexible conformations have been obtained by far (Basiuk et al., 1999; Murugavel et al., 2001; Broker et al., 2008; Meng et al. 2008; Wang et al., 2008a; Wang et al., 2009).

Herein, to fully explore the solid molecular recognition behavior by hydrogen-bonding interactions, the unsubstituted AP and flexible H2L components were selected as building blocks for creating a cocrystal. As a result, a 1:1 adduct with proton transfer, (I), was obtained in ethanol medium.

As shown in Fig. 1, the asymmetric unit of (I) comprises one mono-deprotonated HL- anion and one protonated HAP+ ion for charge balance. The two components in the asymmetric unit are connected by an N3–H3C···O2 hydrogen bond between the exocyclic amino group of HAP+ and the deprotonated carboxylate of HL-. In the cation, the mean plane of the phenyl ring is rotated by 65.79 (9) ° with respect to the five-membered pyrazoline ring. When viewed along the central S–S bond, the HL- anion adopts a characteristic L-shaped conformation. The torsion angle of C13—S1—S2—C20 is -83.03 (1)°, and the dihedral angle between the two benzene rings is 73.51 (5)Å. The carboxylic residues of HL- are essentially co-planar with respect to the benzene rings.

In the crystal structure of I, two hydrogen-bonded dimers from the adjacent asymmetric units are further aggregated together by a pair of N3–H3A··· O3 interactions, leading to the formation of the centro-symmetric tetramer. The tetramers are then extended along the crystallographic b-axis by N3–H3B··· O4 and O5–H5··· O1 recognition patterns (Table 1). As a result, an extended ribbon-like supramolecular assembly was obtained (Fig. 2). There are no interactions between adjacent ribbons. (Fig. 3).

For molecular recognition in diverse research fields, see Rebek (1990); Remenar et al. (2003). For the properties and applications of 4-aminoantipyrine and its derivatives, see Wang et al. (2008b); Ismail et al. (1997); Selvakumar et al. (2007); Meffin et al. (1977). For the structures and properties of 2,2'-dithiodibenzoic acid-based metal complexes and cocrystals, see Basiuk et al. (1999); Murugavel et al. (2001); Broker et al. (2007; 2008); Meng et al. (2008); Wang et al., (2008a, 2009).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of I. Displacement ellipsoids are drawn at the 30% probability leveral. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. A single hydrogen-bonded one-dimensional ribbon of I [Symmetry codes: (A) 2–x, –y, 1–z; (B) x, -1 + y, z]. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Part of the crystal structure of I with hydrogen bonds shown as dashed lines.
2-[(2-Carboxyphenyl)disulfanyl]benzoate (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)ammonium top
Crystal data top
C11H14N3O+·C14H9O4S2Z = 2
Mr = 509.58F(000) = 532
Triclinic, P1Dx = 1.392 Mg m3
a = 9.661 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.283 (4) ÅCell parameters from 4106 reflections
c = 13.829 (7) Åθ = 2.4–27.8°
α = 99.872 (7)°µ = 0.26 mm1
β = 91.929 (7)°T = 296 K
γ = 115.244 (5)°Block, yellow
V = 1215.5 (9) Å30.30 × 0.28 × 0.22 mm
Data collection top
Brucker APEXII CCD area-detector
diffractometer
4227 independent reflections
Radiation source: fine-focus sealed tube3634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
phi and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.926, Tmax = 0.945k = 512
6173 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.3886P]
where P = (Fo2 + 2Fc2)/3
4227 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H14N3O+·C14H9O4S2γ = 115.244 (5)°
Mr = 509.58V = 1215.5 (9) Å3
Triclinic, P1Z = 2
a = 9.661 (3) ÅMo Kα radiation
b = 10.283 (4) ŵ = 0.26 mm1
c = 13.829 (7) ÅT = 296 K
α = 99.872 (7)°0.30 × 0.28 × 0.22 mm
β = 91.929 (7)°
Data collection top
Brucker APEXII CCD area-detector
diffractometer
4227 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3634 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.945Rint = 0.012
6173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
4227 reflectionsΔρmin = 0.23 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79625 (6)0.30246 (6)0.41198 (4)0.04987 (15)
S20.77232 (6)0.46456 (5)0.35447 (3)0.04581 (14)
O20.87236 (18)0.12722 (17)0.49915 (11)0.0596 (4)
O30.78833 (18)0.04135 (19)0.63321 (12)0.0653 (4)
O40.78550 (16)0.67278 (14)0.25767 (10)0.0518 (3)
O50.6376 (2)0.65050 (16)0.12387 (11)0.0703 (5)
H50.69370.73880.13190.105*
C120.6718 (2)0.17200 (19)0.56767 (12)0.0379 (4)
C130.6661 (2)0.26280 (19)0.50372 (12)0.0385 (4)
C140.5566 (2)0.3168 (2)0.51215 (14)0.0450 (4)
H140.55220.37730.47050.054*
C150.4543 (2)0.2822 (2)0.58140 (15)0.0516 (5)
H150.38160.31920.58590.062*
C160.4590 (2)0.1929 (2)0.64402 (15)0.0523 (5)
H160.38970.16930.69060.063*
C170.5674 (2)0.1390 (2)0.63682 (14)0.0452 (4)
H170.57080.07910.67930.054*
C180.7866 (2)0.1099 (2)0.56449 (14)0.0435 (4)
C190.5772 (2)0.44117 (19)0.19213 (12)0.0411 (4)
C200.6068 (2)0.36948 (19)0.26285 (12)0.0399 (4)
C210.5030 (2)0.2243 (2)0.26044 (14)0.0504 (5)
H210.51920.17610.30760.060*
C220.3767 (3)0.1507 (2)0.18949 (16)0.0577 (5)
H220.30830.05420.18990.069*
C230.3508 (3)0.2184 (2)0.11810 (16)0.0591 (5)
H230.26750.16730.06900.071*
C240.4498 (3)0.3629 (2)0.12028 (14)0.0537 (5)
H240.43140.40950.07280.064*
C250.6773 (2)0.5980 (2)0.19429 (13)0.0432 (4)
O10.7722 (2)0.07506 (15)0.13515 (11)0.0708 (5)
N11.0500 (2)0.28242 (17)0.21502 (13)0.0522 (4)
N20.9294 (2)0.17231 (17)0.14899 (12)0.0544 (4)
N30.95999 (18)0.01942 (17)0.33782 (11)0.0420 (4)
H3A1.05210.01630.35170.063*
H3B0.89390.11040.30820.063*
H3C0.92660.00710.39360.063*
C10.8789 (2)0.0433 (2)0.18279 (14)0.0479 (5)
C20.9719 (2)0.07944 (19)0.27335 (13)0.0381 (4)
C31.0727 (2)0.2242 (2)0.29096 (14)0.0451 (4)
C41.1063 (3)0.4359 (2)0.2109 (2)0.0746 (7)
H4A1.02280.46300.21470.112*
H4B1.14880.45190.14990.112*
H4C1.18470.49470.26540.112*
C50.8733 (2)0.1957 (2)0.05991 (14)0.0473 (5)
C60.9637 (3)0.2291 (3)0.01490 (19)0.0736 (7)
H61.06230.23470.00890.088*
C70.9072 (4)0.2545 (3)0.09933 (19)0.0868 (9)
H70.96850.27800.15010.104*
C80.7649 (4)0.2455 (3)0.10844 (19)0.0796 (8)
H80.72950.26610.16460.096*
C90.6711 (4)0.2065 (3)0.0363 (2)0.0816 (8)
H90.57090.19660.04490.098*
C100.7251 (3)0.1817 (3)0.04980 (17)0.0643 (6)
H100.66230.15620.09960.077*
C111.1906 (3)0.3128 (3)0.37761 (18)0.0691 (6)
H11A1.28750.36770.35510.104*
H11B1.20170.24860.41690.104*
H11C1.15860.37930.41680.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0581 (3)0.0600 (3)0.0518 (3)0.0376 (3)0.0180 (2)0.0287 (2)
S20.0526 (3)0.0423 (3)0.0456 (3)0.0208 (2)0.0031 (2)0.0176 (2)
O20.0725 (10)0.0751 (10)0.0613 (9)0.0521 (8)0.0246 (8)0.0331 (8)
O30.0657 (9)0.0869 (11)0.0742 (10)0.0483 (9)0.0208 (8)0.0522 (9)
O40.0579 (8)0.0390 (7)0.0534 (8)0.0144 (6)0.0025 (7)0.0175 (6)
O50.1014 (13)0.0418 (8)0.0523 (8)0.0151 (8)0.0180 (8)0.0205 (7)
C120.0403 (9)0.0369 (9)0.0357 (9)0.0164 (8)0.0008 (7)0.0082 (7)
C130.0435 (9)0.0384 (9)0.0352 (9)0.0197 (8)0.0010 (7)0.0081 (7)
C140.0530 (11)0.0489 (11)0.0423 (10)0.0299 (9)0.0030 (8)0.0128 (8)
C150.0510 (11)0.0622 (13)0.0517 (11)0.0343 (10)0.0082 (9)0.0115 (10)
C160.0507 (11)0.0627 (13)0.0483 (11)0.0273 (10)0.0135 (9)0.0159 (10)
C170.0496 (11)0.0457 (10)0.0424 (10)0.0204 (9)0.0045 (8)0.0158 (8)
C180.0467 (10)0.0448 (10)0.0442 (10)0.0230 (9)0.0022 (8)0.0148 (8)
C190.0538 (11)0.0369 (9)0.0336 (9)0.0197 (8)0.0073 (8)0.0099 (7)
C200.0527 (10)0.0356 (9)0.0341 (9)0.0210 (8)0.0085 (8)0.0092 (7)
C210.0682 (13)0.0366 (10)0.0459 (10)0.0204 (9)0.0075 (9)0.0143 (8)
C220.0692 (14)0.0354 (10)0.0555 (12)0.0116 (10)0.0069 (10)0.0074 (9)
C230.0633 (13)0.0485 (12)0.0496 (12)0.0130 (10)0.0064 (10)0.0035 (10)
C240.0676 (13)0.0500 (12)0.0406 (10)0.0222 (10)0.0005 (9)0.0134 (9)
C250.0579 (12)0.0404 (10)0.0343 (9)0.0219 (9)0.0082 (9)0.0136 (8)
O10.0899 (11)0.0384 (8)0.0604 (9)0.0052 (8)0.0302 (8)0.0196 (7)
N10.0551 (10)0.0353 (8)0.0576 (10)0.0109 (7)0.0019 (8)0.0138 (7)
N20.0644 (11)0.0375 (9)0.0512 (9)0.0111 (8)0.0097 (8)0.0177 (7)
N30.0460 (8)0.0442 (8)0.0392 (8)0.0217 (7)0.0008 (6)0.0134 (7)
C10.0586 (12)0.0371 (10)0.0438 (10)0.0152 (9)0.0030 (9)0.0153 (8)
C20.0412 (9)0.0383 (9)0.0375 (9)0.0188 (8)0.0030 (7)0.0110 (7)
C30.0457 (10)0.0430 (10)0.0463 (10)0.0194 (9)0.0020 (8)0.0096 (8)
C40.0852 (17)0.0384 (12)0.0888 (18)0.0133 (11)0.0020 (14)0.0231 (12)
C50.0616 (12)0.0379 (10)0.0455 (10)0.0216 (9)0.0034 (9)0.0175 (8)
C60.0665 (15)0.0874 (18)0.0727 (16)0.0297 (13)0.0191 (12)0.0403 (14)
C70.104 (2)0.086 (2)0.0589 (15)0.0217 (17)0.0183 (15)0.0382 (14)
C80.119 (2)0.0490 (13)0.0605 (15)0.0255 (14)0.0183 (15)0.0213 (11)
C90.094 (2)0.0870 (19)0.0804 (18)0.0587 (17)0.0129 (15)0.0139 (15)
C100.0746 (15)0.0760 (16)0.0574 (13)0.0460 (13)0.0114 (11)0.0161 (11)
C110.0650 (14)0.0538 (13)0.0676 (15)0.0113 (11)0.0175 (12)0.0049 (11)
Geometric parameters (Å, º) top
S1—C131.7901 (19)O1—C11.260 (2)
S1—S22.0580 (9)N1—C31.350 (2)
S2—C201.796 (2)N1—N21.387 (2)
O2—C181.231 (2)N1—C41.446 (3)
O3—C181.280 (2)N2—C11.376 (2)
O4—C251.214 (2)N2—C51.427 (2)
O5—C251.311 (2)N3—C21.435 (2)
O5—H50.8200N3—H3A0.8900
C12—C171.390 (3)N3—H3B0.8900
C12—C131.407 (2)N3—H3C0.8900
C12—C181.496 (3)C1—C21.412 (3)
C13—C141.389 (3)C2—C31.359 (3)
C14—C151.379 (3)C3—C111.487 (3)
C14—H140.9300C4—H4A0.9600
C15—C161.378 (3)C4—H4B0.9600
C15—H150.9300C4—H4C0.9600
C16—C171.377 (3)C5—C61.370 (3)
C16—H160.9300C5—C101.377 (3)
C17—H170.9300C6—C71.383 (4)
C19—C241.396 (3)C6—H60.9300
C19—C201.410 (2)C7—C81.337 (4)
C19—C251.479 (3)C7—H70.9300
C20—C211.393 (3)C8—C91.365 (4)
C21—C221.379 (3)C8—H80.9300
C21—H210.9300C9—C101.390 (3)
C22—C231.375 (3)C9—H90.9300
C22—H220.9300C10—H100.9300
C23—C241.376 (3)C11—H11A0.9600
C23—H230.9300C11—H11B0.9600
C24—H240.9300C11—H11C0.9600
C13—S1—S2105.53 (6)C1—N2—N1109.44 (15)
C20—S2—S1105.13 (6)C1—N2—C5127.62 (16)
C25—O5—H5109.5N1—N2—C5122.93 (15)
C17—C12—C13118.95 (17)C2—N3—H3A109.5
C17—C12—C18118.54 (16)C2—N3—H3B109.5
C13—C12—C18122.51 (16)H3A—N3—H3B109.5
C14—C13—C12118.82 (16)C2—N3—H3C109.5
C14—C13—S1121.61 (14)H3A—N3—H3C109.5
C12—C13—S1119.55 (13)H3B—N3—H3C109.5
C15—C14—C13121.01 (17)O1—C1—N2122.29 (17)
C15—C14—H14119.5O1—C1—C2132.74 (17)
C13—C14—H14119.5N2—C1—C2104.97 (16)
C16—C15—C14120.43 (18)C3—C2—C1109.02 (16)
C16—C15—H15119.8C3—C2—N3125.26 (16)
C14—C15—H15119.8C1—C2—N3125.71 (16)
C17—C16—C15119.23 (18)N1—C3—C2108.82 (16)
C17—C16—H16120.4N1—C3—C11122.47 (18)
C15—C16—H16120.4C2—C3—C11128.71 (18)
C16—C17—C12121.57 (18)N1—C4—H4A109.5
C16—C17—H17119.2N1—C4—H4B109.5
C12—C17—H17119.2H4A—C4—H4B109.5
O2—C18—O3124.23 (18)N1—C4—H4C109.5
O2—C18—C12120.14 (16)H4A—C4—H4C109.5
O3—C18—C12115.62 (17)H4B—C4—H4C109.5
C24—C19—C20119.15 (17)C6—C5—C10120.4 (2)
C24—C19—C25119.83 (16)C6—C5—N2121.0 (2)
C20—C19—C25121.01 (16)C10—C5—N2118.60 (19)
C21—C20—C19118.20 (17)C5—C6—C7119.6 (3)
C21—C20—S2121.18 (14)C5—C6—H6120.2
C19—C20—S2120.61 (14)C7—C6—H6120.2
C22—C21—C20121.23 (18)C8—C7—C6120.4 (3)
C22—C21—H21119.4C8—C7—H7119.8
C20—C21—H21119.4C6—C7—H7119.8
C23—C22—C21120.71 (19)C7—C8—C9120.8 (2)
C23—C22—H22119.6C7—C8—H8119.6
C21—C22—H22119.6C9—C8—H8119.6
C22—C23—C24119.10 (19)C8—C9—C10120.1 (3)
C22—C23—H23120.4C8—C9—H9119.9
C24—C23—H23120.4C10—C9—H9119.9
C23—C24—C19121.53 (19)C5—C10—C9118.6 (2)
C23—C24—H24119.2C5—C10—H10120.7
C19—C24—H24119.2C9—C10—H10120.7
O4—C25—O5122.76 (17)C3—C11—H11A109.5
O4—C25—C19122.53 (16)C3—C11—H11B109.5
O5—C25—C19114.70 (17)H11A—C11—H11B109.5
C3—N1—N2107.74 (15)C3—C11—H11C109.5
C3—N1—C4128.07 (19)H11A—C11—H11C109.5
N2—N1—C4122.29 (18)H11B—C11—H11C109.5
C13—S1—S2—C2083.01 (9)C20—C19—C25—O5179.46 (17)
C17—C12—C13—C140.2 (3)C3—N1—N2—C11.6 (2)
C18—C12—C13—C14179.47 (17)C4—N1—N2—C1167.0 (2)
C17—C12—C13—S1178.34 (13)C3—N1—N2—C5179.52 (19)
C18—C12—C13—S12.0 (2)C4—N1—N2—C514.1 (3)
S2—S1—C13—C1411.17 (17)N1—N2—C1—O1178.3 (2)
S2—S1—C13—C12170.30 (13)C5—N2—C1—O10.6 (4)
C12—C13—C14—C150.3 (3)N1—N2—C1—C21.1 (2)
S1—C13—C14—C15178.23 (15)C5—N2—C1—C2179.9 (2)
C13—C14—C15—C160.1 (3)O1—C1—C2—C3179.0 (2)
C14—C15—C16—C170.2 (3)N2—C1—C2—C30.2 (2)
C15—C16—C17—C120.3 (3)O1—C1—C2—N32.3 (4)
C13—C12—C17—C160.0 (3)N2—C1—C2—N3178.49 (17)
C18—C12—C17—C16179.76 (18)N2—N1—C3—C21.4 (2)
C17—C12—C18—O2174.18 (18)C4—N1—C3—C2165.8 (2)
C13—C12—C18—O26.1 (3)N2—N1—C3—C11177.9 (2)
C17—C12—C18—O36.3 (3)C4—N1—C3—C1113.6 (3)
C13—C12—C18—O3173.36 (17)C1—C2—C3—N10.8 (2)
C24—C19—C20—C212.7 (3)N3—C2—C3—N1179.45 (17)
C25—C19—C20—C21176.19 (17)C1—C2—C3—C11178.5 (2)
C24—C19—C20—S2178.30 (15)N3—C2—C3—C110.2 (3)
C25—C19—C20—S22.9 (2)C1—N2—C5—C6113.0 (3)
S1—S2—C20—C2116.17 (17)N1—N2—C5—C665.7 (3)
S1—S2—C20—C19164.81 (13)C1—N2—C5—C1066.0 (3)
C19—C20—C21—C221.6 (3)N1—N2—C5—C10115.3 (2)
S2—C20—C21—C22179.32 (16)C10—C5—C6—C72.5 (4)
C20—C21—C22—C230.8 (3)N2—C5—C6—C7178.5 (2)
C21—C22—C23—C242.3 (4)C5—C6—C7—C80.5 (4)
C22—C23—C24—C191.2 (3)C6—C7—C8—C92.2 (4)
C20—C19—C24—C231.3 (3)C7—C8—C9—C102.8 (4)
C25—C19—C24—C23177.6 (2)C6—C5—C10—C91.9 (4)
C24—C19—C25—O4176.68 (19)N2—C5—C10—C9179.1 (2)
C20—C19—C25—O42.2 (3)C8—C9—C10—C50.7 (4)
C24—C19—C25—O51.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.821.722.527 (2)166
N3—H3A···O3ii0.891.682.561 (2)170
N3—H3B···O4iii0.892.002.865 (2)165
N3—H3C···O20.891.982.834 (2)161
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H14N3O+·C14H9O4S2
Mr509.58
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.661 (3), 10.283 (4), 13.829 (7)
α, β, γ (°)99.872 (7), 91.929 (7), 115.244 (5)
V3)1215.5 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.28 × 0.22
Data collection
DiffractometerBrucker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
6173, 4227, 3634
Rint0.012
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.06
No. of reflections4227
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.821.722.527 (2)165.9
N3—H3A···O3ii0.891.682.561 (2)169.9
N3—H3B···O4iii0.892.002.865 (2)165.3
N3—H3C···O20.891.982.834 (2)160.5
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1; (iii) x, y1, z.
 

Acknowledgements

The author gratefully acknowledge financial support from Tianjin Normal University.

References

First citationBasiuk, E. V., Gómez-Lara, J., Basiuk, V. A. & Toscano, R. A. (1999). J. Chem. Crystallogr. 29, 1157–1163.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm. 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm. 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIsmail, K. Z., El-Dissouky, A. & Shehada, A. Z. (1997). Polyhedron, 16, 2909–2916.  CrossRef CAS Web of Science Google Scholar
First citationMeffin, P. J., Williams, R., Blaschke, T. F. & Rowland, M. (1977). J. Pharm. Sci. 66, 135–137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMeng, X.-G., Xiao, Y.-L., Zhang, H. & Zhou, C.-S. (2008). Acta Cryst. C64, o261–o263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870–6878.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRebek, J. Jr (1990). Acc. Chem. Res. 23, 399–404.  CrossRef CAS Web of Science Google Scholar
First citationRemenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmán, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. 125, 8456–8457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSelvakumar, P. M., Suresh, E. & Subramanian, P. S. (2007). Polyhedron, 26, 749–756.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-L., Chang, H. & Yang, E.-C. (2009). Acta Cryst. C65, o492–o494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z.-L., Wei, L.-H., Li, M.-X. & Wang, J.-P. (2008a). Chin. J. Struct. Chem. 27, 1327–1332.  CAS Google Scholar
First citationWang, Q., Wu, M.-J., Yang, E.-C., Wang, X.-G. & Zhao, X.-J. (2008b). J. Coord. Chem. 61, 595–604.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds