organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2,2′-[(5-di­methyl­amino-1-naphth­yl)sulfonyl­imino]di­acetate

aSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: zy0340907@yahoo.com.cn

(Received 23 September 2009; accepted 11 October 2009; online 17 October 2009)

In the title compound, C20H26N2O6S, the N atom of the dimethyl­amino group is displaced by 0.113 (2) Å from the plane of the naphthalene ring system. The two eth­oxy groups adopt zigzag conformations. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network. Both ethyl groups are disordered over two sites with the ratios of refined occupancies being 0.857 (16):0.143 (16) and 0.517 (14):0.483 (14).

Related literature

For applications of ligands containing the 5-(dimethyl­amino) naphthalene-1-sulfonyl (dans­yl) group, see: Corradini et al. (1997[Corradini, R., Dossena, A., Galaverna, G., Marchelli, R., Panagia, A. & Sarto, G. (1997). J. Org. Chem. 62, 6283-6289.]); Christoforou et al. (2006[Christoforou, A. M., Marzilli, P. A. & Marzilli, L. G. (2006). Inorg. Chem. 45, 6771-6781.]); Zhang et al. (2009[Zhang, S., Zhao, B., Su, Z., Xia, X. & Zhang, Y. (2009). Acta Cryst. E65, o1452.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26N2O6S

  • Mr = 422.49

  • Monoclinic, P 21 /c

  • a = 13.1266 (9) Å

  • b = 8.4592 (5) Å

  • c = 19.3206 (12) Å

  • β = 93.530 (1)°

  • V = 2141.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.981

  • 16359 measured reflections

  • 4201 independent reflections

  • 3705 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.145

  • S = 1.05

  • 4201 reflections

  • 306 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1 0.93 2.36 3.006 (3) 126
C13—H13A⋯O2i 0.97 2.36 3.272 (3) 157
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Dansyl (5-(dimethylamino)naphthalene-1-sulfonyl) derivatives are of considerable interest because of their good fluorescent properties. Many fluorescent ligands bearing dansyl group have been reported in recent years (e.g. Corradini et al., 1997; Christoforou et al., 2006; Zhang et al., 2009). We are interested in preparing fluorescent ligands that are expected to bind to hydrophobic sites in proteins or membranes. With this in mind, the title compound, (I), was prepared and we report herein the crystal stucture.

In the molecular structure (Fig. 1), the N atom of the dimethylamino group is displaced by 0.113 (2) Å from the plane of the naphthalene ring system. The two ethoxycarbonyl groups adopt coiled conformations with C14—O4—C15—C16 and C18—O6—C119—C20 torsion angles of 90.1 (10)° and 159.6 (9)°, respectively. All bond lengths and bond angles are as expected. In the crystal structure (Fig.2) weak intermolecular C—H···O hydrogen bonds lead to the formation of a three-dimension network.

Related literature top

For applications of ligands containing the 5-(dimethylamino) naphthalene-1-sulfonyl (dansyl) group, see: Corradini et al. (1997); Christoforou et al. (2006); Zhang et al. (2009).

Experimental top

Diethyl iminodiacetate(0.38 g, 2 mmol) was added to a stirred solution of dansyl chloride(0.27 g, 1 mmol) in dry acetonitrile(40 ml). The reaction mixture was allowed to stir for 12 hr at 353 K. The progress of the reaction was monitored by TLC, untill the completion of reaction. The solvent was evaporated and the residue was purified by column chromatography (hexane-ethyl acetate,1:5 v/v) to afford the title compound as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

Both the C15/C16 and C18/C19 ethyl groups are disordered over two positions with the final refined occupancies of 0.857 (16):0.143 (16) and 0.517 (14):0.483 (14) for the major and minor components, respectively. In the refinement, commands 'DFIX' and 'SADI' were used (Sheldrick, 2008). Some B-level alert using PLATON were resulted from the disorder.

All H atoms were placed in idealized positions [C–H=0.96 Å (methyl), 0.97Å (methylene) and 0.93 Å (aromatic)] and included in the refinement in the riding-model approximation, with Uiso(H)= 1.5Ueq(methyl C) and 1.2Ueq(methylene and aromatic C).

Structure description top

Dansyl (5-(dimethylamino)naphthalene-1-sulfonyl) derivatives are of considerable interest because of their good fluorescent properties. Many fluorescent ligands bearing dansyl group have been reported in recent years (e.g. Corradini et al., 1997; Christoforou et al., 2006; Zhang et al., 2009). We are interested in preparing fluorescent ligands that are expected to bind to hydrophobic sites in proteins or membranes. With this in mind, the title compound, (I), was prepared and we report herein the crystal stucture.

In the molecular structure (Fig. 1), the N atom of the dimethylamino group is displaced by 0.113 (2) Å from the plane of the naphthalene ring system. The two ethoxycarbonyl groups adopt coiled conformations with C14—O4—C15—C16 and C18—O6—C119—C20 torsion angles of 90.1 (10)° and 159.6 (9)°, respectively. All bond lengths and bond angles are as expected. In the crystal structure (Fig.2) weak intermolecular C—H···O hydrogen bonds lead to the formation of a three-dimension network.

For applications of ligands containing the 5-(dimethylamino) naphthalene-1-sulfonyl (dansyl) group, see: Corradini et al. (1997); Christoforou et al. (2006); Zhang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. The disorder is not shown.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing weak hydrogen bonds as dashed lines.
Diethyl 2,2'-[(5-dimethylamino-1-naphthyl)sulfonylimino]diacetate top
Crystal data top
C20H26N2O6SF(000) = 896
Mr = 422.49Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7099 reflections
a = 13.1266 (9) Åθ = 2.4–27.8°
b = 8.4592 (5) ŵ = 0.19 mm1
c = 19.3206 (12) ÅT = 298 K
β = 93.530 (1)°Block, yellow
V = 2141.3 (2) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4201 independent reflections
Radiation source: fine-focus sealed tube3705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1516
Tmin = 0.970, Tmax = 0.981k = 1010
16359 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0753P)2 + 0.7093P]
where P = (Fo2 + 2Fc2)/3
4201 reflections(Δ/σ)max < 0.001
306 parametersΔρmax = 0.35 e Å3
12 restraintsΔρmin = 0.27 e Å3
Crystal data top
C20H26N2O6SV = 2141.3 (2) Å3
Mr = 422.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1266 (9) ŵ = 0.19 mm1
b = 8.4592 (5) ÅT = 298 K
c = 19.3206 (12) Å0.20 × 0.20 × 0.20 mm
β = 93.530 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4201 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3705 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.981Rint = 0.040
16359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05312 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
4201 reflectionsΔρmin = 0.27 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.95264 (17)0.5912 (3)0.37909 (11)0.0578 (5)
C21.02352 (18)0.4871 (3)0.35796 (14)0.0715 (7)
H21.09110.49690.37500.086*
C30.99669 (18)0.3659 (3)0.31122 (15)0.0737 (7)
H31.04660.29590.29810.088*
C40.89929 (16)0.3482 (3)0.28453 (13)0.0622 (6)
H40.88360.26890.25230.075*
C50.82149 (15)0.4499 (2)0.30558 (10)0.0466 (4)
C60.71621 (15)0.4373 (2)0.28232 (10)0.0446 (4)
C70.64297 (16)0.5326 (2)0.30780 (11)0.0522 (5)
H70.57520.52270.29120.063*
C80.67007 (17)0.6443 (3)0.35867 (12)0.0588 (5)
H80.62000.70650.37710.071*
C90.76932 (17)0.6628 (3)0.38138 (12)0.0575 (5)
H90.78610.73820.41530.069*
C100.84776 (15)0.5708 (2)0.35492 (10)0.0490 (5)
C110.9684 (3)0.8725 (4)0.39713 (18)0.0941 (10)
H11A1.02690.89360.37120.141*
H11B0.96510.94870.43370.141*
H11C0.90760.87940.36690.141*
C121.0732 (2)0.6972 (5)0.46859 (16)0.0957 (10)
H12A1.07910.59060.48540.144*
H12B1.07420.76880.50720.144*
H12C1.12930.72030.44060.144*
C130.59995 (17)0.1130 (3)0.32052 (11)0.0548 (5)
H13A0.56680.01080.31590.066*
H13B0.54780.19370.31360.066*
C140.64919 (19)0.1283 (3)0.39272 (12)0.0588 (5)
C150.6061 (8)0.1733 (7)0.5102 (2)0.0874 (19)0.857 (16)
H15A0.67400.13370.52300.105*0.857 (16)
H15B0.55830.12410.53990.105*0.857 (16)
C160.6032 (10)0.3472 (8)0.5176 (3)0.149 (4)0.857 (16)
H16A0.65650.39350.49250.223*0.857 (16)
H16B0.61280.37480.56580.223*0.857 (16)
H16C0.53830.38610.49940.223*0.857 (16)
C170.73411 (17)0.0060 (3)0.24933 (12)0.0552 (5)
H17A0.74840.06990.29050.066*
H17B0.79880.03150.23390.066*
C180.68302 (16)0.1075 (2)0.19336 (11)0.0520 (5)
C190.7087 (7)0.2942 (12)0.1072 (5)0.073 (3)0.517 (14)
H19A0.67220.22040.07620.088*0.517 (14)
H19B0.66240.37840.11850.088*0.517 (14)
C200.8001 (6)0.3609 (15)0.0734 (5)0.100 (3)0.517 (14)
H20A0.84320.27590.06000.150*0.517 (14)
H20B0.77760.42070.03310.150*0.517 (14)
H20C0.83780.42850.10570.150*0.517 (14)
C15'0.626 (2)0.223 (5)0.4978 (12)0.069 (9)0.143 (16)
H15C0.66590.31170.48250.083*0.143 (16)
H15D0.67110.15310.52530.083*0.143 (16)
C16'0.539 (3)0.281 (6)0.5403 (16)0.122 (14)0.143 (16)
H16D0.50880.37350.51890.182*0.143 (16)
H16E0.56520.30600.58640.182*0.143 (16)
H16F0.48830.19930.54210.182*0.143 (16)
C19'0.7221 (11)0.3420 (9)0.1268 (4)0.069 (3)0.483 (14)
H19C0.65070.36970.12900.083*0.483 (14)
H19D0.76380.43420.13820.083*0.483 (14)
C20'0.7438 (12)0.2768 (12)0.0564 (4)0.101 (4)0.483 (14)
H20D0.70390.18310.04740.152*0.483 (14)
H20E0.72630.35440.02150.152*0.483 (14)
H20F0.81500.25150.05560.152*0.483 (14)
N10.97658 (16)0.7153 (3)0.42652 (11)0.0706 (6)
N20.67264 (13)0.1287 (2)0.26716 (9)0.0524 (4)
O10.74296 (13)0.2660 (2)0.16995 (8)0.0631 (4)
O20.56924 (12)0.3303 (2)0.20057 (8)0.0635 (4)
O30.73809 (15)0.1308 (3)0.40732 (10)0.0988 (7)
O40.57813 (15)0.1376 (3)0.43757 (9)0.0934 (7)
O50.59653 (12)0.0973 (2)0.17180 (10)0.0751 (5)
O60.74949 (13)0.2111 (2)0.17216 (11)0.0783 (6)
S10.67202 (4)0.28980 (6)0.22222 (3)0.04759 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0469 (12)0.0728 (14)0.0531 (12)0.0099 (10)0.0019 (9)0.0004 (10)
C20.0377 (12)0.0952 (19)0.0807 (17)0.0057 (12)0.0047 (11)0.0049 (14)
C30.0409 (12)0.0834 (18)0.0969 (19)0.0088 (12)0.0039 (12)0.0136 (15)
C40.0439 (12)0.0645 (13)0.0783 (15)0.0032 (10)0.0028 (10)0.0126 (12)
C50.0390 (10)0.0492 (10)0.0516 (11)0.0017 (8)0.0024 (8)0.0026 (9)
C60.0416 (10)0.0439 (10)0.0479 (10)0.0013 (8)0.0012 (8)0.0002 (8)
C70.0409 (11)0.0525 (11)0.0625 (12)0.0024 (9)0.0020 (9)0.0013 (10)
C80.0492 (12)0.0585 (12)0.0691 (14)0.0070 (10)0.0073 (10)0.0115 (11)
C90.0574 (13)0.0585 (12)0.0567 (12)0.0042 (10)0.0027 (10)0.0115 (10)
C100.0433 (11)0.0553 (11)0.0481 (11)0.0033 (9)0.0003 (8)0.0032 (9)
C110.094 (2)0.086 (2)0.100 (2)0.0227 (17)0.0109 (18)0.0207 (18)
C120.0681 (18)0.139 (3)0.0770 (18)0.0235 (18)0.0197 (14)0.0136 (18)
C130.0504 (12)0.0551 (12)0.0586 (12)0.0068 (9)0.0010 (9)0.0018 (10)
C140.0591 (14)0.0581 (13)0.0587 (13)0.0007 (11)0.0002 (11)0.0021 (10)
C150.106 (4)0.108 (4)0.048 (2)0.013 (3)0.008 (2)0.010 (2)
C160.252 (12)0.115 (4)0.075 (3)0.068 (5)0.026 (4)0.014 (3)
C170.0509 (12)0.0492 (11)0.0642 (13)0.0078 (9)0.0064 (10)0.0050 (9)
C180.0450 (12)0.0507 (11)0.0612 (12)0.0067 (9)0.0104 (9)0.0046 (9)
C190.070 (4)0.055 (5)0.093 (7)0.002 (4)0.003 (5)0.027 (5)
C200.091 (5)0.108 (7)0.103 (5)0.003 (4)0.019 (4)0.038 (5)
C15'0.078 (16)0.09 (2)0.044 (12)0.002 (13)0.007 (11)0.002 (13)
C16'0.11 (3)0.13 (3)0.12 (2)0.04 (2)0.006 (19)0.01 (2)
C19'0.092 (7)0.044 (4)0.074 (4)0.011 (4)0.018 (4)0.005 (3)
C20'0.153 (11)0.085 (6)0.067 (4)0.032 (6)0.025 (5)0.010 (4)
N10.0575 (12)0.0899 (16)0.0630 (12)0.0152 (11)0.0086 (9)0.0105 (11)
N20.0545 (10)0.0458 (9)0.0570 (10)0.0032 (8)0.0041 (8)0.0042 (8)
O10.0666 (10)0.0730 (10)0.0499 (8)0.0011 (8)0.0046 (7)0.0043 (7)
O20.0521 (9)0.0667 (9)0.0688 (10)0.0086 (7)0.0194 (7)0.0052 (8)
O30.0622 (12)0.161 (2)0.0711 (12)0.0146 (13)0.0128 (9)0.0102 (13)
O40.0767 (13)0.1434 (19)0.0607 (11)0.0036 (13)0.0095 (9)0.0127 (12)
O50.0455 (9)0.0878 (12)0.0910 (12)0.0035 (8)0.0051 (8)0.0257 (10)
O60.0566 (10)0.0703 (11)0.1090 (14)0.0017 (8)0.0126 (9)0.0396 (10)
S10.0445 (3)0.0501 (3)0.0474 (3)0.0023 (2)0.0045 (2)0.0020 (2)
Geometric parameters (Å, º) top
C1—C21.362 (4)C15—H15A0.9700
C1—N11.416 (3)C15—H15B0.9700
C1—C101.437 (3)C16—H16A0.9600
C2—C31.397 (4)C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
C3—C41.357 (3)C17—N21.450 (3)
C3—H30.9300C17—C181.506 (3)
C4—C51.414 (3)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C101.426 (3)C18—O51.188 (3)
C5—C61.431 (3)C18—O61.319 (3)
C6—C71.369 (3)C19—O61.509 (7)
C6—S11.777 (2)C19—C201.510 (8)
C7—C81.394 (3)C19—H19A0.9700
C7—H70.9300C19—H19B0.9700
C8—C91.358 (3)C20—H20A0.9600
C8—H80.9300C20—H20B0.9600
C9—C101.412 (3)C20—H20C0.9600
C9—H90.9300C15'—O41.477 (10)
C11—N11.447 (4)C15'—C16'1.529 (10)
C11—H11A0.9600C15'—H15C0.9700
C11—H11B0.9600C15'—H15D0.9700
C11—H11C0.9600C16'—H16D0.9600
C12—N11.472 (3)C16'—H16E0.9600
C12—H12A0.9600C16'—H16F0.9600
C12—H12B0.9600C19'—O61.444 (8)
C12—H12C0.9600C19'—C20'1.511 (8)
C13—N21.453 (3)C19'—H19C0.9700
C13—C141.506 (3)C19'—H19D0.9700
C13—H13A0.9700C20'—H20D0.9600
C13—H13B0.9700C20'—H20E0.9600
C14—O31.184 (3)C20'—H20F0.9600
C14—O41.314 (3)N2—S11.6160 (18)
C15—O41.460 (5)O1—S11.4295 (17)
C15—C161.478 (7)O2—S11.4292 (15)
C2—C1—N1123.0 (2)H15A—C15—H15B108.6
C2—C1—C10118.9 (2)N2—C17—C18112.89 (18)
N1—C1—C10118.0 (2)N2—C17—H17A109.0
C1—C2—C3121.2 (2)C18—C17—H17A109.0
C1—C2—H2119.4N2—C17—H17B109.0
C3—C2—H2119.4C18—C17—H17B109.0
C4—C3—C2121.4 (2)H17A—C17—H17B107.8
C4—C3—H3119.3O5—C18—O6125.1 (2)
C2—C3—H3119.3O5—C18—C17125.7 (2)
C3—C4—C5120.2 (2)O6—C18—C17109.14 (19)
C3—C4—H4119.9O6—C19—C20106.4 (6)
C5—C4—H4119.9O6—C19—H19A110.4
C4—C5—C10118.66 (19)C20—C19—H19A110.4
C4—C5—C6124.39 (19)O6—C19—H19B110.4
C10—C5—C6116.92 (18)C20—C19—H19B110.4
C7—C6—C5121.96 (18)H19A—C19—H19B108.6
C7—C6—S1116.10 (15)O4—C15'—C16'106.3 (13)
C5—C6—S1121.85 (15)O4—C15'—H15C110.5
C6—C7—C8119.89 (19)C16'—C15'—H15C110.5
C6—C7—H7120.1O4—C15'—H15D110.5
C8—C7—H7120.1C16'—C15'—H15D110.5
C9—C8—C7120.3 (2)H15C—C15'—H15D108.7
C9—C8—H8119.9C15'—C16'—H16D109.5
C7—C8—H8119.9C15'—C16'—H16E109.5
C8—C9—C10121.7 (2)H16D—C16'—H16E109.5
C8—C9—H9119.1C15'—C16'—H16F109.5
C10—C9—H9119.1H16D—C16'—H16F109.5
C9—C10—C5119.07 (18)H16E—C16'—H16F109.5
C9—C10—C1121.5 (2)O6—C19'—C20'102.3 (6)
C5—C10—C1119.39 (19)O6—C19'—H19C111.3
N1—C11—H11A109.5C20'—C19'—H19C111.3
N1—C11—H11B109.5O6—C19'—H19D111.3
H11A—C11—H11B109.5C20'—C19'—H19D111.3
N1—C11—H11C109.5H19C—C19'—H19D109.2
H11A—C11—H11C109.5C19'—C20'—H20D109.5
H11B—C11—H11C109.5C19'—C20'—H20E109.5
N1—C12—H12A109.5H20D—C20'—H20E109.5
N1—C12—H12B109.5C19'—C20'—H20F109.5
H12A—C12—H12B109.5H20D—C20'—H20F109.5
N1—C12—H12C109.5H20E—C20'—H20F109.5
H12A—C12—H12C109.5C1—N1—C11114.8 (2)
H12B—C12—H12C109.5C1—N1—C12115.4 (2)
N2—C13—C14112.71 (18)C11—N1—C12110.7 (2)
N2—C13—H13A109.0C17—N2—C13119.76 (18)
C14—C13—H13A109.0C17—N2—S1121.31 (15)
N2—C13—H13B109.0C13—N2—S1118.44 (14)
C14—C13—H13B109.0C14—O4—C15120.0 (4)
H13A—C13—H13B107.8C14—O4—C15'105.2 (9)
O3—C14—O4124.8 (2)C18—O6—C19'123.6 (6)
O3—C14—C13125.6 (2)C18—O6—C19111.1 (4)
O4—C14—C13109.5 (2)O2—S1—O1118.12 (10)
O4—C15—C16107.0 (4)O2—S1—N2109.44 (10)
O4—C15—H15A110.3O1—S1—N2106.18 (9)
C16—C15—H15A110.3O2—S1—C6106.70 (9)
O4—C15—H15B110.3O1—S1—C6111.09 (10)
C16—C15—H15B110.3N2—S1—C6104.51 (9)
N1—C1—C2—C3179.8 (2)C18—C17—N2—C1388.7 (2)
C10—C1—C2—C32.7 (4)C18—C17—N2—S183.1 (2)
C1—C2—C3—C40.7 (4)C14—C13—N2—C1781.6 (2)
C2—C3—C4—C52.2 (4)C14—C13—N2—S1106.41 (19)
C3—C4—C5—C100.2 (4)O3—C14—O4—C158.1 (5)
C3—C4—C5—C6177.7 (2)C13—C14—O4—C15172.2 (3)
C4—C5—C6—C7175.7 (2)O3—C14—O4—C15'26 (2)
C10—C5—C6—C72.3 (3)C13—C14—O4—C15'155 (2)
C4—C5—C6—S10.8 (3)C16—C15—O4—C1490.1 (10)
C10—C5—C6—S1178.75 (15)C16—C15—O4—C15'39 (4)
C5—C6—C7—C81.0 (3)C16'—C15'—O4—C14163 (3)
S1—C6—C7—C8175.69 (17)C16'—C15'—O4—C1562 (3)
C6—C7—C8—C92.2 (3)O5—C18—O6—C19'9.6 (5)
C7—C8—C9—C100.2 (4)C17—C18—O6—C19'170.0 (4)
C8—C9—C10—C53.2 (3)O5—C18—O6—C1911.4 (6)
C8—C9—C10—C1179.9 (2)C17—C18—O6—C19169.0 (6)
C4—C5—C10—C9173.8 (2)C20'—C19'—O6—C1895.9 (12)
C6—C5—C10—C94.3 (3)C20'—C19'—O6—C1934.6 (15)
C4—C5—C10—C13.2 (3)C20—C19—O6—C18159.6 (9)
C6—C5—C10—C1178.75 (18)C20—C19—O6—C19'72.0 (19)
C2—C1—C10—C9172.3 (2)C17—N2—S1—O2126.11 (17)
N1—C1—C10—C94.9 (3)C13—N2—S1—O245.80 (18)
C2—C1—C10—C54.6 (3)C17—N2—S1—O12.41 (19)
N1—C1—C10—C5178.17 (19)C13—N2—S1—O1174.32 (15)
N2—C13—C14—O310.0 (4)C17—N2—S1—C6119.93 (17)
N2—C13—C14—O4170.3 (2)C13—N2—S1—C668.16 (17)
N2—C17—C18—O510.7 (3)C7—C6—S1—O214.37 (19)
N2—C17—C18—O6169.75 (19)C5—C6—S1—O2168.98 (16)
C2—C1—N1—C11111.9 (3)C7—C6—S1—O1144.39 (16)
C10—C1—N1—C1171.0 (3)C5—C6—S1—O138.95 (19)
C2—C1—N1—C1218.7 (4)C7—C6—S1—N2101.51 (17)
C10—C1—N1—C12158.4 (2)C5—C6—S1—N275.14 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.932.363.006 (3)126
C13—H13A···O2i0.972.363.272 (3)157
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H26N2O6S
Mr422.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.1266 (9), 8.4592 (5), 19.3206 (12)
β (°) 93.530 (1)
V3)2141.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
16359, 4201, 3705
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.145, 1.05
No. of reflections4201
No. of parameters306
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected torsion angles (º) top
C16—C15—O4—C1490.1 (10)C20—C19—O6—C18159.6 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.932.363.006 (3)126.1
C13—H13A···O2i0.972.363.272 (3)157.3
Symmetry code: (i) x+1, y1/2, z+1/2.
 

References

First citationBruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristoforou, A. M., Marzilli, P. A. & Marzilli, L. G. (2006). Inorg. Chem. 45, 6771–6781.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCorradini, R., Dossena, A., Galaverna, G., Marchelli, R., Panagia, A. & Sarto, G. (1997). J. Org. Chem. 62, 6283–6289.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S., Zhao, B., Su, Z., Xia, X. & Zhang, Y. (2009). Acta Cryst. E65, o1452.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds