organic compounds
6-Bromo-2-(4-nitrophenoxy)-3-(1-phenylethyl)-3,4-dihydro-1,3,2-benzoxazaphosphinine 2-oxide
aDepartment of Physics, S.V. University, Tirupati 517 502, India, bDepartment of Materials Science and Chemical Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan, cDepartment of Chemistry, S.V. University, Tirupati 517 502, India, and dLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: profkrishnaiah.m@gmail.com
In the title compound, C21H18BrN2O5P, the six-membered oxazaphosphinine ring is in a twist-boat conformation. One of the phosphoryl O atoms is in an equatorial configuation while the other is axial with respect to the oxazaphosphinine ring. The mean planes of the benzene ring to which the nitro group is attached and the phenyl ring form a dihedral angle of 83.5 (1)°. In the weak intermolecular C—H⋯O hydrogen bonds link the molecules into chains along [100].
Related literature
For background information on organophosphorus et al. (2008); Hill (1975); Reddy et al. (2004); Prasad et al. (2006); Sosnovsky & Paul (1983). For related structures, see: Krishnaiah et al. (2007); Pattabhi (1975); Radha Krishna et al. (2007); Symes et al. (1988); Hay & Mackay (1979); Kant et al. (2009); Selladurai et al. (1989).
containing O and N in the six membered ring, see: SrinivasuluExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEPII (Zsolnai, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).
Supporting information
https://doi.org/10.1107/S1600536809040379/lh2902sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809040379/lh2902Isup2.hkl
4-Nitrophenyl phosphorodichloridate 0.51 g(2.0 mmole)in dry toluene(10 ml) was added dropwise to a stirred solution of 2-[(1-phenylethylamino)methyl] -4-bromophenol 0.61 g (2.0 mmole) and triethylamine 0.40 g (4.0 mmole)in 20 ml of dry toluene at 273K over 20 minutes. After the completion of the addition, the reaction temperature was slowly raised to 328–333K and was maintained at this temperature for 5 h. Progress of the reaction was monitored by TLC using hexane-ethyl acetate (3:1)as mobile phase on silica gel (adsorbent). Upon separation of the triethylamine hydrochloride by filtration and evaporation of the filtrate under reduced pressure, a solid residue was obtained. The residue was washed with water and diffraction quality crystal were grown by slow evaporation of a solution of the title compound in methanol.
H-atoms bound to carbon were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2eq (C) for aromatic, C—H = 0.980Å Uiso=1.2eq (C) for methine, 0.97 Å, Uiso = 1.2eq (C) for CH2 group and 0.96 Å, Uiso = 1.5eq (C) for methyl H atoms.
Organophosphorus
containing O and N in the six membered ring have gained much attention ever since cyclophosphamide was discovered as an anti-cancer drug (Prasad et al., 2006). Compounds of this class have high anti-tumor activity (Sosnovsky & Paul, 1983), significant bioactivity (Reddy et al., 2004) and medicinal properties (Hill et al., 1975). In this aspect, the title compound (I) possesses antifungal activity against Aspergillus niger and Alternaria alternata, anti bacterial aganist Gram Positive Bacillus subtilis and Gram negative Escherichia coli and also insecticidal activity against Scirpophaga incertulas (Srinivasulu et al., 2008). These characteristics has motivated us to study the influence of the substituents on the conformation and molecular geometry of the heterocyclic ring in this type of compound.In the
(I), the oxazaphosphinine ring adopts a twist boat conformation, with atoms C9/C10/C15/O4 coplanar and the atoms P1 and N2 are displaced in same direction by -0.562 (1) and -0.854 (2)Å respectively. When the substituents at P and N in oxazaphosphinine ring are methoxy phenyl and chloro phenyl, chlorophenoxy and chloro fluorophenyl the conformations are boat and screw boat(Radha Krishna et al., 2007; Krishnaiah et al., 2007). In the present study, the steric and electronic effects of the subsitutents change the conformation of the oxazaphosphinine ring to twist boat and this may be due to nitrophenoxy ring attached to the P atom and phenylethyl substituent at the N atom. The nitrophenoxy and phenylethyl rings are at axially and equatorially orientated with dihedral angles of 27.2 (1)° and 71.0 (1)° to the mean plane of heterocyclic ring.The P=O(2) distance of 1.456 (2)Å is in good agreement with the values in related structures (Kant et al., 2009; Krishnaiah et al., 2007). The P—N [1.621 (2) Å], N—C [1.471 (2) Å] bond distances and P—N—C [119.0 (1)°] bond angle are agreeable with related structures in the literature (Symes et al., 1988; Selladurai et al., 1989). The dihedral angle between the nitro group and attached benzene ring is 8.2 (3)°. The O7—N3—O8 bond angle [125.(3)°] and average N—O bond length [1.226 (4) Å] are in agreement with the values in the related structures (Hay et al., 1979; Pattabhi et al., 1975). The C—Br bond length [1.895 (2) Å] is in good agreement with the value reported by Radha Krishna et al. (2007). In the
molecules are linked by weak intermolecular C—H···O hydrogen bonds (see Table 1 and Fig. 2)For background information on organophosphorus
containing O and N in the six membered ring, see: Srinivasulu et al. (2008); Hill (1975); Reddy et al. (2004); Prasad et al. (2006); Sosnovsky & Paul (1983). For related structures, see: Krishnaiah et al. (2007); Pattabhi (1975); Radha Krishna et al. (2007); Symes et al. (1988); Hay & Mackay (1979); Kant et al. (2009); Selladurai et al. (1989).Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEPII (Zsolnai, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).C21H18BrN2O5P | Z = 2 |
Mr = 489.24 | F(000) = 496 |
Triclinic, P1 | Dx = 1.591 Mg m−3 Dm = 1.590 Mg m−3 Dm measured by not measured |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9038 (6) Å | Cell parameters from 4932 reflections |
b = 12.0229 (11) Å | θ = 1.6–28.0° |
c = 14.0667 (13) Å | µ = 2.13 mm−1 |
α = 111.154 (1)° | T = 294 K |
β = 97.905 (2)° | Plate, colorless |
γ = 104.359 (2)° | 0.30 × 0.28 × 0.10 mm |
V = 1021.05 (16) Å3 |
Siemens SMART CCD area-detector diffractometer | 4932 independent reflections |
Radiation source: fine-focus sealed tube | 3958 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω–2θ scans | θmax = 28.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→9 |
Tmin = 0.533, Tmax = 0.808 | k = −15→15 |
11716 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0447P)2 + 0.2933P] where P = (Fo2 + 2Fc2)/3 |
4932 reflections | (Δ/σ)max = 0.001 |
271 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C21H18BrN2O5P | γ = 104.359 (2)° |
Mr = 489.24 | V = 1021.05 (16) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9038 (6) Å | Mo Kα radiation |
b = 12.0229 (11) Å | µ = 2.13 mm−1 |
c = 14.0667 (13) Å | T = 294 K |
α = 111.154 (1)° | 0.30 × 0.28 × 0.10 mm |
β = 97.905 (2)° |
Siemens SMART CCD area-detector diffractometer | 4932 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 3958 reflections with I > 2σ(I) |
Tmin = 0.533, Tmax = 0.808 | Rint = 0.026 |
11716 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.55 e Å−3 |
4932 reflections | Δρmin = −0.30 e Å−3 |
271 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d Plane 1 m1 = -0.25244(0.00099) m2 = 0.85342(0.00085) m3 = -0.45601(0.00139) D = 1.39325(0.02640) Atom d s d/s (d/s)**2 C9 * -0.0053 0.0023 - 2.319 5.378 C10 * 0.0097 0.0021 4.554 20.741 C15 * -0.0113 0.0023 - 5.002 25.020 O4 * 0.0035 0.0018 1.974 3.897 P1 - 0.5610 0.0006 - 934.361 873029.938 N2 - 0.8542 0.0018 - 476.107 226678.125 ============ Sum((d/s)**2) for starred atoms 55.036 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity Plane 2 m1 = -0.23579(0.00097) m2 = 0.85905(0.00049) m3 = -0.45436(0.00086) D = 1.43988(0.01431) Atom d s d/s (d/s)**2 C10 * -0.0012 0.0021 - 0.562 0.316 C11 * 0.0016 0.0023 0.711 0.506 C12 * 0.0007 0.0023 0.310 0.096 C13 * -0.0040 0.0025 - 1.585 2.513 C14 * 0.0042 0.0025 1.674 2.801 C15 * -0.0012 0.0023 - 0.527 0.277 ============ Sum((d/s)**2) for starred atoms 6.510 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms does not deviate significantly from planarity Plane 3 m1 = 0.13603(0.00097) m2 = -0.10179(0.00086) m3 = -0.98546(0.00016) D = -18.25778(0.00363) Atom d s d/s (d/s)**2 C18 * 0.0049 0.0018 2.741 7.515 C19 * -0.0094 0.0022 - 4.340 18.833 C20 * 0.0040 0.0023 1.737 3.018 C21 * 0.0058 0.0024 2.373 5.630 C22 * -0.0103 0.0027 - 3.832 14.682 C23 * 0.0009 0.0023 0.392 0.153 ============ Sum((d/s)**2) for starred atoms 49.831 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity Plane 4 m1 = -0.47634(0.00103) m2 = 0.87824(0.00057) m3 = -0.04237(0.00125) D = 8.88495(0.02266) Atom d s d/s (d/s)**2 C24 * 0.0086 0.0028 3.048 9.293 C25 * 0.0050 0.0031 1.626 2.644 C26 * -0.0119 0.0029 - 4.059 16.478 C27 * 0.0074 0.0034 2.161 4.672 C28 * 0.0089 0.0030 2.953 8.717 C29 * -0.0105 0.0024 - 4.389 19.263 ============ Sum((d/s)**2) for starred atoms 61.067 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 1.01 (0.08) 178.99 (0.08) 1 3 70.84 (0.10) 109.16 (0.10) 1 4 27.24 (0.10) 152.76 (0.10) 2 3 70.84 (0.07) 109.16 (0.07) 2 4 27.62 (0.08) 152.38 (0.08) 3 4 83.54 (0.10) 96.46 (0.10) Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d Plane 1 m1 = -0.47634(0.00105) m2 = 0.87824(0.00057) m3 = -0.04237(0.00118) D = 8.88495(0.02071) Atom d s d/s (d/s)**2 C24 * 0.0086 0.0028 3.048 9.293 C25 * 0.0050 0.0031 1.626 2.644 C26 * -0.0119 0.0029 - 4.059 16.478 C27 * 0.0074 0.0034 2.161 4.672 C28 * 0.0089 0.0030 2.953 8.717 C29 * -0.0105 0.0024 - 4.389 19.263 ============ Sum((d/s)**2) for starred atoms 61.067 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity Plane 2 m1 = 0.39868(0.00762) m2 = -0.90292(0.00337) m3 = 0.16059(0.00247) D = -7.68046(0.09646) Atom d s d/s (d/s)**2 O7 * 0.0000 0.0038 0.000 0.000 N3 * 0.0000 0.0039 0.000 0.000 O8 * 0.0000 0.0039 0.000 0.000 ============ Sum((d/s)**2) for starred atoms 0.000 Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 8.23 (0.27) 171.77 (0.27) |
x | y | z | Uiso*/Ueq | ||
Br30 | 0.07372 (3) | 0.95218 (2) | 0.846811 (18) | 0.05590 (10) | |
P1 | 0.98210 (7) | 1.40317 (5) | 1.22196 (4) | 0.03470 (12) | |
N2 | 0.7703 (2) | 1.37669 (15) | 1.25914 (12) | 0.0344 (3) | |
O4 | 0.9135 (2) | 1.32659 (15) | 1.09802 (12) | 0.0500 (4) | |
C12 | 0.3366 (3) | 1.07127 (19) | 0.92609 (16) | 0.0394 (4) | |
O5 | 1.1552 (2) | 1.38127 (14) | 1.27575 (13) | 0.0463 (3) | |
O8 | 1.9001 (4) | 1.7330 (3) | 1.1441 (3) | 0.1177 (12) | |
O6 | 1.0436 (2) | 1.54558 (14) | 1.23196 (13) | 0.0468 (4) | |
C16 | 0.7768 (3) | 1.40186 (18) | 1.37146 (14) | 0.0350 (4) | |
H16 | 0.9224 | 1.4276 | 1.4081 | 0.042* | |
C19 | 0.4550 (3) | 1.2403 (2) | 1.37139 (17) | 0.0430 (5) | |
H19 | 0.3747 | 1.2885 | 1.3605 | 0.052* | |
C9 | 0.5758 (3) | 1.35586 (19) | 1.18729 (15) | 0.0372 (4) | |
H9A | 0.5784 | 1.4328 | 1.1789 | 0.045* | |
H9B | 0.4609 | 1.3335 | 1.2169 | 0.045* | |
C11 | 0.3542 (3) | 1.16589 (19) | 1.02215 (15) | 0.0372 (4) | |
H11 | 0.2373 | 1.1719 | 1.0468 | 0.045* | |
C10 | 0.5470 (3) | 1.25190 (18) | 1.08172 (14) | 0.0332 (4) | |
C15 | 0.7171 (3) | 1.23950 (19) | 1.04172 (15) | 0.0372 (4) | |
C18 | 0.6676 (3) | 1.28190 (18) | 1.38117 (14) | 0.0357 (4) | |
C13 | 0.5082 (3) | 1.0600 (2) | 0.88753 (17) | 0.0454 (5) | |
H13 | 0.4939 | 0.9954 | 0.8230 | 0.055* | |
C21 | 0.4794 (4) | 1.0567 (2) | 1.39599 (19) | 0.0578 (6) | |
H21 | 0.4166 | 0.9812 | 1.4000 | 0.069* | |
C17 | 0.7001 (3) | 1.5121 (2) | 1.42262 (18) | 0.0473 (5) | |
H17A | 0.7766 | 1.5840 | 1.4130 | 0.071* | |
H17B | 0.7194 | 1.5322 | 1.4965 | 0.071* | |
H17C | 0.5560 | 1.4897 | 1.3905 | 0.071* | |
C29 | 1.2448 (3) | 1.60445 (19) | 1.22977 (18) | 0.0423 (5) | |
C24 | 1.3853 (4) | 1.6834 (2) | 1.3241 (2) | 0.0554 (6) | |
H24 | 1.3462 | 1.6988 | 1.3871 | 0.066* | |
C23 | 0.7834 (3) | 1.2087 (2) | 1.39997 (18) | 0.0472 (5) | |
H23 | 0.9252 | 1.2349 | 1.4071 | 0.057* | |
C28 | 1.2949 (4) | 1.5824 (2) | 1.1350 (2) | 0.0541 (6) | |
H28 | 1.1961 | 1.5305 | 1.0720 | 0.065* | |
C14 | 0.7011 (3) | 1.1457 (2) | 0.94568 (16) | 0.0440 (5) | |
H14 | 0.8177 | 1.1402 | 0.9205 | 0.053* | |
C26 | 1.6379 (4) | 1.7154 (2) | 1.2300 (2) | 0.0575 (6) | |
C20 | 0.3630 (4) | 1.1278 (2) | 1.37790 (18) | 0.0517 (5) | |
H20 | 0.2211 | 1.1002 | 1.3699 | 0.062* | |
C27 | 1.4966 (4) | 1.6394 (3) | 1.1355 (2) | 0.0629 (7) | |
H27 | 1.5352 | 1.6262 | 1.0725 | 0.076* | |
C22 | 0.6907 (4) | 1.0980 (2) | 1.4082 (2) | 0.0586 (6) | |
H22 | 0.7705 | 1.0510 | 1.4220 | 0.070* | |
C25 | 1.5863 (4) | 1.7398 (2) | 1.3240 (2) | 0.0636 (7) | |
H25 | 1.6844 | 1.7934 | 1.3870 | 0.076* | |
N3 | 1.8545 (4) | 1.7694 (3) | 1.2296 (3) | 0.0879 (10) | |
O7 | 1.9752 (4) | 1.8438 (3) | 1.3132 (3) | 0.1317 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br30 | 0.04266 (14) | 0.05503 (16) | 0.05015 (15) | 0.00431 (10) | 0.00283 (10) | 0.01044 (11) |
P1 | 0.0238 (2) | 0.0376 (3) | 0.0450 (3) | 0.00870 (19) | 0.01247 (19) | 0.0190 (2) |
N2 | 0.0214 (7) | 0.0446 (9) | 0.0360 (8) | 0.0080 (6) | 0.0084 (6) | 0.0167 (7) |
O4 | 0.0316 (7) | 0.0606 (10) | 0.0450 (8) | 0.0013 (7) | 0.0178 (6) | 0.0135 (7) |
C12 | 0.0350 (10) | 0.0412 (10) | 0.0388 (10) | 0.0083 (8) | 0.0045 (8) | 0.0173 (8) |
O5 | 0.0285 (7) | 0.0523 (9) | 0.0669 (10) | 0.0149 (6) | 0.0140 (6) | 0.0323 (8) |
O8 | 0.0703 (15) | 0.158 (3) | 0.214 (3) | 0.0556 (17) | 0.084 (2) | 0.145 (3) |
O6 | 0.0325 (7) | 0.0431 (8) | 0.0727 (10) | 0.0116 (6) | 0.0196 (7) | 0.0305 (8) |
C16 | 0.0276 (8) | 0.0402 (10) | 0.0329 (9) | 0.0092 (7) | 0.0062 (7) | 0.0119 (8) |
C19 | 0.0358 (10) | 0.0526 (12) | 0.0453 (11) | 0.0125 (9) | 0.0127 (9) | 0.0255 (10) |
C9 | 0.0268 (9) | 0.0470 (11) | 0.0387 (10) | 0.0143 (8) | 0.0098 (7) | 0.0165 (9) |
C11 | 0.0310 (9) | 0.0457 (11) | 0.0391 (10) | 0.0129 (8) | 0.0105 (8) | 0.0211 (9) |
C10 | 0.0307 (9) | 0.0404 (10) | 0.0349 (9) | 0.0138 (8) | 0.0112 (7) | 0.0200 (8) |
C15 | 0.0319 (9) | 0.0426 (10) | 0.0402 (10) | 0.0100 (8) | 0.0132 (8) | 0.0205 (8) |
C18 | 0.0340 (9) | 0.0407 (10) | 0.0305 (9) | 0.0102 (8) | 0.0083 (7) | 0.0136 (8) |
C13 | 0.0479 (12) | 0.0480 (12) | 0.0385 (10) | 0.0172 (10) | 0.0135 (9) | 0.0135 (9) |
C21 | 0.0679 (16) | 0.0510 (13) | 0.0523 (13) | 0.0058 (12) | 0.0102 (12) | 0.0293 (11) |
C17 | 0.0433 (11) | 0.0420 (11) | 0.0464 (11) | 0.0120 (9) | 0.0116 (9) | 0.0079 (9) |
C29 | 0.0345 (10) | 0.0379 (10) | 0.0631 (13) | 0.0115 (8) | 0.0177 (9) | 0.0283 (10) |
C24 | 0.0531 (13) | 0.0461 (12) | 0.0603 (14) | 0.0068 (10) | 0.0198 (11) | 0.0187 (11) |
C23 | 0.0405 (11) | 0.0531 (13) | 0.0490 (12) | 0.0181 (10) | 0.0101 (9) | 0.0206 (10) |
C28 | 0.0462 (12) | 0.0665 (15) | 0.0577 (13) | 0.0148 (11) | 0.0149 (10) | 0.0361 (12) |
C14 | 0.0392 (10) | 0.0555 (13) | 0.0424 (11) | 0.0187 (9) | 0.0195 (9) | 0.0202 (10) |
C26 | 0.0377 (11) | 0.0520 (13) | 0.102 (2) | 0.0128 (10) | 0.0223 (13) | 0.0517 (15) |
C20 | 0.0419 (11) | 0.0600 (14) | 0.0493 (12) | 0.0030 (10) | 0.0104 (10) | 0.0274 (11) |
C27 | 0.0604 (15) | 0.0811 (18) | 0.0832 (19) | 0.0313 (14) | 0.0404 (15) | 0.0598 (16) |
C22 | 0.0678 (16) | 0.0556 (14) | 0.0646 (15) | 0.0277 (12) | 0.0126 (13) | 0.0345 (12) |
C25 | 0.0462 (13) | 0.0489 (13) | 0.0815 (18) | −0.0027 (11) | 0.0049 (12) | 0.0271 (13) |
N3 | 0.0474 (14) | 0.0891 (19) | 0.171 (3) | 0.0237 (14) | 0.0422 (18) | 0.096 (2) |
O7 | 0.0450 (13) | 0.114 (2) | 0.219 (4) | −0.0130 (14) | 0.0127 (18) | 0.083 (2) |
Br30—C12 | 1.895 (2) | C13—C14 | 1.384 (3) |
P1—O5 | 1.4564 (15) | C13—H13 | 0.9300 |
P1—O4 | 1.5841 (16) | C21—C20 | 1.371 (4) |
P1—O6 | 1.6065 (15) | C21—C22 | 1.384 (4) |
P1—N2 | 1.6161 (15) | C21—H21 | 0.9300 |
N2—C9 | 1.471 (2) | C17—H17A | 0.9600 |
N2—C16 | 1.490 (2) | C17—H17B | 0.9600 |
O4—C15 | 1.401 (2) | C17—H17C | 0.9600 |
C12—C11 | 1.383 (3) | C29—C24 | 1.372 (3) |
C12—C13 | 1.385 (3) | C29—C28 | 1.372 (3) |
O8—N3 | 1.236 (4) | C24—C25 | 1.385 (3) |
O6—C29 | 1.404 (2) | C24—H24 | 0.9300 |
C16—C18 | 1.516 (3) | C23—C22 | 1.380 (3) |
C16—C17 | 1.523 (3) | C23—H23 | 0.9300 |
C16—H16 | 0.9800 | C28—C27 | 1.389 (3) |
C19—C20 | 1.386 (3) | C28—H28 | 0.9300 |
C19—C18 | 1.398 (3) | C14—H14 | 0.9300 |
C19—H19 | 0.9300 | C26—C25 | 1.366 (4) |
C9—C10 | 1.504 (3) | C26—C27 | 1.370 (4) |
C9—H9A | 0.9700 | C26—N3 | 1.477 (3) |
C9—H9B | 0.9700 | C20—H20 | 0.9300 |
C11—C10 | 1.389 (3) | C27—H27 | 0.9300 |
C11—H11 | 0.9300 | C22—H22 | 0.9300 |
C10—C15 | 1.387 (3) | C25—H25 | 0.9300 |
C15—C14 | 1.381 (3) | N3—O7 | 1.216 (5) |
C18—C23 | 1.394 (3) | ||
O5—P1—O4 | 115.12 (9) | C12—C13—H13 | 120.2 |
O5—P1—O6 | 110.99 (9) | C20—C21—C22 | 119.7 (2) |
O4—P1—O6 | 101.10 (9) | C20—C21—H21 | 120.2 |
O5—P1—N2 | 116.93 (9) | C22—C21—H21 | 120.2 |
O4—P1—N2 | 104.48 (8) | C16—C17—H17A | 109.5 |
O6—P1—N2 | 106.72 (8) | C16—C17—H17B | 109.5 |
C9—N2—C16 | 119.46 (14) | H17A—C17—H17B | 109.5 |
C9—N2—P1 | 118.71 (13) | C16—C17—H17C | 109.5 |
C16—N2—P1 | 120.36 (12) | H17A—C17—H17C | 109.5 |
C15—O4—P1 | 124.46 (12) | H17B—C17—H17C | 109.5 |
C11—C12—C13 | 121.31 (19) | C24—C29—C28 | 122.2 (2) |
C11—C12—Br30 | 119.49 (15) | C24—C29—O6 | 118.0 (2) |
C13—C12—Br30 | 119.19 (16) | C28—C29—O6 | 119.8 (2) |
C29—O6—P1 | 118.91 (12) | C29—C24—C25 | 119.0 (2) |
N2—C16—C18 | 110.44 (15) | C29—C24—H24 | 120.5 |
N2—C16—C17 | 111.07 (16) | C25—C24—H24 | 120.5 |
C18—C16—C17 | 114.62 (16) | C22—C23—C18 | 121.0 (2) |
N2—C16—H16 | 106.7 | C22—C23—H23 | 119.5 |
C18—C16—H16 | 106.7 | C18—C23—H23 | 119.5 |
C17—C16—H16 | 106.7 | C29—C28—C27 | 118.5 (2) |
C20—C19—C18 | 120.4 (2) | C29—C28—H28 | 120.8 |
C20—C19—H19 | 119.8 | C27—C28—H28 | 120.8 |
C18—C19—H19 | 119.8 | C15—C14—C13 | 118.72 (18) |
N2—C9—C10 | 110.08 (15) | C15—C14—H14 | 120.6 |
N2—C9—H9A | 109.6 | C13—C14—H14 | 120.6 |
C10—C9—H9A | 109.6 | C25—C26—C27 | 122.3 (2) |
N2—C9—H9B | 109.6 | C25—C26—N3 | 119.2 (3) |
C10—C9—H9B | 109.6 | C27—C26—N3 | 118.5 (3) |
H9A—C9—H9B | 108.2 | C21—C20—C19 | 120.6 (2) |
C12—C11—C10 | 119.80 (18) | C21—C20—H20 | 119.7 |
C12—C11—H11 | 120.1 | C19—C20—H20 | 119.7 |
C10—C11—H11 | 120.1 | C26—C27—C28 | 119.1 (2) |
C15—C10—C11 | 118.12 (18) | C26—C27—H27 | 120.5 |
C15—C10—C9 | 119.75 (17) | C28—C27—H27 | 120.5 |
C11—C10—C9 | 122.13 (16) | C23—C22—C21 | 120.2 (2) |
C14—C15—C10 | 122.55 (19) | C23—C22—H22 | 119.9 |
C14—C15—O4 | 117.58 (17) | C21—C22—H22 | 119.9 |
C10—C15—O4 | 119.84 (18) | C26—C25—C24 | 118.9 (3) |
C23—C18—C19 | 118.15 (19) | C26—C25—H25 | 120.5 |
C23—C18—C16 | 118.77 (18) | C24—C25—H25 | 120.5 |
C19—C18—C16 | 123.08 (17) | O7—N3—O8 | 125.0 (3) |
C14—C13—C12 | 119.50 (19) | O7—N3—C26 | 117.8 (4) |
C14—C13—H13 | 120.2 | O8—N3—C26 | 117.2 (3) |
O5—P1—N2—C9 | −159.82 (14) | N2—C16—C18—C23 | 92.9 (2) |
O4—P1—N2—C9 | −31.29 (17) | C17—C16—C18—C23 | −140.77 (19) |
O6—P1—N2—C9 | 75.29 (16) | N2—C16—C18—C19 | −86.7 (2) |
O5—P1—N2—C16 | 34.08 (18) | C17—C16—C18—C19 | 39.7 (3) |
O4—P1—N2—C16 | 162.61 (15) | C11—C12—C13—C14 | −0.6 (3) |
O6—P1—N2—C16 | −90.81 (15) | Br30—C12—C13—C14 | −179.15 (16) |
O5—P1—O4—C15 | 119.48 (17) | P1—O6—C29—C24 | −98.4 (2) |
O6—P1—O4—C15 | −120.83 (17) | P1—O6—C29—C28 | 81.9 (2) |
N2—P1—O4—C15 | −10.13 (19) | C28—C29—C24—C25 | −2.1 (4) |
O5—P1—O6—C29 | 36.11 (19) | O6—C29—C24—C25 | 178.2 (2) |
O4—P1—O6—C29 | −86.48 (17) | C19—C18—C23—C22 | 0.3 (3) |
N2—P1—O6—C29 | 164.56 (16) | C16—C18—C23—C22 | −179.2 (2) |
C9—N2—C16—C18 | 74.1 (2) | C24—C29—C28—C27 | 2.0 (3) |
P1—N2—C16—C18 | −119.90 (15) | O6—C29—C28—C27 | −178.4 (2) |
C9—N2—C16—C17 | −54.2 (2) | C10—C15—C14—C13 | −0.6 (3) |
P1—N2—C16—C17 | 111.78 (17) | O4—C15—C14—C13 | −178.71 (19) |
C16—N2—C9—C10 | −139.77 (17) | C12—C13—C14—C15 | 0.8 (3) |
P1—N2—C9—C10 | 54.0 (2) | C22—C21—C20—C19 | 0.2 (4) |
C13—C12—C11—C10 | 0.0 (3) | C18—C19—C20—C21 | 1.2 (3) |
Br30—C12—C11—C10 | 178.63 (14) | C25—C26—C27—C28 | −1.7 (4) |
C12—C11—C10—C15 | 0.2 (3) | N3—C26—C27—C28 | 176.5 (2) |
C12—C11—C10—C9 | −179.31 (18) | C29—C28—C27—C26 | −0.1 (4) |
N2—C9—C10—C15 | −36.3 (2) | C18—C23—C22—C21 | 1.1 (4) |
N2—C9—C10—C11 | 143.17 (17) | C20—C21—C22—C23 | −1.4 (4) |
C11—C10—C15—C14 | 0.1 (3) | C27—C26—C25—C24 | 1.6 (4) |
C9—C10—C15—C14 | 179.63 (19) | N3—C26—C25—C24 | −176.6 (2) |
C11—C10—C15—O4 | 178.15 (17) | C29—C24—C25—C26 | 0.3 (4) |
C9—C10—C15—O4 | −2.3 (3) | C25—C26—N3—O7 | −7.0 (4) |
P1—O4—C15—C14 | −154.46 (17) | C27—C26—N3—O7 | 174.8 (3) |
P1—O4—C15—C10 | 27.4 (3) | C25—C26—N3—O8 | 171.5 (3) |
C20—C19—C18—C23 | −1.5 (3) | C27—C26—N3—O8 | −6.8 (3) |
C20—C19—C18—C16 | 178.04 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O5i | 0.97 | 2.49 | 3.352 (3) | 148 |
C19—H19···O5i | 0.93 | 2.50 | 3.404 (3) | 163 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C21H18BrN2O5P |
Mr | 489.24 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 6.9038 (6), 12.0229 (11), 14.0667 (13) |
α, β, γ (°) | 111.154 (1), 97.905 (2), 104.359 (2) |
V (Å3) | 1021.05 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.13 |
Crystal size (mm) | 0.30 × 0.28 × 0.10 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.533, 0.808 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11716, 4932, 3958 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.092, 1.04 |
No. of reflections | 4932 |
No. of parameters | 271 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.30 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ZORTEPII (Zsolnai, 1998), enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O5i | 0.97 | 2.49 | 3.352 (3) | 148 |
C19—H19···O5i | 0.93 | 2.50 | 3.404 (3) | 163 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
MK thanks the University Grants Commission, New Delhi, for sanctioning the major project for this work and K. Ravi Kumar, IICT, Hyderabad, for valuable suggestions.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hay, D. G. & Mackay, M. F. (1979). Acta Cryst. B35, 2952–2957. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Hill, D. L. (1975). A Review of Cyclophosphamide. Springfield, IL, USA: Thomas. Google Scholar
Kant, R., Kohli, S., Sarmal, L., Krishnaiah, M. & Babu, V. H. H. S. (2009). Acta Cryst. E65, o2003. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krishnaiah, M., Radha Krishna, J., Kiran, Y. B., Devendranath Reddy, C., Thetmar, W. & Kaung, P. (2007). Acta Cryst. E63, o1756–o1758. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Pattabhi, V. (1975). Acta Cryst. B31, 1766–1768. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Prasad, G., Hari Babu, B., Kishore Kumar Reddy, K., Haranath, P. R. & Suresh Reddy, C. (2006). Arkivoc, xiii, 165–170. CrossRef Google Scholar
Radha Krishna, J., Krishnaiah, M., Syam Prasad, G., Suresh Reddy, C. & Puranik, V. G. (2007). Acta Cryst. E63, o2407–o2409. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reddy, P. V., Kiran, Y. B., Reddy, C. S. & Reddy, C. D. (2004). Chem. Pharm. Bull. 52, 307–310. PubMed CAS Google Scholar
Selladurai, S., Subramanian, K. & Naga Raju, C. (1989). Indian Acad. Sci. (Chem. Sci.), 101, 519–527. CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sosnovsky, G. & Paul, B. D. (1983). Z. Naturforsch. Teil B, 38, 1146–1155. Google Scholar
Srinivasulu, K., Hari Babu, B., Suresh Kumar, K., Bhupendra Reddy, C., Naga Raju, C. & Rooba, D. (2008). J. Heterocycl. Chem. 45, 751–757. CrossRef CAS Google Scholar
Symes, J., Modro, T. A. & Niven, M. L. (1988). Phosphorus Sulfur, 36, 171–179. CrossRef CAS Web of Science Google Scholar
Zsolnai, L. (1998). ZORTEP. University of Heidelberg, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organophosphorus heterocyclic compounds containing O and N in the six membered ring have gained much attention ever since cyclophosphamide was discovered as an anti-cancer drug (Prasad et al., 2006). Compounds of this class have high anti-tumor activity (Sosnovsky & Paul, 1983), significant bioactivity (Reddy et al., 2004) and medicinal properties (Hill et al., 1975). In this aspect, the title compound (I) possesses antifungal activity against Aspergillus niger and Alternaria alternata, anti bacterial aganist Gram Positive Bacillus subtilis and Gram negative Escherichia coli and also insecticidal activity against Scirpophaga incertulas (Srinivasulu et al., 2008). These characteristics has motivated us to study the influence of the substituents on the conformation and molecular geometry of the heterocyclic ring in this type of compound.
In the crystal structure (I), the oxazaphosphinine ring adopts a twist boat conformation, with atoms C9/C10/C15/O4 coplanar and the atoms P1 and N2 are displaced in same direction by -0.562 (1) and -0.854 (2)Å respectively. When the substituents at P and N in oxazaphosphinine ring are methoxy phenyl and chloro phenyl, chlorophenoxy and chloro fluorophenyl the conformations are boat and screw boat(Radha Krishna et al., 2007; Krishnaiah et al., 2007). In the present study, the steric and electronic effects of the subsitutents change the conformation of the oxazaphosphinine ring to twist boat and this may be due to nitrophenoxy ring attached to the P atom and phenylethyl substituent at the N atom. The nitrophenoxy and phenylethyl rings are at axially and equatorially orientated with dihedral angles of 27.2 (1)° and 71.0 (1)° to the mean plane of heterocyclic ring.
The P=O(2) distance of 1.456 (2)Å is in good agreement with the values in related structures (Kant et al., 2009; Krishnaiah et al., 2007). The P—N [1.621 (2) Å], N—C [1.471 (2) Å] bond distances and P—N—C [119.0 (1)°] bond angle are agreeable with related structures in the literature (Symes et al., 1988; Selladurai et al., 1989). The dihedral angle between the nitro group and attached benzene ring is 8.2 (3)°. The O7—N3—O8 bond angle [125.(3)°] and average N—O bond length [1.226 (4) Å] are in agreement with the values in the related structures (Hay et al., 1979; Pattabhi et al., 1975). The C—Br bond length [1.895 (2) Å] is in good agreement with the value reported by Radha Krishna et al. (2007). In the crystal structure, molecules are linked by weak intermolecular C—H···O hydrogen bonds (see Table 1 and Fig. 2)