organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Iso­propyl-3-phenyl-5-(p-tol­yl­oxy)-3H-1,2,3-triazolo[4,5-d]pyrimidin-7(6H)-one: whole-mol­ecule disorder

aInstitute of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, bCenter of Oncology, People's Hospital affiliated with Yunyang Medical College, Shiyan 442000, People's Republic of China, and cDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China
*Correspondence e-mail: zengken@126.com

(Received 10 September 2009; accepted 30 September 2009; online 7 October 2009)

The title compound, C20H19N5O2, exhibits whole-mol­ecule disorder the refined ratios of the two components being 0.57 (2):0.43 (2). In the major component, the essentially planar [maximum deviation 0.033 (17) Å] fused pyrimidine and triazole ring system forms a dihedral angle of 10.5 (3)° with the phenyl ring, while in the minor component of disorder this angle is 27.5 (5)°. The crystal structure is stabilized by ππ stacking inter­actions between symmetry-related triazole and pyrimidine rings, with centroid–centroid distances of 3.594 (10) Å.

Related literature

For the biological activity of 8-aza­guanine derivatives see: Roblin et al. (1945[Roblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290-294.]); Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Mitchell et al. (1950[Mitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647-649.]); Levine et al. (1963[Levine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N. Y.), 16, 269-272.]); Montgomery et al. (1962[Montgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504-509.])); Yamamoto et al. (1967[Yamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140-142.]); Bariana (1971[Bariana, D. S. (1971). J. Med. Chem. 14, 535-543.]); Holland et al. (1975[Holland, A., Jackson, D., Chaplen, P., Lunt, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447-449.]). For related structures, see: Ferguson et al. (1998[Ferguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.]); Zhao, Xie et al. (2005[Zhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020-1022.]); Zhao, Hu et al. (2005[Zhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791-o2792.]); Zhao, Wang & Ding (2005[Zhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439-444.]); Chen & Shi (2006[Chen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780-o4782.]); Maldonado et al. (2006[Maldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489-o491.]); Xiao et al. (2007[Xiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.]); Wang et al. (2006[Wang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038-o5040.], 2008[Wang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.]); Zeng, Deng et al. (2009[Zeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142-o1143.]), Zeng, Liu et al. (2009[Zeng, X. H., Liu, X. L., Deng, Sh. H., Chen P. & Wang, H. M. (2009). Acta Cryst. E65, o2583-o2584.]). For examples of whole-mol­ecule disorder, see: Kirsop et al. (2006[Kirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2006). Acta Cryst. C62, o376-o378.]); Cox & Wardell (2003[Cox, P. J. & Wardell, J. L. (2003). Acta Cryst. C59, o706-o708.]). For the preparation, see: Zeng et al. (2006[Zeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731-o732.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N5O2

  • Mr = 361.40

  • Orthorhombic, C 2221

  • a = 10.2335 (6) Å

  • b = 21.8532 (12) Å

  • c = 16.7441 (9) Å

  • V = 3744.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 21260 measured reflections

  • 2285 independent reflections

  • 1790 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.144

  • S = 1.06

  • 2285 reflections

  • 446 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The derivatives of heterocycles containing the 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemie activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975).

In recent years, we have been engaged in the preparation of the derivatives of 8-azaguanine via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with aromatic isocyanate (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound, (I), was obtained from beta-ethoxycarbonyl iminophosphorane and alphalic isocyanate, and the crystal structure is reported herein.

The molecules of (I), which lie in general positions, exhibit 'whole molecule disorder' with the site-occupancy factors of 0.57 (2) and 0.43 (2), (Fig.1). The bond lengths and angles within the triazolopyrimidinone moiety are in good agreement with those observed for closely related structures. As reported for related compounds (Ferguson et al., 1998; Maldonado et al., 2006; Zeng, Deng et al., 2009; Zeng, Liu et al., 2009; Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005; Wang et al., 2006, 2008; Xiao et al., 2007; Chen & Shi, 2006), all ring atoms in the pyrimidine ring system are essentially coplanar (maximum deviation -0.033 (17) Å for atom N4), indicating that the moiety is a conjugate system.

There are no inter- or intra- molecular hydrogen bonding interactions. The molecular conformation and crystal packing are stabilized by ππ stacking interactions occurring between symmetry realted triazole and pyrimidine rings, with centroid-to-centroid distances of 3.594 (10) Å.

Related literature top

For the biological activity of 8-azaguanine derivatives see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962)); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975). For related structures, see: Ferguson et al. (1998); Zhao, Xie et al. (2005); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Chen & Shi (2006); Maldonado et al. (2006); Xiao et al. (2007); Wang et al. (2006, 2008); Zeng, Deng et al. (2009), Zeng, Liu et al. (2009). For examples of whole-molecule disorder, see: Kirsop et al. (2006); Cox & Wardell (2003). For the preparation, see: Zeng et al. (2006).

Experimental top

To a solution of carbodiimide in CH2Cl2/CH3CN (1:4 v/v, 15 ml) prepared according to the literature method (Zeng et al., 2006), was added p-cresol (3 mmol) and excess K2CO3. After the reaction mixture was stirred for 12 h. The solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give the title compound (I) in yield of 85% (m.p. 436 K). Elemental analysis: calculated for C20H19N5O2: C, 66.47; H, 5.30; N, 19.38%. Found: C, 65.52; H, 5.63; N, 18.89%. Crystals suitable for singlecrystal X-ray diffraction were obtained from hexane and dichloromethane (1:3 v/v) at room temperature.

Refinement top

In the absense of significant anomalous dispersion effects Friedel pairs were merged. An examination of the data using PLATON (Spek, 2009) indicated that the crystal was not twinned. H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.93–0.98 Å, and Uiso(H) = 1.2Ueq(C) for CH or 1.5Ueq(C) for CH3.

Structure description top

The derivatives of heterocycles containing the 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemie activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975).

In recent years, we have been engaged in the preparation of the derivatives of 8-azaguanine via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with aromatic isocyanate (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound, (I), was obtained from beta-ethoxycarbonyl iminophosphorane and alphalic isocyanate, and the crystal structure is reported herein.

The molecules of (I), which lie in general positions, exhibit 'whole molecule disorder' with the site-occupancy factors of 0.57 (2) and 0.43 (2), (Fig.1). The bond lengths and angles within the triazolopyrimidinone moiety are in good agreement with those observed for closely related structures. As reported for related compounds (Ferguson et al., 1998; Maldonado et al., 2006; Zeng, Deng et al., 2009; Zeng, Liu et al., 2009; Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005; Wang et al., 2006, 2008; Xiao et al., 2007; Chen & Shi, 2006), all ring atoms in the pyrimidine ring system are essentially coplanar (maximum deviation -0.033 (17) Å for atom N4), indicating that the moiety is a conjugate system.

There are no inter- or intra- molecular hydrogen bonding interactions. The molecular conformation and crystal packing are stabilized by ππ stacking interactions occurring between symmetry realted triazole and pyrimidine rings, with centroid-to-centroid distances of 3.594 (10) Å.

For the biological activity of 8-azaguanine derivatives see: Roblin et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962)); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975). For related structures, see: Ferguson et al. (1998); Zhao, Xie et al. (2005); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Chen & Shi (2006); Maldonado et al. (2006); Xiao et al. (2007); Wang et al. (2006, 2008); Zeng, Deng et al. (2009), Zeng, Liu et al. (2009). For examples of whole-molecule disorder, see: Kirsop et al. (2006); Cox & Wardell (2003). For the preparation, see: Zeng et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Dashed lines indicate the minor component of disorder. H atoms have been omitted and displacement parameters are drawn at the 50% probability level.
6-Isopropyl-3-phenyl-5-(p-tolyloxy)-3H-1,2,3- triazolo[4,5-d]pyrimidin-7(6H)-one top
Crystal data top
C20H19N5O2F(000) = 1520
Mr = 361.40Dx = 1.282 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 7338 reflections
a = 10.2335 (6) Åθ = 2.2–22.6°
b = 21.8532 (12) ŵ = 0.09 mm1
c = 16.7441 (9) ÅT = 298 K
V = 3744.6 (4) Å3Block, colorless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
1790 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.0°, θmin = 2.2°
φ and ω scansh = 1313
21260 measured reflectionsk = 2727
2285 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1088P)2 + 0.0578P]
where P = (Fo2 + 2Fc2)/3
2285 reflections(Δ/σ)max < 0.001
446 parametersΔρmax = 0.17 e Å3
15 restraintsΔρmin = 0.17 e Å3
Crystal data top
C20H19N5O2V = 3744.6 (4) Å3
Mr = 361.40Z = 8
Orthorhombic, C2221Mo Kα radiation
a = 10.2335 (6) ŵ = 0.09 mm1
b = 21.8532 (12) ÅT = 298 K
c = 16.7441 (9) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
1790 reflections with I > 2σ(I)
21260 measured reflectionsRint = 0.023
2285 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05015 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
2285 reflectionsΔρmin = 0.17 e Å3
446 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5967 (13)0.0694 (5)0.1729 (8)0.111 (2)0.57 (2)
O20.3920 (17)0.2076 (8)0.0153 (9)0.096 (3)0.57 (2)
N10.6946 (14)0.2696 (5)0.2174 (10)0.069 (2)0.57 (2)
N20.7566 (13)0.2328 (6)0.2727 (7)0.082 (2)0.57 (2)
N30.7249 (10)0.1753 (5)0.2602 (6)0.082 (3)0.57 (2)
N40.5505 (14)0.2489 (7)0.1072 (8)0.103 (5)0.57 (2)
N50.500 (2)0.1435 (10)0.0927 (11)0.085 (3)0.57 (2)
C10.7134 (7)0.3323 (3)0.2161 (3)0.0691 (17)0.57 (2)
C20.6409 (8)0.3694 (3)0.1653 (6)0.105 (3)0.57 (2)
H20.58050.35210.13050.126*0.57 (2)
C30.6587 (8)0.4325 (3)0.1665 (7)0.117 (3)0.57 (2)
H30.61020.45730.13250.141*0.57 (2)
C40.7490 (7)0.4584 (4)0.2184 (5)0.113 (3)0.57 (2)
H40.76090.50060.21920.135*0.57 (2)
C50.8215 (8)0.4213 (5)0.2692 (3)0.110 (3)0.57 (2)
H50.88190.43860.30400.132*0.57 (2)
C60.8037 (8)0.3582 (5)0.2681 (3)0.102 (3)0.57 (2)
H60.85220.33340.30210.123*0.57 (2)
C70.6443 (19)0.1776 (9)0.1971 (12)0.081 (3)0.57 (2)
C80.6235 (13)0.2323 (6)0.1690 (7)0.062 (2)0.57 (2)
C90.489 (3)0.2026 (13)0.0766 (15)0.090 (5)0.57 (2)
C100.586 (2)0.1249 (10)0.1598 (12)0.085 (4)0.57 (2)
C110.3987 (9)0.2670 (3)0.0196 (6)0.104 (4)0.57 (2)
C120.3310 (9)0.3155 (4)0.0145 (5)0.082 (3)0.57 (2)
H120.28210.30950.06060.099*0.57 (2)
C130.3364 (9)0.3732 (3)0.0204 (6)0.090 (2)0.57 (2)
H130.29110.40570.00230.108*0.57 (2)
C140.4095 (8)0.3823 (4)0.0894 (6)0.084 (2)0.57 (2)
C150.4772 (9)0.3337 (6)0.1235 (5)0.097 (3)0.57 (2)
H150.52610.33980.16960.116*0.57 (2)
C160.4718 (10)0.2760 (5)0.0886 (6)0.095 (2)0.57 (2)
H160.51710.24350.11130.114*0.57 (2)
C170.4124 (14)0.4466 (7)0.1241 (10)0.136 (4)0.57 (2)
H17A0.33970.46960.10380.204*0.57 (2)
H17B0.40690.44450.18120.204*0.57 (2)
H17C0.49250.46640.10900.204*0.57 (2)
C180.4324 (15)0.0923 (7)0.0447 (9)0.095 (3)0.57 (2)
H180.46570.05390.06700.114*0.57 (2)
C190.2897 (15)0.0907 (8)0.0583 (10)0.125 (5)0.57 (2)
H19A0.24960.12500.03200.188*0.57 (2)
H19B0.27230.09280.11450.188*0.57 (2)
H19C0.25450.05340.03710.188*0.57 (2)
C200.4717 (15)0.0914 (10)0.0428 (10)0.112 (3)0.57 (2)
H20A0.44400.05360.06660.167*0.57 (2)
H20B0.56500.09500.04700.167*0.57 (2)
H20C0.43110.12510.07000.167*0.57 (2)
C1A0.7079 (12)0.3091 (7)0.2237 (6)0.094 (3)0.43 (2)
C2A0.6177 (10)0.3523 (7)0.1975 (9)0.111 (4)0.43 (2)
H2A0.53980.33960.17420.134*0.43 (2)
C3A0.6440 (10)0.4143 (7)0.2062 (12)0.142 (5)0.43 (2)
H3A0.58370.44320.18870.170*0.43 (2)
C4A0.7605 (13)0.4332 (8)0.2410 (9)0.134 (5)0.43 (2)
H4A0.77810.47480.24680.161*0.43 (2)
C5A0.8507 (13)0.3901 (10)0.2672 (6)0.140 (6)0.43 (2)
H5A0.92860.40280.29050.168*0.43 (2)
C6A0.8244 (12)0.3281 (10)0.2585 (7)0.136 (5)0.43 (2)
H6A0.88480.29920.27610.163*0.43 (2)
C7A0.6291 (16)0.1569 (9)0.1872 (9)0.060 (3)0.43 (2)
C8A0.610 (2)0.2128 (9)0.1634 (11)0.070 (4)0.43 (2)
C9A0.480 (3)0.1980 (13)0.0641 (17)0.067 (4)0.43 (2)
C10A0.559 (3)0.1085 (15)0.1430 (15)0.081 (4)0.43 (2)
C11A0.4049 (8)0.2736 (4)0.0202 (5)0.056 (2)0.43 (2)
C12A0.3332 (13)0.3137 (5)0.0270 (7)0.102 (5)0.43 (2)
H12A0.29280.29960.07320.122*0.43 (2)
C13A0.3218 (16)0.3748 (5)0.0050 (10)0.122 (5)0.43 (2)
H13A0.27380.40160.03660.147*0.43 (2)
C14A0.3822 (16)0.3958 (4)0.0641 (10)0.094 (4)0.43 (2)
C15A0.4539 (15)0.3557 (7)0.1113 (6)0.089 (4)0.43 (2)
H15A0.49430.36980.15760.107*0.43 (2)
C16A0.4653 (11)0.2946 (6)0.0894 (5)0.093 (3)0.43 (2)
H16A0.51330.26780.12100.111*0.43 (2)
C17A0.377 (2)0.4628 (10)0.0866 (14)0.147 (6)0.43 (2)
H17D0.30010.48110.06420.221*0.43 (2)
H17E0.37490.46670.14370.221*0.43 (2)
H17F0.45320.48320.06620.221*0.43 (2)
C18A0.3959 (18)0.0886 (12)0.0309 (13)0.106 (5)0.43 (2)
H18A0.40620.04850.05630.127*0.43 (2)
C19A0.2578 (17)0.1054 (11)0.0417 (11)0.107 (4)0.43 (2)
H19D0.23720.13960.00810.160*0.43 (2)
H19E0.24270.11620.09650.160*0.43 (2)
H19F0.20340.07130.02760.160*0.43 (2)
C20A0.441 (3)0.0808 (14)0.0529 (15)0.134 (8)0.43 (2)
H20D0.39230.04850.07780.200*0.43 (2)
H20E0.53230.07080.05320.200*0.43 (2)
H20F0.42740.11830.08180.200*0.43 (2)
O1A0.5643 (15)0.0529 (8)0.1518 (9)0.105 (3)0.43 (2)
O2A0.4187 (19)0.2151 (8)0.0014 (9)0.076 (3)0.43 (2)
N1A0.686 (2)0.2462 (10)0.2155 (15)0.080 (4)0.43 (2)
N2A0.7450 (14)0.2046 (8)0.2667 (8)0.086 (5)0.43 (2)
N3A0.7055 (19)0.1495 (10)0.2479 (11)0.094 (4)0.43 (2)
N4A0.5407 (11)0.2413 (7)0.1048 (5)0.057 (2)0.43 (2)
N5A0.479 (2)0.1328 (10)0.0799 (11)0.074 (4)0.43 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.131 (6)0.082 (4)0.120 (6)0.009 (3)0.002 (4)0.020 (4)
O20.090 (5)0.086 (5)0.111 (7)0.007 (3)0.014 (4)0.009 (4)
N10.066 (3)0.087 (7)0.055 (2)0.002 (6)0.0045 (19)0.004 (7)
N20.091 (3)0.094 (6)0.061 (2)0.008 (5)0.014 (2)0.006 (4)
N30.097 (7)0.085 (10)0.064 (5)0.003 (8)0.011 (4)0.016 (8)
N40.111 (8)0.096 (6)0.103 (7)0.004 (5)0.015 (5)0.008 (4)
N50.088 (5)0.077 (5)0.091 (6)0.010 (3)0.001 (4)0.014 (4)
C10.063 (2)0.092 (4)0.052 (2)0.000 (3)0.000 (2)0.007 (2)
C20.103 (5)0.108 (5)0.104 (5)0.001 (3)0.034 (4)0.005 (4)
C30.128 (5)0.094 (4)0.129 (7)0.010 (4)0.028 (5)0.012 (4)
C40.140 (6)0.096 (4)0.102 (5)0.003 (4)0.006 (4)0.028 (4)
C50.131 (6)0.114 (6)0.086 (4)0.008 (5)0.028 (4)0.027 (4)
C60.122 (6)0.115 (7)0.070 (3)0.014 (5)0.031 (3)0.003 (3)
C70.086 (5)0.079 (10)0.079 (5)0.004 (5)0.003 (4)0.002 (5)
C80.060 (3)0.070 (5)0.056 (4)0.002 (4)0.002 (3)0.000 (4)
C90.084 (6)0.109 (11)0.077 (9)0.020 (7)0.009 (6)0.007 (6)
C100.084 (9)0.082 (12)0.089 (12)0.003 (6)0.013 (7)0.018 (7)
C110.093 (7)0.119 (9)0.101 (9)0.009 (6)0.017 (6)0.010 (7)
C120.075 (5)0.095 (7)0.077 (3)0.002 (4)0.002 (3)0.001 (3)
C130.077 (4)0.090 (5)0.104 (6)0.019 (3)0.004 (4)0.001 (3)
C140.071 (4)0.097 (5)0.083 (5)0.009 (4)0.003 (3)0.004 (4)
C150.092 (4)0.112 (7)0.086 (4)0.025 (5)0.002 (3)0.009 (5)
C160.090 (4)0.112 (5)0.083 (4)0.025 (4)0.000 (3)0.004 (3)
C170.129 (7)0.128 (8)0.152 (10)0.006 (5)0.005 (7)0.040 (7)
C180.102 (6)0.075 (4)0.106 (6)0.008 (4)0.005 (5)0.016 (4)
C190.121 (9)0.114 (7)0.140 (9)0.031 (7)0.000 (7)0.016 (6)
C200.111 (6)0.113 (6)0.111 (6)0.006 (5)0.015 (5)0.052 (4)
C1A0.098 (6)0.115 (10)0.071 (5)0.016 (9)0.006 (4)0.007 (8)
C2A0.110 (6)0.112 (7)0.113 (8)0.008 (6)0.001 (6)0.018 (6)
C3A0.148 (10)0.133 (9)0.145 (12)0.011 (8)0.008 (9)0.010 (9)
C4A0.166 (14)0.131 (10)0.104 (9)0.021 (9)0.015 (9)0.039 (10)
C5A0.165 (14)0.154 (16)0.102 (7)0.014 (11)0.009 (7)0.015 (9)
C6A0.156 (11)0.162 (13)0.090 (6)0.024 (9)0.019 (6)0.010 (8)
C7A0.065 (6)0.068 (12)0.049 (5)0.000 (6)0.000 (4)0.008 (6)
C8A0.071 (5)0.081 (10)0.058 (4)0.003 (7)0.003 (4)0.002 (7)
C9A0.070 (8)0.075 (7)0.056 (6)0.013 (5)0.001 (4)0.006 (4)
C10A0.083 (10)0.094 (16)0.067 (7)0.010 (8)0.011 (6)0.014 (7)
C11A0.055 (4)0.064 (4)0.049 (4)0.012 (3)0.021 (3)0.001 (3)
C12A0.097 (10)0.107 (11)0.101 (7)0.022 (8)0.004 (6)0.015 (6)
C13A0.109 (8)0.137 (11)0.121 (10)0.013 (7)0.006 (7)0.005 (7)
C14A0.085 (8)0.101 (7)0.096 (10)0.011 (5)0.016 (6)0.000 (6)
C15A0.090 (8)0.103 (9)0.074 (5)0.005 (7)0.003 (4)0.000 (6)
C16A0.094 (6)0.112 (8)0.072 (6)0.014 (5)0.018 (5)0.014 (5)
C17A0.154 (14)0.129 (11)0.159 (15)0.003 (9)0.017 (11)0.024 (10)
C18A0.104 (11)0.111 (10)0.103 (8)0.005 (8)0.003 (7)0.014 (7)
C19A0.093 (7)0.131 (11)0.096 (7)0.005 (6)0.011 (6)0.011 (6)
C20A0.150 (16)0.133 (15)0.118 (10)0.004 (11)0.006 (10)0.020 (9)
O1A0.121 (7)0.090 (7)0.106 (6)0.010 (5)0.006 (5)0.028 (5)
O2A0.092 (8)0.068 (4)0.069 (4)0.005 (4)0.025 (5)0.002 (4)
N1A0.080 (6)0.105 (12)0.056 (4)0.008 (8)0.000 (4)0.004 (9)
N2A0.097 (8)0.091 (15)0.069 (6)0.003 (13)0.004 (5)0.015 (13)
N3A0.094 (6)0.116 (11)0.072 (5)0.006 (8)0.005 (4)0.016 (7)
N4A0.048 (3)0.076 (5)0.046 (4)0.006 (3)0.012 (3)0.001 (3)
N5A0.087 (8)0.071 (9)0.063 (5)0.011 (6)0.001 (5)0.005 (5)
Geometric parameters (Å, º) top
O1—C101.24 (3)C1A—C2A1.3900
O2—C111.425 (17)C1A—C6A1.3900
O2—C91.43 (2)C1A—N1A1.401 (15)
N1—C81.360 (15)C2A—C3A1.3900
N1—N21.381 (19)C2A—H2A0.9300
N1—C11.383 (9)C3A—C4A1.3900
N2—N31.315 (9)C3A—H3A0.9300
N3—C71.34 (3)C4A—C5A1.3900
N4—C91.300 (13)C4A—H4A0.9300
N4—C81.328 (11)C5A—C6A1.3900
N5—C91.32 (3)C5A—H5A0.9300
N5—C101.48 (3)C6A—H6A0.9300
N5—C181.543 (11)C7A—N3A1.29 (3)
C1—C21.3900C7A—C8A1.30 (2)
C1—C61.3900C7A—C10A1.477 (16)
C2—C31.3900C8A—N4A1.358 (13)
C2—H20.9300C8A—N1A1.38 (2)
C3—C41.3900C9A—O2A1.28 (3)
C3—H30.9300C9A—N4A1.321 (12)
C4—C51.3900C9A—N5A1.45 (3)
C4—H40.9300C10A—O1A1.23 (4)
C5—C61.3900C10A—N5A1.44 (4)
C5—H50.9300C11A—O2A1.34 (2)
C6—H60.9300C11A—C12A1.3900
C7—C81.30 (2)C11A—C16A1.3900
C7—C101.440 (13)C12A—C13A1.3900
C11—C121.3900C12A—H12A0.9300
C11—C161.3900C13A—C14A1.3900
C12—C131.3900C13A—H13A0.9300
C12—H120.9300C14A—C15A1.3900
C13—C141.3900C14A—C17A1.51 (2)
C13—H130.9300C15A—C16A1.3900
C14—C151.3900C15A—H15A0.9300
C14—C171.522 (14)C16A—H16A0.9300
C15—C161.3900C17A—H17D0.9600
C15—H150.9300C17A—H17E0.9600
C16—H160.9300C17A—H17F0.9600
C17—H17A0.9600C18A—C19A1.471 (14)
C17—H17B0.9600C18A—C20A1.487 (14)
C17—H17C0.9600C18A—N5A1.528 (15)
C18—C191.478 (12)C18A—H18A0.9800
C18—C201.519 (12)C19A—H19D0.9600
C18—H180.9800C19A—H19E0.9600
C19—H19A0.9600C19A—H19F0.9600
C19—H19B0.9600C20A—H20D0.9600
C19—H19C0.9600C20A—H20E0.9600
C20—H20A0.9600C20A—H20F0.9600
C20—H20B0.9600N1A—N2A1.39 (3)
C20—H20C0.9600N2A—N3A1.309 (14)
C11—O2—C9109.3 (16)C3A—C4A—C5A120.0
C8—N1—N2107.2 (9)C3A—C4A—H4A120.0
C8—N1—C1131.2 (12)C5A—C4A—H4A120.0
N2—N1—C1121.6 (11)C6A—C5A—C4A120.0
N3—N2—N1109.6 (11)C6A—C5A—H5A120.0
N2—N3—C7104.1 (12)C4A—C5A—H5A120.0
C9—N4—C8111.6 (12)C5A—C6A—C1A120.0
C9—N5—C10118.4 (13)C5A—C6A—H6A120.0
C9—N5—C18124.0 (17)C1A—C6A—H6A120.0
C10—N5—C18117.6 (17)N3A—C7A—C8A116.8 (15)
N1—C1—C2120.9 (7)N3A—C7A—C10A126.7 (17)
N1—C1—C6119.1 (7)C8A—C7A—C10A116.4 (18)
C2—C1—C6120.0C7A—C8A—N4A136.9 (15)
C3—C2—C1120.0C7A—C8A—N1A102.5 (14)
C3—C2—H2120.0N4A—C8A—N1A120.6 (16)
C1—C2—H2120.0O2A—C9A—N4A116 (2)
C4—C3—C2120.0O2A—C9A—N5A115.8 (16)
C4—C3—H3120.0N4A—C9A—N5A127.8 (19)
C2—C3—H3120.0O1A—C10A—N5A118.8 (15)
C5—C4—C3120.0O1A—C10A—C7A129 (2)
C5—C4—H4120.0N5A—C10A—C7A112 (2)
C3—C4—H4120.0O2A—C11A—C12A120.3 (9)
C4—C5—C6120.0O2A—C11A—C16A119.7 (9)
C4—C5—H5120.0C12A—C11A—C16A120.0
C6—C5—H5120.0C11A—C12A—C13A120.0
C5—C6—C1120.0C11A—C12A—H12A120.0
C5—C6—H6120.0C13A—C12A—H12A120.0
C1—C6—H6120.0C14A—C13A—C12A120.0
C8—C7—N3114.7 (9)C14A—C13A—H13A120.0
C8—C7—C10120.5 (16)C12A—C13A—H13A120.0
N3—C7—C10124.7 (17)C15A—C14A—C13A120.0
C7—C8—N4128.6 (12)C15A—C14A—C17A119.1 (10)
C7—C8—N1104.4 (11)C13A—C14A—C17A120.8 (10)
N4—C8—N1127.0 (13)C14A—C15A—C16A120.0
N4—C9—N5129.5 (18)C14A—C15A—H15A120.0
N4—C9—O2124 (2)C16A—C15A—H15A120.0
N5—C9—O2106.5 (16)C15A—C16A—C11A120.0
O1—C10—C7131.8 (17)C15A—C16A—H16A120.0
O1—C10—N5117.2 (13)C11A—C16A—H16A120.0
C7—C10—N5110.9 (16)C14A—C17A—H17D109.5
C12—C11—C16120.0C14A—C17A—H17E109.5
C12—C11—O2120.2 (8)H17D—C17A—H17E109.5
C16—C11—O2119.8 (8)C14A—C17A—H17F109.5
C13—C12—C11120.0H17D—C17A—H17F109.5
C13—C12—H12120.0H17E—C17A—H17F109.5
C11—C12—H12120.0C19A—C18A—C20A116.2 (14)
C12—C13—C14120.0C19A—C18A—N5A108.2 (19)
C12—C13—H13120.0C20A—C18A—N5A113.9 (17)
C14—C13—H13120.0C19A—C18A—H18A105.9
C15—C14—C13120.0C20A—C18A—H18A105.9
C15—C14—C17122.7 (7)N5A—C18A—H18A105.9
C13—C14—C17117.3 (7)C18A—C19A—H19D109.5
C14—C15—C16120.0C18A—C19A—H19E109.5
C14—C15—H15120.0H19D—C19A—H19E109.5
C16—C15—H15120.0C18A—C19A—H19F109.5
C15—C16—C11120.0H19D—C19A—H19F109.5
C15—C16—H16120.0H19E—C19A—H19F109.5
C11—C16—H16120.0C18A—C20A—H20D109.5
C19—C18—C20114.2 (11)C18A—C20A—H20E109.5
C19—C18—N5112.4 (12)H20D—C20A—H20E109.5
C20—C18—N5113.1 (13)C18A—C20A—H20F109.5
C19—C18—H18105.4H20D—C20A—H20F109.5
C20—C18—H18105.4H20E—C20A—H20F109.5
N5—C18—H18105.4C9A—O2A—C11A123.7 (16)
C2A—C1A—C6A120.0C8A—N1A—N2A107.0 (11)
C2A—C1A—N1A121.8 (13)C8A—N1A—C1A132 (2)
C6A—C1A—N1A118.2 (13)N2A—N1A—C1A121 (2)
C3A—C2A—C1A120.0N3A—N2A—N1A108.5 (17)
C3A—C2A—H2A120.0C7A—N3A—N2A105.1 (19)
C1A—C2A—H2A120.0C9A—N4A—C8A106.8 (13)
C2A—C3A—C4A120.0C10A—N5A—C9A119.7 (16)
C2A—C3A—H3A120.0C10A—N5A—C18A118.5 (17)
C4A—C3A—H3A120.0C9A—N5A—C18A121.8 (18)

Experimental details

Crystal data
Chemical formulaC20H19N5O2
Mr361.40
Crystal system, space groupOrthorhombic, C2221
Temperature (K)298
a, b, c (Å)10.2335 (6), 21.8532 (12), 16.7441 (9)
V3)3744.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21260, 2285, 1790
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.144, 1.06
No. of reflections2285
No. of parameters446
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL97 (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support of this work by the Educational Commission of Hubei Province of China (grant No. B200624004, B20092412), Shiyan Municipal Science and Technology Bureau (grant No. 20061835), and Yunyang Medical College (grant Nos. 2007QDJ15, 2007ZQB19, 2007ZQB20).

References

First citationBariana, D. S. (1971). J. Med. Chem. 14, 535–543.  PubMed Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780–o4782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCox, P. J. & Wardell, J. L. (2003). Acta Cryst. C59, o706–o708.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.  CrossRef IUCr Journals Google Scholar
First citationHolland, A., Jackson, D., Chaplen, P., Lunt, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447–449.  CAS Google Scholar
First citationKirsop, P., Storey, J. M. D. & Harrison, W. T. A. (2006). Acta Cryst. C62, o376–o378.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLevine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N. Y.), 16, 269–272.  CrossRef CAS Google Scholar
First citationMaldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489–o491.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647–649.  CAS Google Scholar
First citationMontgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504–509.  PubMed CAS Web of Science Google Scholar
First citationRoblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290–294.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038–o5040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140–142.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142–o1143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Ding, M.-W. & He, H.-W. (2006). Acta Cryst. E62, o731–o732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X. H., Liu, X. L., Deng, Sh. H., Chen P. & Wang, H. M. (2009). Acta Cryst. E65, o2583–o2584.  Google Scholar
First citationZhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791–o2792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439–444.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020–1022.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds