organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-2-(4-nitro­phen­­oxy)-3-(1-phenyl­ethyl)-3,4-di­hydro-1,3,2-benzoxaza­phosphinine 2-oxide

aDepartment of Physics, S.V. University, Tirupati 517 502, India, bDepartment of Materials Science and Chemical Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan, cDepartment of Chemistry, S.V. University, Tirupati 517 502, India, and dLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: profkrishnaiah.m@gmail.com

(Received 7 September 2009; accepted 3 October 2009; online 10 October 2009)

In the title compound, C21H18BrN2O5P, the six-membered oxaza­phosphinine ring is in a twist-boat conformation. One of the phosphoryl O atoms is in an equatorial configuation while the other is axial with respect to the oxaza­phosphinine ring. The mean planes of the benzene ring to which the nitro group is attached and the phenyl ring form a dihedral angle of 83.5 (1)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along [100].

Related literature

For background information on organophospho­rus heterocyclic compounds containing O and N in the six membered ring, see: Srinivasulu et al. (2008[Srinivasulu, K., Hari Babu, B., Suresh Kumar, K., Bhupendra Reddy, C., Naga Raju, C. & Rooba, D. (2008). J. Heterocycl. Chem. 45, 751-757.]); Hill (1975[Hill, D. L. (1975). A Review of Cyclophosphamide. Springfield, IL, USA: Thomas.]); Reddy et al. (2004[Reddy, P. V., Kiran, Y. B., Reddy, C. S. & Reddy, C. D. (2004). Chem. Pharm. Bull. 52, 307-310.]); Prasad et al. (2006[Prasad, G., Hari Babu, B., Kishore Kumar Reddy, K., Haranath, P. R. & Suresh Reddy, C. (2006). Arkivoc, xiii, 165-170.]); Sosnovsky & Paul (1983[Sosnovsky, G. & Paul, B. D. (1983). Z. Naturforsch. Teil B, 38, 1146-1155.]). For related structures, see: Krishnaiah et al. (2007[Krishnaiah, M., Radha Krishna, J., Kiran, Y. B., Devendranath Reddy, C., Thetmar, W. & Kaung, P. (2007). Acta Cryst. E63, o1756-o1758.]); Pattabhi (1975[Pattabhi, V. (1975). Acta Cryst. B31, 1766-1768.]); Radha Krishna et al. (2007[Radha Krishna, J., Krishnaiah, M., Syam Prasad, G., Suresh Reddy, C. & Puranik, V. G. (2007). Acta Cryst. E63, o2407-o2409.]); Symes et al. (1988[Symes, J., Modro, T. A. & Niven, M. L. (1988). Phosphorus Sulfur, 36, 171-179.]); Hay & Mackay (1979[Hay, D. G. & Mackay, M. F. (1979). Acta Cryst. B35, 2952-2957.]); Kant et al. (2009[Kant, R., Kohli, S., Sarmal, L., Krishnaiah, M. & Babu, V. H. H. S. (2009). Acta Cryst. E65, o2003.]); Selladurai et al. (1989[Selladurai, S., Subramanian, K. & Naga Raju, C. (1989). Indian Acad. Sci. (Chem. Sci.), 101, 519-527.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18BrN2O5P

  • Mr = 489.24

  • Triclinic, [P \overline 1]

  • a = 6.9038 (6) Å

  • b = 12.0229 (11) Å

  • c = 14.0667 (13) Å

  • α = 111.154 (1)°

  • β = 97.905 (2)°

  • γ = 104.359 (2)°

  • V = 1021.05 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 294 K

  • 0.30 × 0.28 × 0.10 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.533, Tmax = 0.808

  • 11716 measured reflections

  • 4932 independent reflections

  • 3958 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.04

  • 4932 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O5i 0.97 2.49 3.352 (3) 148
C19—H19⋯O5i 0.93 2.50 3.404 (3) 163
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ZORTEPII (Zsolnai, 1998[Zsolnai, L. (1998). ZORTEP. University of Heidelberg, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Organophosphorus heterocyclic compounds containing O and N in the six membered ring have gained much attention ever since cyclophosphamide was discovered as an anti-cancer drug (Prasad et al., 2006). Compounds of this class have high anti-tumor activity (Sosnovsky & Paul, 1983), significant bioactivity (Reddy et al., 2004) and medicinal properties (Hill et al., 1975). In this aspect, the title compound (I) possesses antifungal activity against Aspergillus niger and Alternaria alternata, anti bacterial aganist Gram Positive Bacillus subtilis and Gram negative Escherichia coli and also insecticidal activity against Scirpophaga incertulas (Srinivasulu et al., 2008). These characteristics has motivated us to study the influence of the substituents on the conformation and molecular geometry of the heterocyclic ring in this type of compound.

In the crystal structure (I), the oxazaphosphinine ring adopts a twist boat conformation, with atoms C9/C10/C15/O4 coplanar and the atoms P1 and N2 are displaced in same direction by -0.562 (1) and -0.854 (2)Å respectively. When the substituents at P and N in oxazaphosphinine ring are methoxy phenyl and chloro phenyl, chlorophenoxy and chloro fluorophenyl the conformations are boat and screw boat(Radha Krishna et al., 2007; Krishnaiah et al., 2007). In the present study, the steric and electronic effects of the subsitutents change the conformation of the oxazaphosphinine ring to twist boat and this may be due to nitrophenoxy ring attached to the P atom and phenylethyl substituent at the N atom. The nitrophenoxy and phenylethyl rings are at axially and equatorially orientated with dihedral angles of 27.2 (1)° and 71.0 (1)° to the mean plane of heterocyclic ring.

The P=O(2) distance of 1.456 (2)Å is in good agreement with the values in related structures (Kant et al., 2009; Krishnaiah et al., 2007). The P—N [1.621 (2) Å], N—C [1.471 (2) Å] bond distances and P—N—C [119.0 (1)°] bond angle are agreeable with related structures in the literature (Symes et al., 1988; Selladurai et al., 1989). The dihedral angle between the nitro group and attached benzene ring is 8.2 (3)°. The O7—N3—O8 bond angle [125.(3)°] and average N—O bond length [1.226 (4) Å] are in agreement with the values in the related structures (Hay et al., 1979; Pattabhi et al., 1975). The C—Br bond length [1.895 (2) Å] is in good agreement with the value reported by Radha Krishna et al. (2007). In the crystal structure, molecules are linked by weak intermolecular C—H···O hydrogen bonds (see Table 1 and Fig. 2)

Related literature top

For background information on organophosphorus heterocyclic compounds containing O and N in the six membered ring, see: Srinivasulu et al. (2008); Hill (1975); Reddy et al. (2004); Prasad et al. (2006); Sosnovsky & Paul (1983). For related structures, see: Krishnaiah et al. (2007); Pattabhi (1975); Radha Krishna et al. (2007); Symes et al. (1988); Hay & Mackay (1979); Kant et al. (2009); Selladurai et al. (1989).

Experimental top

4-Nitrophenyl phosphorodichloridate 0.51 g(2.0 mmole)in dry toluene(10 ml) was added dropwise to a stirred solution of 2-[(1-phenylethylamino)methyl] -4-bromophenol 0.61 g (2.0 mmole) and triethylamine 0.40 g (4.0 mmole)in 20 ml of dry toluene at 273K over 20 minutes. After the completion of the addition, the reaction temperature was slowly raised to 328–333K and was maintained at this temperature for 5 h. Progress of the reaction was monitored by TLC using hexane-ethyl acetate (3:1)as mobile phase on silica gel (adsorbent). Upon separation of the triethylamine hydrochloride by filtration and evaporation of the filtrate under reduced pressure, a solid residue was obtained. The residue was washed with water and diffraction quality crystal were grown by slow evaporation of a solution of the title compound in methanol.

Refinement top

H-atoms bound to carbon were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2eq (C) for aromatic, C—H = 0.980Å Uiso=1.2eq (C) for methine, 0.97 Å, Uiso = 1.2eq (C) for CH2 group and 0.96 Å, Uiso = 1.5eq (C) for methyl H atoms.

Structure description top

Organophosphorus heterocyclic compounds containing O and N in the six membered ring have gained much attention ever since cyclophosphamide was discovered as an anti-cancer drug (Prasad et al., 2006). Compounds of this class have high anti-tumor activity (Sosnovsky & Paul, 1983), significant bioactivity (Reddy et al., 2004) and medicinal properties (Hill et al., 1975). In this aspect, the title compound (I) possesses antifungal activity against Aspergillus niger and Alternaria alternata, anti bacterial aganist Gram Positive Bacillus subtilis and Gram negative Escherichia coli and also insecticidal activity against Scirpophaga incertulas (Srinivasulu et al., 2008). These characteristics has motivated us to study the influence of the substituents on the conformation and molecular geometry of the heterocyclic ring in this type of compound.

In the crystal structure (I), the oxazaphosphinine ring adopts a twist boat conformation, with atoms C9/C10/C15/O4 coplanar and the atoms P1 and N2 are displaced in same direction by -0.562 (1) and -0.854 (2)Å respectively. When the substituents at P and N in oxazaphosphinine ring are methoxy phenyl and chloro phenyl, chlorophenoxy and chloro fluorophenyl the conformations are boat and screw boat(Radha Krishna et al., 2007; Krishnaiah et al., 2007). In the present study, the steric and electronic effects of the subsitutents change the conformation of the oxazaphosphinine ring to twist boat and this may be due to nitrophenoxy ring attached to the P atom and phenylethyl substituent at the N atom. The nitrophenoxy and phenylethyl rings are at axially and equatorially orientated with dihedral angles of 27.2 (1)° and 71.0 (1)° to the mean plane of heterocyclic ring.

The P=O(2) distance of 1.456 (2)Å is in good agreement with the values in related structures (Kant et al., 2009; Krishnaiah et al., 2007). The P—N [1.621 (2) Å], N—C [1.471 (2) Å] bond distances and P—N—C [119.0 (1)°] bond angle are agreeable with related structures in the literature (Symes et al., 1988; Selladurai et al., 1989). The dihedral angle between the nitro group and attached benzene ring is 8.2 (3)°. The O7—N3—O8 bond angle [125.(3)°] and average N—O bond length [1.226 (4) Å] are in agreement with the values in the related structures (Hay et al., 1979; Pattabhi et al., 1975). The C—Br bond length [1.895 (2) Å] is in good agreement with the value reported by Radha Krishna et al. (2007). In the crystal structure, molecules are linked by weak intermolecular C—H···O hydrogen bonds (see Table 1 and Fig. 2)

For background information on organophosphorus heterocyclic compounds containing O and N in the six membered ring, see: Srinivasulu et al. (2008); Hill (1975); Reddy et al. (2004); Prasad et al. (2006); Sosnovsky & Paul (1983). For related structures, see: Krishnaiah et al. (2007); Pattabhi (1975); Radha Krishna et al. (2007); Symes et al. (1988); Hay & Mackay (1979); Kant et al. (2009); Selladurai et al. (1989).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEPII (Zsolnai, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds shown as dashed lines.
6-Bromo-2-(4-nitrophenoxy)-3-(1-phenylethyl)-3,4-dihydro-1,3,2- benzoxazaphosphinine 2-oxide top
Crystal data top
C21H18BrN2O5PZ = 2
Mr = 489.24F(000) = 496
Triclinic, P1Dx = 1.591 Mg m3
Dm = 1.590 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9038 (6) ÅCell parameters from 4932 reflections
b = 12.0229 (11) Åθ = 1.6–28.0°
c = 14.0667 (13) ŵ = 2.13 mm1
α = 111.154 (1)°T = 294 K
β = 97.905 (2)°Plate, colorless
γ = 104.359 (2)°0.30 × 0.28 × 0.10 mm
V = 1021.05 (16) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
4932 independent reflections
Radiation source: fine-focus sealed tube3958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω–2θ scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.533, Tmax = 0.808k = 1515
11716 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.2933P]
where P = (Fo2 + 2Fc2)/3
4932 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H18BrN2O5Pγ = 104.359 (2)°
Mr = 489.24V = 1021.05 (16) Å3
Triclinic, P1Z = 2
a = 6.9038 (6) ÅMo Kα radiation
b = 12.0229 (11) ŵ = 2.13 mm1
c = 14.0667 (13) ÅT = 294 K
α = 111.154 (1)°0.30 × 0.28 × 0.10 mm
β = 97.905 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4932 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3958 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 0.808Rint = 0.026
11716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 0.55 e Å3
4932 reflectionsΔρmin = 0.30 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.25244(0.00099) m2 = 0.85342(0.00085) m3 = -0.45601(0.00139) D = 1.39325(0.02640) Atom d s d/s (d/s)**2 C9 * -0.0053 0.0023 - 2.319 5.378 C10 * 0.0097 0.0021 4.554 20.741 C15 * -0.0113 0.0023 - 5.002 25.020 O4 * 0.0035 0.0018 1.974 3.897 P1 - 0.5610 0.0006 - 934.361 873029.938 N2 - 0.8542 0.0018 - 476.107 226678.125 ============ Sum((d/s)**2) for starred atoms 55.036 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity

Plane 2 m1 = -0.23579(0.00097) m2 = 0.85905(0.00049) m3 = -0.45436(0.00086) D = 1.43988(0.01431) Atom d s d/s (d/s)**2 C10 * -0.0012 0.0021 - 0.562 0.316 C11 * 0.0016 0.0023 0.711 0.506 C12 * 0.0007 0.0023 0.310 0.096 C13 * -0.0040 0.0025 - 1.585 2.513 C14 * 0.0042 0.0025 1.674 2.801 C15 * -0.0012 0.0023 - 0.527 0.277 ============ Sum((d/s)**2) for starred atoms 6.510 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms does not deviate significantly from planarity

Plane 3 m1 = 0.13603(0.00097) m2 = -0.10179(0.00086) m3 = -0.98546(0.00016) D = -18.25778(0.00363) Atom d s d/s (d/s)**2 C18 * 0.0049 0.0018 2.741 7.515 C19 * -0.0094 0.0022 - 4.340 18.833 C20 * 0.0040 0.0023 1.737 3.018 C21 * 0.0058 0.0024 2.373 5.630 C22 * -0.0103 0.0027 - 3.832 14.682 C23 * 0.0009 0.0023 0.392 0.153 ============ Sum((d/s)**2) for starred atoms 49.831 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 4 m1 = -0.47634(0.00103) m2 = 0.87824(0.00057) m3 = -0.04237(0.00125) D = 8.88495(0.02266) Atom d s d/s (d/s)**2 C24 * 0.0086 0.0028 3.048 9.293 C25 * 0.0050 0.0031 1.626 2.644 C26 * -0.0119 0.0029 - 4.059 16.478 C27 * 0.0074 0.0034 2.161 4.672 C28 * 0.0089 0.0030 2.953 8.717 C29 * -0.0105 0.0024 - 4.389 19.263 ============ Sum((d/s)**2) for starred atoms 61.067 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 1.01 (0.08) 178.99 (0.08) 1 3 70.84 (0.10) 109.16 (0.10) 1 4 27.24 (0.10) 152.76 (0.10) 2 3 70.84 (0.07) 109.16 (0.07) 2 4 27.62 (0.08) 152.38 (0.08) 3 4 83.54 (0.10) 96.46 (0.10) Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.47634(0.00105) m2 = 0.87824(0.00057) m3 = -0.04237(0.00118) D = 8.88495(0.02071) Atom d s d/s (d/s)**2 C24 * 0.0086 0.0028 3.048 9.293 C25 * 0.0050 0.0031 1.626 2.644 C26 * -0.0119 0.0029 - 4.059 16.478 C27 * 0.0074 0.0034 2.161 4.672 C28 * 0.0089 0.0030 2.953 8.717 C29 * -0.0105 0.0024 - 4.389 19.263 ============ Sum((d/s)**2) for starred atoms 61.067 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 2 m1 = 0.39868(0.00762) m2 = -0.90292(0.00337) m3 = 0.16059(0.00247) D = -7.68046(0.09646) Atom d s d/s (d/s)**2 O7 * 0.0000 0.0038 0.000 0.000 N3 * 0.0000 0.0039 0.000 0.000 O8 * 0.0000 0.0039 0.000 0.000 ============ Sum((d/s)**2) for starred atoms 0.000 Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 8.23 (0.27) 171.77 (0.27)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br300.07372 (3)0.95218 (2)0.846811 (18)0.05590 (10)
P10.98210 (7)1.40317 (5)1.22196 (4)0.03470 (12)
N20.7703 (2)1.37669 (15)1.25914 (12)0.0344 (3)
O40.9135 (2)1.32659 (15)1.09802 (12)0.0500 (4)
C120.3366 (3)1.07127 (19)0.92609 (16)0.0394 (4)
O51.1552 (2)1.38127 (14)1.27575 (13)0.0463 (3)
O81.9001 (4)1.7330 (3)1.1441 (3)0.1177 (12)
O61.0436 (2)1.54558 (14)1.23196 (13)0.0468 (4)
C160.7768 (3)1.40186 (18)1.37146 (14)0.0350 (4)
H160.92241.42761.40810.042*
C190.4550 (3)1.2403 (2)1.37139 (17)0.0430 (5)
H190.37471.28851.36050.052*
C90.5758 (3)1.35586 (19)1.18729 (15)0.0372 (4)
H9A0.57841.43281.17890.045*
H9B0.46091.33351.21690.045*
C110.3542 (3)1.16589 (19)1.02215 (15)0.0372 (4)
H110.23731.17191.04680.045*
C100.5470 (3)1.25190 (18)1.08172 (14)0.0332 (4)
C150.7171 (3)1.23950 (19)1.04172 (15)0.0372 (4)
C180.6676 (3)1.28190 (18)1.38117 (14)0.0357 (4)
C130.5082 (3)1.0600 (2)0.88753 (17)0.0454 (5)
H130.49390.99540.82300.055*
C210.4794 (4)1.0567 (2)1.39599 (19)0.0578 (6)
H210.41660.98121.40000.069*
C170.7001 (3)1.5121 (2)1.42262 (18)0.0473 (5)
H17A0.77661.58401.41300.071*
H17B0.71941.53221.49650.071*
H17C0.55601.48971.39050.071*
C291.2448 (3)1.60445 (19)1.22977 (18)0.0423 (5)
C241.3853 (4)1.6834 (2)1.3241 (2)0.0554 (6)
H241.34621.69881.38710.066*
C230.7834 (3)1.2087 (2)1.39997 (18)0.0472 (5)
H230.92521.23491.40710.057*
C281.2949 (4)1.5824 (2)1.1350 (2)0.0541 (6)
H281.19611.53051.07200.065*
C140.7011 (3)1.1457 (2)0.94568 (16)0.0440 (5)
H140.81771.14020.92050.053*
C261.6379 (4)1.7154 (2)1.2300 (2)0.0575 (6)
C200.3630 (4)1.1278 (2)1.37790 (18)0.0517 (5)
H200.22111.10021.36990.062*
C271.4966 (4)1.6394 (3)1.1355 (2)0.0629 (7)
H271.53521.62621.07250.076*
C220.6907 (4)1.0980 (2)1.4082 (2)0.0586 (6)
H220.77051.05101.42200.070*
C251.5863 (4)1.7398 (2)1.3240 (2)0.0636 (7)
H251.68441.79341.38700.076*
N31.8545 (4)1.7694 (3)1.2296 (3)0.0879 (10)
O71.9752 (4)1.8438 (3)1.3132 (3)0.1317 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br300.04266 (14)0.05503 (16)0.05015 (15)0.00431 (10)0.00283 (10)0.01044 (11)
P10.0238 (2)0.0376 (3)0.0450 (3)0.00870 (19)0.01247 (19)0.0190 (2)
N20.0214 (7)0.0446 (9)0.0360 (8)0.0080 (6)0.0084 (6)0.0167 (7)
O40.0316 (7)0.0606 (10)0.0450 (8)0.0013 (7)0.0178 (6)0.0135 (7)
C120.0350 (10)0.0412 (10)0.0388 (10)0.0083 (8)0.0045 (8)0.0173 (8)
O50.0285 (7)0.0523 (9)0.0669 (10)0.0149 (6)0.0140 (6)0.0323 (8)
O80.0703 (15)0.158 (3)0.214 (3)0.0556 (17)0.084 (2)0.145 (3)
O60.0325 (7)0.0431 (8)0.0727 (10)0.0116 (6)0.0196 (7)0.0305 (8)
C160.0276 (8)0.0402 (10)0.0329 (9)0.0092 (7)0.0062 (7)0.0119 (8)
C190.0358 (10)0.0526 (12)0.0453 (11)0.0125 (9)0.0127 (9)0.0255 (10)
C90.0268 (9)0.0470 (11)0.0387 (10)0.0143 (8)0.0098 (7)0.0165 (9)
C110.0310 (9)0.0457 (11)0.0391 (10)0.0129 (8)0.0105 (8)0.0211 (9)
C100.0307 (9)0.0404 (10)0.0349 (9)0.0138 (8)0.0112 (7)0.0200 (8)
C150.0319 (9)0.0426 (10)0.0402 (10)0.0100 (8)0.0132 (8)0.0205 (8)
C180.0340 (9)0.0407 (10)0.0305 (9)0.0102 (8)0.0083 (7)0.0136 (8)
C130.0479 (12)0.0480 (12)0.0385 (10)0.0172 (10)0.0135 (9)0.0135 (9)
C210.0679 (16)0.0510 (13)0.0523 (13)0.0058 (12)0.0102 (12)0.0293 (11)
C170.0433 (11)0.0420 (11)0.0464 (11)0.0120 (9)0.0116 (9)0.0079 (9)
C290.0345 (10)0.0379 (10)0.0631 (13)0.0115 (8)0.0177 (9)0.0283 (10)
C240.0531 (13)0.0461 (12)0.0603 (14)0.0068 (10)0.0198 (11)0.0187 (11)
C230.0405 (11)0.0531 (13)0.0490 (12)0.0181 (10)0.0101 (9)0.0206 (10)
C280.0462 (12)0.0665 (15)0.0577 (13)0.0148 (11)0.0149 (10)0.0361 (12)
C140.0392 (10)0.0555 (13)0.0424 (11)0.0187 (9)0.0195 (9)0.0202 (10)
C260.0377 (11)0.0520 (13)0.102 (2)0.0128 (10)0.0223 (13)0.0517 (15)
C200.0419 (11)0.0600 (14)0.0493 (12)0.0030 (10)0.0104 (10)0.0274 (11)
C270.0604 (15)0.0811 (18)0.0832 (19)0.0313 (14)0.0404 (15)0.0598 (16)
C220.0678 (16)0.0556 (14)0.0646 (15)0.0277 (12)0.0126 (13)0.0345 (12)
C250.0462 (13)0.0489 (13)0.0815 (18)0.0027 (11)0.0049 (12)0.0271 (13)
N30.0474 (14)0.0891 (19)0.171 (3)0.0237 (14)0.0422 (18)0.096 (2)
O70.0450 (13)0.114 (2)0.219 (4)0.0130 (14)0.0127 (18)0.083 (2)
Geometric parameters (Å, º) top
Br30—C121.895 (2)C13—C141.384 (3)
P1—O51.4564 (15)C13—H130.9300
P1—O41.5841 (16)C21—C201.371 (4)
P1—O61.6065 (15)C21—C221.384 (4)
P1—N21.6161 (15)C21—H210.9300
N2—C91.471 (2)C17—H17A0.9600
N2—C161.490 (2)C17—H17B0.9600
O4—C151.401 (2)C17—H17C0.9600
C12—C111.383 (3)C29—C241.372 (3)
C12—C131.385 (3)C29—C281.372 (3)
O8—N31.236 (4)C24—C251.385 (3)
O6—C291.404 (2)C24—H240.9300
C16—C181.516 (3)C23—C221.380 (3)
C16—C171.523 (3)C23—H230.9300
C16—H160.9800C28—C271.389 (3)
C19—C201.386 (3)C28—H280.9300
C19—C181.398 (3)C14—H140.9300
C19—H190.9300C26—C251.366 (4)
C9—C101.504 (3)C26—C271.370 (4)
C9—H9A0.9700C26—N31.477 (3)
C9—H9B0.9700C20—H200.9300
C11—C101.389 (3)C27—H270.9300
C11—H110.9300C22—H220.9300
C10—C151.387 (3)C25—H250.9300
C15—C141.381 (3)N3—O71.216 (5)
C18—C231.394 (3)
O5—P1—O4115.12 (9)C12—C13—H13120.2
O5—P1—O6110.99 (9)C20—C21—C22119.7 (2)
O4—P1—O6101.10 (9)C20—C21—H21120.2
O5—P1—N2116.93 (9)C22—C21—H21120.2
O4—P1—N2104.48 (8)C16—C17—H17A109.5
O6—P1—N2106.72 (8)C16—C17—H17B109.5
C9—N2—C16119.46 (14)H17A—C17—H17B109.5
C9—N2—P1118.71 (13)C16—C17—H17C109.5
C16—N2—P1120.36 (12)H17A—C17—H17C109.5
C15—O4—P1124.46 (12)H17B—C17—H17C109.5
C11—C12—C13121.31 (19)C24—C29—C28122.2 (2)
C11—C12—Br30119.49 (15)C24—C29—O6118.0 (2)
C13—C12—Br30119.19 (16)C28—C29—O6119.8 (2)
C29—O6—P1118.91 (12)C29—C24—C25119.0 (2)
N2—C16—C18110.44 (15)C29—C24—H24120.5
N2—C16—C17111.07 (16)C25—C24—H24120.5
C18—C16—C17114.62 (16)C22—C23—C18121.0 (2)
N2—C16—H16106.7C22—C23—H23119.5
C18—C16—H16106.7C18—C23—H23119.5
C17—C16—H16106.7C29—C28—C27118.5 (2)
C20—C19—C18120.4 (2)C29—C28—H28120.8
C20—C19—H19119.8C27—C28—H28120.8
C18—C19—H19119.8C15—C14—C13118.72 (18)
N2—C9—C10110.08 (15)C15—C14—H14120.6
N2—C9—H9A109.6C13—C14—H14120.6
C10—C9—H9A109.6C25—C26—C27122.3 (2)
N2—C9—H9B109.6C25—C26—N3119.2 (3)
C10—C9—H9B109.6C27—C26—N3118.5 (3)
H9A—C9—H9B108.2C21—C20—C19120.6 (2)
C12—C11—C10119.80 (18)C21—C20—H20119.7
C12—C11—H11120.1C19—C20—H20119.7
C10—C11—H11120.1C26—C27—C28119.1 (2)
C15—C10—C11118.12 (18)C26—C27—H27120.5
C15—C10—C9119.75 (17)C28—C27—H27120.5
C11—C10—C9122.13 (16)C23—C22—C21120.2 (2)
C14—C15—C10122.55 (19)C23—C22—H22119.9
C14—C15—O4117.58 (17)C21—C22—H22119.9
C10—C15—O4119.84 (18)C26—C25—C24118.9 (3)
C23—C18—C19118.15 (19)C26—C25—H25120.5
C23—C18—C16118.77 (18)C24—C25—H25120.5
C19—C18—C16123.08 (17)O7—N3—O8125.0 (3)
C14—C13—C12119.50 (19)O7—N3—C26117.8 (4)
C14—C13—H13120.2O8—N3—C26117.2 (3)
O5—P1—N2—C9159.82 (14)N2—C16—C18—C2392.9 (2)
O4—P1—N2—C931.29 (17)C17—C16—C18—C23140.77 (19)
O6—P1—N2—C975.29 (16)N2—C16—C18—C1986.7 (2)
O5—P1—N2—C1634.08 (18)C17—C16—C18—C1939.7 (3)
O4—P1—N2—C16162.61 (15)C11—C12—C13—C140.6 (3)
O6—P1—N2—C1690.81 (15)Br30—C12—C13—C14179.15 (16)
O5—P1—O4—C15119.48 (17)P1—O6—C29—C2498.4 (2)
O6—P1—O4—C15120.83 (17)P1—O6—C29—C2881.9 (2)
N2—P1—O4—C1510.13 (19)C28—C29—C24—C252.1 (4)
O5—P1—O6—C2936.11 (19)O6—C29—C24—C25178.2 (2)
O4—P1—O6—C2986.48 (17)C19—C18—C23—C220.3 (3)
N2—P1—O6—C29164.56 (16)C16—C18—C23—C22179.2 (2)
C9—N2—C16—C1874.1 (2)C24—C29—C28—C272.0 (3)
P1—N2—C16—C18119.90 (15)O6—C29—C28—C27178.4 (2)
C9—N2—C16—C1754.2 (2)C10—C15—C14—C130.6 (3)
P1—N2—C16—C17111.78 (17)O4—C15—C14—C13178.71 (19)
C16—N2—C9—C10139.77 (17)C12—C13—C14—C150.8 (3)
P1—N2—C9—C1054.0 (2)C22—C21—C20—C190.2 (4)
C13—C12—C11—C100.0 (3)C18—C19—C20—C211.2 (3)
Br30—C12—C11—C10178.63 (14)C25—C26—C27—C281.7 (4)
C12—C11—C10—C150.2 (3)N3—C26—C27—C28176.5 (2)
C12—C11—C10—C9179.31 (18)C29—C28—C27—C260.1 (4)
N2—C9—C10—C1536.3 (2)C18—C23—C22—C211.1 (4)
N2—C9—C10—C11143.17 (17)C20—C21—C22—C231.4 (4)
C11—C10—C15—C140.1 (3)C27—C26—C25—C241.6 (4)
C9—C10—C15—C14179.63 (19)N3—C26—C25—C24176.6 (2)
C11—C10—C15—O4178.15 (17)C29—C24—C25—C260.3 (4)
C9—C10—C15—O42.3 (3)C25—C26—N3—O77.0 (4)
P1—O4—C15—C14154.46 (17)C27—C26—N3—O7174.8 (3)
P1—O4—C15—C1027.4 (3)C25—C26—N3—O8171.5 (3)
C20—C19—C18—C231.5 (3)C27—C26—N3—O86.8 (3)
C20—C19—C18—C16178.04 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O5i0.972.493.352 (3)148
C19—H19···O5i0.932.503.404 (3)163
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H18BrN2O5P
Mr489.24
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.9038 (6), 12.0229 (11), 14.0667 (13)
α, β, γ (°)111.154 (1), 97.905 (2), 104.359 (2)
V3)1021.05 (16)
Z2
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.30 × 0.28 × 0.10
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.533, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
11716, 4932, 3958
Rint0.026
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.04
No. of reflections4932
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ZORTEPII (Zsolnai, 1998), enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O5i0.972.493.352 (3)148
C19—H19···O5i0.932.503.404 (3)163
Symmetry code: (i) x1, y, z.
 

Acknowledgements

MK thanks the University Grants Commission, New Delhi, for sanctioning the major project for this work and K. Ravi Kumar, IICT, Hyderabad, for valuable suggestions.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHay, D. G. & Mackay, M. F. (1979). Acta Cryst. B35, 2952–2957.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHill, D. L. (1975). A Review of Cyclophosphamide. Springfield, IL, USA: Thomas.  Google Scholar
First citationKant, R., Kohli, S., Sarmal, L., Krishnaiah, M. & Babu, V. H. H. S. (2009). Acta Cryst. E65, o2003.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnaiah, M., Radha Krishna, J., Kiran, Y. B., Devendranath Reddy, C., Thetmar, W. & Kaung, P. (2007). Acta Cryst. E63, o1756–o1758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPattabhi, V. (1975). Acta Cryst. B31, 1766–1768.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPrasad, G., Hari Babu, B., Kishore Kumar Reddy, K., Haranath, P. R. & Suresh Reddy, C. (2006). Arkivoc, xiii, 165–170.  CrossRef Google Scholar
First citationRadha Krishna, J., Krishnaiah, M., Syam Prasad, G., Suresh Reddy, C. & Puranik, V. G. (2007). Acta Cryst. E63, o2407–o2409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReddy, P. V., Kiran, Y. B., Reddy, C. S. & Reddy, C. D. (2004). Chem. Pharm. Bull. 52, 307–310.  PubMed CAS Google Scholar
First citationSelladurai, S., Subramanian, K. & Naga Raju, C. (1989). Indian Acad. Sci. (Chem. Sci.), 101, 519–527.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSosnovsky, G. & Paul, B. D. (1983). Z. Naturforsch. Teil B, 38, 1146–1155.  Google Scholar
First citationSrinivasulu, K., Hari Babu, B., Suresh Kumar, K., Bhupendra Reddy, C., Naga Raju, C. & Rooba, D. (2008). J. Heterocycl. Chem. 45, 751–757.  CrossRef CAS Google Scholar
First citationSymes, J., Modro, T. A. & Niven, M. L. (1988). Phosphorus Sulfur, 36, 171–179.  CrossRef CAS Web of Science Google Scholar
First citationZsolnai, L. (1998). ZORTEP. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds