organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4,6-di­methyl­pyrimidinium di­hydrogenphosphate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bJournal Editorial Department, Weifang University, Weifang 261061, People's Republic of China, and cMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 17 September 2009; accepted 25 September 2009; online 3 October 2009)

In the crystal structure of the title compound, C6H10N3+·H2PO4, the cations and anions are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, forming a two-dimensional network. Additional stabilization is provided by weak inter­molecular C—H⋯O inter­actions. N—H⋯N inter­actions are also present.

Related literature

Five and six-membered heterocyclic compounds often exist in biologically active natural products and synthetic compounds of medicinal inter­est, see: Gilchrist (1998[Gilchrist, T. L. (1998). Heterocyclic Chemistry, 3rd ed. London: Addison-Wesley Longman Ltd.]). For methyl­pyrimidines as precursors to potentially bioactive pyrimidine derivatives, see: Xue et al. (1993[Xue, S. J., Zhang, A. D. & Wang, H. T. (1993). Chem. Reagents, 15, 181. ]). For Ru complexes of pyrim­idine with an –NH2 substituent, see: Zhu et al. (2008[Zhu, W., Liu, X. & Wang, H. (2008). Acta Opt. Sin. 28, 1155-1160.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N3+·H2PO4

  • Mr = 221.16

  • Monoclinic, P 21 /n

  • a = 11.743 (2) Å

  • b = 4.8266 (10) Å

  • c = 16.940 (3) Å

  • β = 95.55 (3)°

  • V = 955.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8743 measured reflections

  • 2193 independent reflections

  • 1973 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.108

  • S = 1.08

  • 2193 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.93 1.75 2.667 (2) 168
O2—H2A⋯O3i 0.87 1.70 2.560 (2) 171
N3—H3A⋯O3 0.82 2.02 2.831 (2) 170
N3—H3B⋯N2ii 0.93 2.07 3.004 (2) 178
O4—H4A⋯O1iii 0.92 1.68 2.594 (2) 171
C3—H3D⋯O2iv 0.93 2.40 3.319 (2) 171
Symmetry codes: (i) x, y+1, z; (ii) -x, -y-1, -z+2; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supporting information


Comment top

Five and six-membered heterocyclic compounds are important constituents that often exist in biologically active natural products and synthetic compounds of medicinal interest (Gilchrist, 1998). As useful precursors to potentially bioactive pyrimidine derivatives, methylpyrimidine has attracted considerable attention for many years (Xue et al., 1993). In recent years, Ru complexes of pyrimidine with an –NH2 substituent have been synthesized (Zhu et al., 2008). The title compound(I), was synthesized and we report herein its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. There is one 2-Amino-4,6-dimethylpyrimidine cation and one dihydrogenphosphate anion in the asymmetric unit. All bond lengths are within the normal ranges (Allen et al., 1987). In the crystal structure, cations and anions are linked by intermolecular O-H···O and N-H···O hydrogen bonds to form a two-dimensional network. Additional stabilization is provided by weak intermolecular C—H···O interactions.

Related literature top

Five and six-membered heterocyclic compounds often exist in biologically active natural products and synthetic compounds of medicinal interest, see: Gilchrist (1998). For methylpyrimidines as precursors to potentially bioactive pyrimidine derivatives, see: Xue et al. (1993). For Ru complexes of pyrimidine with an –NH2 substituent, see: Zhu et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of guanidine hydrochloride (0.1 mol), acetyl acetone (0.2 mol), sodium carbonate (0.03 mol) and phosphoric acid (0.1 mol) was stirred with water (30 mL) for 5 h to afford the title compound (yield 78%). Single crystals suitable for X-ray measurements were obtained by recrystallization of the title compound from water at room temperature.

Refinement top

H atoms bonded to C atoms were fixed geometrically and and included in a riding-model approximation with C—H = 0.93-0.96 Å and Uiso(H)=1.2–1.5Ueq(C). H atoms bonded to N and O atoms were incuded in their 'as found' locations with refined isotropic displacement parameters,

Structure description top

Five and six-membered heterocyclic compounds are important constituents that often exist in biologically active natural products and synthetic compounds of medicinal interest (Gilchrist, 1998). As useful precursors to potentially bioactive pyrimidine derivatives, methylpyrimidine has attracted considerable attention for many years (Xue et al., 1993). In recent years, Ru complexes of pyrimidine with an –NH2 substituent have been synthesized (Zhu et al., 2008). The title compound(I), was synthesized and we report herein its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. There is one 2-Amino-4,6-dimethylpyrimidine cation and one dihydrogenphosphate anion in the asymmetric unit. All bond lengths are within the normal ranges (Allen et al., 1987). In the crystal structure, cations and anions are linked by intermolecular O-H···O and N-H···O hydrogen bonds to form a two-dimensional network. Additional stabilization is provided by weak intermolecular C—H···O interactions.

Five and six-membered heterocyclic compounds often exist in biologically active natural products and synthetic compounds of medicinal interest, see: Gilchrist (1998). For methylpyrimidines as precursors to potentially bioactive pyrimidine derivatives, see: Xue et al. (1993). For Ru complexes of pyrimidine with an –NH2 substituent, see: Zhu et al. (2008). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
2-Amino-4,6-dimethylpyrimidinium dihydrogenphosphate top
Crystal data top
C6H10N3+·H2PO4F(000) = 464
Mr = 221.16Dx = 1.537 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1973 reflections
a = 11.743 (2) Åθ = 3.5–27.5°
b = 4.8266 (10) ŵ = 0.28 mm1
c = 16.940 (3) ÅT = 293 K
β = 95.55 (3)°Block, colorless
V = 955.6 (3) Å30.20 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1973 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
φ and ω scansh = 1515
8743 measured reflectionsk = 65
2193 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.3094P]
where P = (Fo2 + 2Fc2)/3
2193 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C6H10N3+·H2PO4V = 955.6 (3) Å3
Mr = 221.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.743 (2) ŵ = 0.28 mm1
b = 4.8266 (10) ÅT = 293 K
c = 16.940 (3) Å0.20 × 0.15 × 0.11 mm
β = 95.55 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1973 reflections with I > 2σ(I)
8743 measured reflectionsRint = 0.021
2193 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.08Δρmax = 0.40 e Å3
2193 reflectionsΔρmin = 0.41 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.09666 (3)0.22149 (8)0.74781 (2)0.02327 (14)
O10.17203 (9)0.3129 (2)0.82063 (6)0.0302 (3)
O20.01084 (9)0.4557 (2)0.71860 (7)0.0337 (3)
H2A0.02430.62650.73260.085 (9)*
O30.02931 (10)0.0362 (2)0.76133 (7)0.0339 (3)
N10.20023 (11)0.0034 (3)0.95145 (7)0.0270 (3)
H1A0.19360.09000.90210.052 (6)*
O40.16964 (11)0.1887 (3)0.67571 (7)0.0381 (3)
H4A0.22410.05080.68220.084 (9)*
N30.02982 (11)0.2279 (3)0.91928 (8)0.0322 (3)
H3B0.01980.36920.93080.032 (4)*
H3A0.02430.15730.87480.044 (6)*
C10.12099 (12)0.1846 (3)0.96966 (8)0.0252 (3)
N20.13194 (11)0.3247 (3)1.03924 (7)0.0282 (3)
C40.29458 (13)0.0550 (3)1.00208 (9)0.0300 (3)
C20.22244 (14)0.2691 (3)1.09017 (9)0.0294 (3)
C30.30667 (13)0.0793 (4)1.07340 (9)0.0341 (3)
H3D0.36950.04531.10990.041*
C60.37991 (16)0.2522 (4)0.97449 (12)0.0417 (4)
H6A0.34270.42400.95940.063*
H6B0.41280.17480.92970.063*
H6C0.43910.28511.01660.063*
C50.23093 (16)0.4213 (4)1.16774 (9)0.0429 (4)
H5A0.16640.54291.16900.064*
H5B0.23150.29051.21050.064*
H5C0.30020.52801.17340.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0252 (2)0.0188 (2)0.0253 (2)0.00191 (12)0.00052 (14)0.00042 (12)
O10.0312 (6)0.0308 (6)0.0274 (5)0.0050 (4)0.0039 (4)0.0044 (4)
O20.0333 (6)0.0214 (5)0.0437 (6)0.0054 (4)0.0103 (4)0.0035 (4)
O30.0404 (6)0.0207 (5)0.0400 (6)0.0048 (4)0.0005 (5)0.0003 (4)
N10.0281 (6)0.0277 (6)0.0250 (6)0.0035 (5)0.0012 (4)0.0012 (5)
O40.0470 (7)0.0380 (7)0.0305 (6)0.0135 (5)0.0099 (5)0.0051 (5)
N30.0327 (7)0.0363 (7)0.0263 (7)0.0087 (5)0.0031 (5)0.0042 (5)
C10.0265 (7)0.0256 (7)0.0236 (7)0.0009 (5)0.0026 (5)0.0008 (5)
N20.0303 (6)0.0310 (7)0.0233 (6)0.0038 (5)0.0020 (5)0.0020 (5)
C40.0277 (7)0.0296 (7)0.0322 (7)0.0034 (6)0.0008 (5)0.0019 (6)
C20.0327 (8)0.0313 (8)0.0239 (7)0.0003 (6)0.0011 (5)0.0007 (5)
C30.0310 (8)0.0391 (9)0.0308 (7)0.0049 (7)0.0040 (6)0.0005 (6)
C60.0346 (9)0.0423 (10)0.0475 (10)0.0125 (7)0.0002 (7)0.0068 (7)
C50.0479 (10)0.0532 (11)0.0261 (7)0.0066 (8)0.0032 (6)0.0089 (7)
Geometric parameters (Å, º) top
P1—O31.5033 (12)N2—C21.330 (2)
P1—O11.5128 (12)C4—C31.366 (2)
P1—O21.5626 (11)C4—C61.490 (2)
P1—O41.5665 (12)C2—C31.397 (2)
O2—H2A0.8679C2—C51.500 (2)
N1—C11.3566 (19)C3—H3D0.9300
N1—C41.3568 (19)C6—H6A0.9600
N1—H1A0.9317C6—H6B0.9600
O4—H4A0.9225C6—H6C0.9600
N3—C11.3195 (19)C5—H5A0.9600
N3—H3B0.9302C5—H5B0.9600
N3—H3A0.8243C5—H5C0.9600
C1—N21.3542 (19)
O3—P1—O1113.08 (6)C3—C4—C6124.41 (15)
O3—P1—O2108.30 (7)N2—C2—C3122.50 (14)
O1—P1—O2110.84 (7)N2—C2—C5116.78 (14)
O3—P1—O4111.77 (7)C3—C2—C5120.72 (15)
O1—P1—O4110.13 (7)C4—C3—C2118.42 (14)
O2—P1—O4102.18 (7)C4—C3—H3D120.8
P1—O2—H2A120.4C2—C3—H3D120.8
C1—N1—C4121.00 (13)C4—C6—H6A109.5
C1—N1—H1A120.3C4—C6—H6B109.5
C4—N1—H1A118.5H6A—C6—H6B109.5
P1—O4—H4A113.9C4—C6—H6C109.5
C1—N3—H3B117.8H6A—C6—H6C109.5
C1—N3—H3A120.9H6B—C6—H6C109.5
H3B—N3—H3A119.9C2—C5—H5A109.5
N3—C1—N2119.12 (14)C2—C5—H5B109.5
N3—C1—N1119.36 (13)H5A—C5—H5B109.5
N2—C1—N1121.51 (13)C2—C5—H5C109.5
C2—N2—C1117.81 (13)H5A—C5—H5C109.5
N1—C4—C3118.72 (14)H5B—C5—H5C109.5
N1—C4—C6116.85 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.931.752.667 (2)168
O2—H2A···O3i0.871.702.560 (2)171
N3—H3A···O30.822.022.831 (2)170
N3—H3B···N2ii0.932.073.004 (2)178
O4—H4A···O1iii0.921.682.594 (2)171
C3—H3D···O2iv0.932.403.319 (2)171
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z+2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H10N3+·H2PO4
Mr221.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.743 (2), 4.8266 (10), 16.940 (3)
β (°) 95.55 (3)
V3)955.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8743, 2193, 1973
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.108, 1.08
No. of reflections2193
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.41

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.931.752.667 (2)168
O2—H2A···O3i0.871.702.560 (2)171
N3—H3A···O30.822.022.831 (2)170
N3—H3B···N2ii0.932.073.004 (2)178
O4—H4A···O1iii0.921.682.594 (2)171
C3—H3D···O2iv0.932.403.319 (2)171
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z+2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGilchrist, T. L. (1998). Heterocyclic Chemistry, 3rd ed. London: Addison-Wesley Longman Ltd.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, S. J., Zhang, A. D. & Wang, H. T. (1993). Chem. Reagents, 15, 181.  Google Scholar
First citationZhu, W., Liu, X. & Wang, H. (2008). Acta Opt. Sin. 28, 1155–1160.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds