organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-Ethynyl-2,3,6,6a,9,10-hexa­hydro-1H-6,9-methano­pyrrolo[2,1-i][2,1]benzo­thia­zol-10-ol 5,5-dioxide

aDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
*Correspondence e-mail: bpatrick@chem.ubc.ca

(Received 16 September 2009; accepted 22 September 2009; online 3 October 2009)

In the title compound, C13H15NO3S, the sole classical hydrogen-bond donor is involved in an intra­molecular O—H⋯N hydrogen bond. In the crystal structure, pairs of mol­ecules related by inversion centres are linked by pairs of weak inter­molecular C—H⋯O inter­actions; these centrosymmetric pairs are, in turn, linked further by weak inter­molecular C—H⋯O inter­actions, forming two-dimensional sheets oriented parallel to (101).

Related literature

For background to our ongoing research on the synthesis of himandrine and related alkaloids, see: Ciufolini et al. (2007[Ciufolini, M. A., Braun, N. A., Canesi, S., Ousmer, M., Chang, J. & Chai, D. (2007). Synthesis, pp. 3759-3772.]); Liang & Ciufolini (2008[Liang, H. & Ciufolini, M. A. (2008). J. Org. Chem. 73, 4299-4301.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO3S

  • Mr = 265.32

  • Monoclinic, C 2/c

  • a = 24.113 (3) Å

  • b = 6.6202 (7) Å

  • c = 15.111 (2) Å

  • β = 92.625 (5)°

  • V = 2409.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 173 K

  • 0.35 × 0.27 × 0.18 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.877, Tmax = 0.963

  • 13946 measured reflections

  • 2889 independent reflections

  • 2523 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.03

  • 2889 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9O⋯N13 0.83 (2) 1.99 (2) 2.606 (1) 131 (2)
C8—H8⋯O16i 1.00 2.53 3.183 (2) 123
C18—H18⋯O9ii 0.95 2.40 3.341 (2) 169
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The oxidative amidation of phenols offers interesting opportunities in the synthesis of nitrogenous substances. We employed spirocyclization of phenolic sulfonamides to prepare a tricyclic intermediate in the ongoing research on the synthesis of himandrine and related alkaloids (Liang et al., 2008; Ciufolini et al., 2007). The molecular stucture of the title compound is shown in Fig.1. In the crystal structure, pairs of molecules for related by inversion centres are linked by weak intermolecular C—H···O interactions (Table 1, Fig. 2). These centrosymmetric pairs, are in turn, linked further by weak intermolecular C—H···O interactions to form 2-D sheets oriented parallel to the (101) plane, as shown in Fig.3.

Related literature top

For background information, see: Ciufolini et al. (2007); Liang & Ciufolini (2008).

Experimental top

Potassium carbonate (137 mg, 0.99 mmol) was added to a solution of 10- [(trimethylsilyl)ethynyl]-2,3,6,6a,9,10-hexahydro-1H-6,9-methanopyrrolo [2,1-i][2,1]benzisothiazol-10-ol 5,5-dioxide (110 mg, 0.33 mmol) in MeOH (1 ml). Upon the completion of the reaction, the mixture was concentrated and dried over high vacuum. Chromatography of the residue (EtOAc / hexanes = 1 / 2) gave 78 mg (0.29 mmol, 89%) product as a colourless solid. X-ray quality single crystals were obtained by slow evaporation of a dichloromethane/hexanes (1:2v/v) solution of the title compound over two weeks.

Refinement top

H atoms boned to C atoms were placed in calculated positions with C-H = 0.93-1.00Å and included in the refinement with Uiso(H) = 1.2Ueq(C). The hydroxyl H atom was refined indpendently with an isotropic displacement parameter.

Structure description top

The oxidative amidation of phenols offers interesting opportunities in the synthesis of nitrogenous substances. We employed spirocyclization of phenolic sulfonamides to prepare a tricyclic intermediate in the ongoing research on the synthesis of himandrine and related alkaloids (Liang et al., 2008; Ciufolini et al., 2007). The molecular stucture of the title compound is shown in Fig.1. In the crystal structure, pairs of molecules for related by inversion centres are linked by weak intermolecular C—H···O interactions (Table 1, Fig. 2). These centrosymmetric pairs, are in turn, linked further by weak intermolecular C—H···O interactions to form 2-D sheets oriented parallel to the (101) plane, as shown in Fig.3.

For background information, see: Ciufolini et al. (2007); Liang & Ciufolini (2008).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A centrosymmetric pair of molecules with weak intermolecular C—H···O interactions shown as dashed lines.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, showing C-H···O hydrogen-bonded (dashed lines) sheets parallel to the (101) plane.
10-Ethynyl-2,3,6,6a,9,10-hexahydro-1H-6,9- methanopyrrolo[2,1-i][2,1]benzothiazol-10-ol 5,5-dioxide top
Crystal data top
C13H15NO3SF(000) = 1120
Mr = 265.32Dx = 1.463 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6461 reflections
a = 24.113 (3) Åθ = 2.7–28.1°
b = 6.6202 (7) ŵ = 0.27 mm1
c = 15.111 (2) ÅT = 173 K
β = 92.625 (5)°Prism, colourless
V = 2409.6 (5) Å30.35 × 0.27 × 0.18 mm
Z = 8
Data collection top
Bruker X8 APEXII
diffractometer
2889 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3130
Tmin = 0.877, Tmax = 0.963k = 78
13946 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0543P)2 + 1.8974P]
where P = (Fo2 + 2Fc2)/3
2889 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C13H15NO3SV = 2409.6 (5) Å3
Mr = 265.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.113 (3) ŵ = 0.27 mm1
b = 6.6202 (7) ÅT = 173 K
c = 15.111 (2) Å0.35 × 0.27 × 0.18 mm
β = 92.625 (5)°
Data collection top
Bruker X8 APEXII
diffractometer
2889 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2523 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.963Rint = 0.030
13946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
2889 reflectionsΔρmin = 0.42 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08386 (6)0.8014 (2)0.24477 (10)0.0260 (3)
H10.08040.80170.18190.031*
C20.10447 (6)0.6218 (2)0.29734 (9)0.0227 (3)
H20.11370.50770.25730.027*
C30.15678 (6)0.69210 (19)0.35283 (9)0.0167 (3)
C40.07087 (6)0.9590 (2)0.29339 (10)0.0241 (3)
H40.05801.08260.26810.029*
C50.13832 (5)0.86156 (19)0.41981 (8)0.0143 (2)
C60.07809 (5)0.9277 (2)0.39197 (9)0.0179 (3)
H60.06691.05070.42520.021*
C70.05869 (6)0.5588 (2)0.36090 (10)0.0246 (3)
H7A0.02510.51440.32610.030*
H7B0.07200.44460.39850.030*
C80.04457 (6)0.7400 (2)0.41948 (9)0.0192 (3)
H80.00380.76820.41630.023*
C100.17913 (6)1.0368 (2)0.43416 (9)0.0197 (3)
H10A0.21770.99260.42520.024*
H10B0.16981.14970.39310.024*
C110.17199 (6)1.0997 (2)0.53035 (10)0.0258 (3)
H11A0.20461.17610.55430.031*
H11B0.13821.18270.53610.031*
C120.16678 (6)0.8971 (2)0.57668 (9)0.0238 (3)
H12A0.20380.83890.59190.029*
H12B0.14620.91120.63150.029*
C170.19816 (6)0.7687 (2)0.29199 (9)0.0187 (3)
C180.23235 (6)0.8204 (2)0.24254 (10)0.0237 (3)
H180.25970.86180.20300.028*
N130.13541 (5)0.76842 (17)0.51039 (7)0.0166 (2)
O90.18201 (4)0.52655 (15)0.39984 (7)0.0242 (2)
O150.04568 (4)0.85899 (19)0.58703 (7)0.0300 (3)
O160.06809 (5)0.50367 (17)0.56167 (8)0.0316 (3)
S140.069910 (13)0.70937 (5)0.53140 (2)0.01917 (11)
H9O0.1739 (10)0.542 (3)0.4521 (16)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0192 (7)0.0402 (9)0.0183 (7)0.0073 (6)0.0010 (5)0.0025 (6)
C20.0242 (7)0.0233 (7)0.0210 (7)0.0070 (6)0.0053 (5)0.0054 (5)
C30.0182 (6)0.0136 (6)0.0187 (6)0.0007 (5)0.0044 (5)0.0015 (5)
C40.0178 (6)0.0313 (8)0.0228 (7)0.0008 (6)0.0017 (5)0.0094 (6)
C50.0148 (6)0.0128 (6)0.0156 (6)0.0005 (5)0.0023 (4)0.0017 (5)
C60.0152 (6)0.0180 (6)0.0205 (6)0.0021 (5)0.0012 (5)0.0031 (5)
C70.0235 (7)0.0255 (7)0.0252 (7)0.0096 (6)0.0052 (6)0.0040 (6)
C80.0149 (6)0.0239 (7)0.0188 (6)0.0023 (5)0.0015 (5)0.0018 (5)
C100.0200 (6)0.0163 (6)0.0228 (7)0.0038 (5)0.0026 (5)0.0006 (5)
C110.0277 (7)0.0236 (7)0.0261 (7)0.0062 (6)0.0012 (6)0.0059 (6)
C120.0223 (7)0.0293 (8)0.0194 (7)0.0024 (6)0.0020 (5)0.0013 (6)
C170.0187 (6)0.0164 (6)0.0209 (6)0.0019 (5)0.0022 (5)0.0003 (5)
C180.0231 (7)0.0232 (7)0.0252 (7)0.0003 (5)0.0067 (6)0.0016 (6)
N130.0147 (5)0.0194 (6)0.0160 (5)0.0001 (4)0.0027 (4)0.0027 (4)
O90.0301 (5)0.0163 (5)0.0271 (6)0.0078 (4)0.0097 (4)0.0062 (4)
O150.0232 (5)0.0426 (7)0.0248 (5)0.0037 (5)0.0081 (4)0.0073 (5)
O160.0286 (6)0.0307 (6)0.0357 (6)0.0060 (5)0.0048 (5)0.0151 (5)
S140.01614 (17)0.0232 (2)0.01853 (18)0.00074 (12)0.00492 (12)0.00346 (12)
Geometric parameters (Å, º) top
C1—C41.322 (2)C7—H7B0.9900
C1—C21.501 (2)C8—S141.7832 (14)
C1—H10.9500C8—H81.0000
C2—C71.5532 (19)C10—C111.529 (2)
C2—C31.5536 (19)C10—H10A0.9900
C2—H21.0000C10—H10B0.9900
C3—O91.4269 (16)C11—C121.521 (2)
C3—C171.4770 (18)C11—H11A0.9900
C3—C51.5882 (17)C11—H11B0.9900
C4—C61.5062 (19)C12—N131.4938 (18)
C4—H40.9500C12—H12A0.9900
C5—N131.5057 (16)C12—H12B0.9900
C5—C101.5304 (18)C17—C181.188 (2)
C5—C61.5563 (17)C18—H180.9500
C6—C81.5497 (18)N13—S141.6716 (11)
C6—H61.0000O9—H9O0.83 (2)
C7—C81.538 (2)O15—S141.4402 (11)
C7—H7A0.9900O16—S141.4378 (11)
C4—C1—C2114.33 (13)C7—C8—C6109.82 (11)
C4—C1—H1122.8C7—C8—S14112.45 (10)
C2—C1—H1122.8C6—C8—S14100.68 (9)
C1—C2—C7108.20 (12)C7—C8—H8111.2
C1—C2—C3106.82 (11)C6—C8—H8111.2
C7—C2—C3109.22 (11)S14—C8—H8111.2
C1—C2—H2110.8C11—C10—C5103.97 (11)
C7—C2—H2110.8C11—C10—H10A111.0
C3—C2—H2110.8C5—C10—H10A111.0
O9—C3—C17106.79 (11)C11—C10—H10B111.0
O9—C3—C2110.84 (11)C5—C10—H10B111.0
C17—C3—C2108.77 (11)H10A—C10—H10B109.0
O9—C3—C5110.54 (10)C12—C11—C10102.28 (11)
C17—C3—C5111.79 (10)C12—C11—H11A111.3
C2—C3—C5108.13 (10)C10—C11—H11A111.3
C1—C4—C6114.92 (13)C12—C11—H11B111.3
C1—C4—H4122.5C10—C11—H11B111.3
C6—C4—H4122.5H11A—C11—H11B109.2
N13—C5—C10103.78 (10)N13—C12—C11104.12 (11)
N13—C5—C6106.21 (10)N13—C12—H12A110.9
C10—C5—C6114.26 (11)C11—C12—H12A110.9
N13—C5—C3108.43 (10)N13—C12—H12B110.9
C10—C5—C3115.39 (10)C11—C12—H12B110.9
C6—C5—C3108.17 (10)H12A—C12—H12B109.0
C4—C6—C8109.72 (12)C18—C17—C3176.65 (15)
C4—C6—C5111.73 (11)C17—C18—H18180.0
C8—C6—C5101.16 (10)C12—N13—C5109.44 (10)
C4—C6—H6111.3C12—N13—S14117.37 (9)
C8—C6—H6111.3C5—N13—S14110.62 (8)
C5—C6—H6111.3C3—O9—H9O105.3 (16)
C8—C7—C2109.18 (11)O16—S14—O15116.53 (7)
C8—C7—H7A109.8O16—S14—N13108.95 (6)
C2—C7—H7A109.8O15—S14—N13111.24 (6)
C8—C7—H7B109.8O16—S14—C8113.28 (7)
C2—C7—H7B109.8O15—S14—C8110.17 (7)
H7A—C7—H7B108.3N13—S14—C894.53 (6)
C4—C1—C2—C758.42 (16)C5—C6—C8—C767.18 (13)
C4—C1—C2—C359.07 (15)C4—C6—C8—S14169.71 (9)
C1—C2—C3—O9175.33 (11)C5—C6—C8—S1451.57 (10)
C7—C2—C3—O967.86 (14)N13—C5—C10—C1129.30 (13)
C1—C2—C3—C1758.21 (14)C6—C5—C10—C1185.90 (13)
C7—C2—C3—C17175.02 (12)C3—C5—C10—C11147.76 (11)
C1—C2—C3—C563.37 (13)C5—C10—C11—C1240.51 (14)
C7—C2—C3—C553.44 (14)C10—C11—C12—N1335.77 (14)
C2—C1—C4—C61.13 (18)O9—C3—C17—C1835 (3)
O9—C3—C5—N1318.73 (14)C2—C3—C17—C1885 (3)
C17—C3—C5—N13137.54 (11)C5—C3—C17—C18156 (3)
C2—C3—C5—N13102.76 (11)C11—C12—N13—C518.13 (14)
O9—C3—C5—C1097.12 (13)C11—C12—N13—S14108.98 (11)
C17—C3—C5—C1021.69 (16)C10—C5—N13—C126.98 (13)
C2—C3—C5—C10141.39 (11)C6—C5—N13—C12113.80 (12)
O9—C3—C5—C6133.51 (11)C3—C5—N13—C12130.14 (11)
C17—C3—C5—C6107.68 (12)C10—C5—N13—S14137.81 (9)
C2—C3—C5—C612.02 (13)C6—C5—N13—S1417.02 (12)
C1—C4—C6—C855.26 (16)C3—C5—N13—S1499.03 (10)
C1—C4—C6—C556.10 (17)C12—N13—S14—O16103.72 (11)
N13—C5—C6—C4161.09 (11)C5—N13—S14—O16129.74 (9)
C10—C5—C6—C485.14 (14)C12—N13—S14—O1526.08 (12)
C3—C5—C6—C444.87 (14)C5—N13—S14—O15100.46 (9)
N13—C5—C6—C844.42 (12)C12—N13—S14—C8139.77 (10)
C10—C5—C6—C8158.19 (11)C5—N13—S14—C813.23 (10)
C3—C5—C6—C871.81 (12)C7—C8—S14—O1634.96 (11)
C1—C2—C7—C856.73 (15)C6—C8—S14—O16151.79 (9)
C3—C2—C7—C859.20 (15)C7—C8—S14—O15167.50 (9)
C2—C7—C8—C63.27 (16)C6—C8—S14—O1575.67 (10)
C2—C7—C8—S14107.96 (12)C7—C8—S14—N1377.91 (10)
C4—C6—C8—C750.96 (15)C6—C8—S14—N1338.92 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9O···N130.83 (2)1.99 (2)2.606 (1)131 (2)
C8—H8···O16i1.002.533.183 (2)123
C18—H18···O9ii0.952.403.341 (2)169
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H15NO3S
Mr265.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)24.113 (3), 6.6202 (7), 15.111 (2)
β (°) 92.625 (5)
V3)2409.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.35 × 0.27 × 0.18
Data collection
DiffractometerBruker X8 APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.877, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
13946, 2889, 2523
Rint0.030
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.03
No. of reflections2889
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.42

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9O···N130.83 (2)1.99 (2)2.606 (1)131 (2)
C8—H8···O16i1.002.533.183 (2)123
C18—H18···O9ii0.952.403.341 (2)169
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support by the University of British Columbia, the Canada Research Chair Program, NSERC, CIHR, and Merck Frosst Canada, Ltd, is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCiufolini, M. A., Braun, N. A., Canesi, S., Ousmer, M., Chang, J. & Chai, D. (2007). Synthesis, pp. 3759–3772.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiang, H. & Ciufolini, M. A. (2008). J. Org. Chem. 73, 4299–4301.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds