organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-methyl­imidazolium) fumarate dihydrate

aSchool of Physics and Electronic Engineering, Xiangfan University, Xiangfan 441053, Hubei, People's Republic of China
*Correspondence e-mail: zhiyuan_xie@126.com

(Received 24 September 2009; accepted 29 September 2009; online 3 October 2009)

In the title compound, 2C4H7N2+·C4H2O42−·2H2O, the asymmetric unit consists of one 2-methyl­imidazolium cation, half a fumarate dianion and one water mol­ecule. There is an inversion center at the mid-point of the central C—C bond of the fumarate anion. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds. In addition, there are weak ππ stacking inter­actions with centroid–centroid distances of 3.640 (1) Å.

Related literature

For background information on cocrystals, see: Aakeröy & Salmon (2005[Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439-448.]); Aakeröy et al. (2007[Aakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). Mol. Pharm. 4, 317-322.]); Childs & Hardcastle (2007[Childs, S. L. & Hardcastle, K. I. (2007). Cryst. Growth Des. 7, 1291-1304.]); Childs et al. (2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H7N2+·C4H2O42−·2H2O

  • Mr = 316.32

  • Monoclinic, P 21 /n

  • a = 8.3912 (8) Å

  • b = 7.3195 (7) Å

  • c = 14.2475 (13) Å

  • β = 106.624 (2)°

  • V = 838.50 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.996

  • 9171 measured reflections

  • 1920 independent reflections

  • 1261 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.152

  • S = 1.06

  • 1920 reflections

  • 114 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.90 (2) 1.79 (2) 2.682 (2) 172 (2)
O3—H3B⋯O2ii 0.80 (4) 1.94 (4) 2.733 (2) 177 (4)
C5—H5⋯O1iii 0.93 2.38 3.308 (3) 175
N1—H1A⋯O1 0.96 (2) 1.71 (2) 2.668 (2) 173 (2)
O3—H3A⋯O2 0.81 (4) 1.94 (4) 2.742 (2) 176 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Studies on cocrystals or organic salts have been expanded rapidly in recent years owing to their potential application in active pharmaceutical ingredients (Aakeröy et al., 2007; Childs et al., 2007; Hilds & Hardcastle, 2007). Herein, the crystal structure an organic salt formed by the reaction of 2-methylimidazole and fumaric acid is reported.

In the title compound (I), the asymmetric unit is composed of one 2-methylimidazolium cation, half a fumarate dianion and one water molecule. There is an inversion center at the midpoint of the C2-C2(1-x, -y, 1-z) bond. The title complex can be regarded as an organic salt according to Aakeröy & Salmon (2005). The fumaric acid molecule is deprotonated, with both the protons transferred to the imidazole N atom leading to each a fumarate dianion and an imidazolium cation (Fig.1), which can be evidenced to some extent by the delocaliztion of the carboxyl C-O bonds (C1-O1 1.249 (2)Å, C1-O2 1.253 (2)Å) and the imidazolium C-N bonds (C3-N1 1.325 (2)Å, C3-N2 1.332 (2)Å).

In the crystal packing, by a combination of two N-H···O, two O-H···O and one C-H···O hydrogen bonds (Table 1) and one π-π interaction [Cg···Cg(1-x, 1-y, -z) = 3.640 (1)Å, Cg is the centroid defined by atoms C3-C5/N1/N2], molecules in (I) are linked into a three-dimensional network (Fig.2).

Related literature top

For background information on cocrystals, see: Aakeröy & Salmon (2005); Aakeröy et al. (2007); Childs & Hardcastle (2007); Childs et al. (2007).

Experimental top

All the reagents and solvents were used as obtained without further purification. A 1:2 molar amounts of fumaric acid (0.2 mmol, 23.2 mg) and 2-methyl-imidazole (0.4 mmol, 32.8 mg) were dissolved in 95% methanol (10 ml). The resulting solution was kept in air for one week. Plate crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel.

Refinement top

H atoms bonded to C atoms were located in difference maps and subsequently treated in a riding-model approximation, with C–H = 0.93 Å (aromatic), 0.96Å (methyl), Uiso(H) = 1.2Ueq( aromatic C) and 1.5Ueq(methyl C). H atoms bonded to N and O atoms were also found in difference maps and their distances were refined freely (see Table 1 for the distances), and the Uiso(H) values being set k times of their carrier atoms ( k = 1.2 for N1 and 1.5 for O atoms and N2)

Structure description top

Studies on cocrystals or organic salts have been expanded rapidly in recent years owing to their potential application in active pharmaceutical ingredients (Aakeröy et al., 2007; Childs et al., 2007; Hilds & Hardcastle, 2007). Herein, the crystal structure an organic salt formed by the reaction of 2-methylimidazole and fumaric acid is reported.

In the title compound (I), the asymmetric unit is composed of one 2-methylimidazolium cation, half a fumarate dianion and one water molecule. There is an inversion center at the midpoint of the C2-C2(1-x, -y, 1-z) bond. The title complex can be regarded as an organic salt according to Aakeröy & Salmon (2005). The fumaric acid molecule is deprotonated, with both the protons transferred to the imidazole N atom leading to each a fumarate dianion and an imidazolium cation (Fig.1), which can be evidenced to some extent by the delocaliztion of the carboxyl C-O bonds (C1-O1 1.249 (2)Å, C1-O2 1.253 (2)Å) and the imidazolium C-N bonds (C3-N1 1.325 (2)Å, C3-N2 1.332 (2)Å).

In the crystal packing, by a combination of two N-H···O, two O-H···O and one C-H···O hydrogen bonds (Table 1) and one π-π interaction [Cg···Cg(1-x, 1-y, -z) = 3.640 (1)Å, Cg is the centroid defined by atoms C3-C5/N1/N2], molecules in (I) are linked into a three-dimensional network (Fig.2).

For background information on cocrystals, see: Aakeröy & Salmon (2005); Aakeröy et al. (2007); Childs & Hardcastle (2007); Childs et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-bonds are shown in dashed lines. (Symmetry code (iv): 1-x, -y, 1-z).
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the three-dimensional network by N-H···O, O-H···O and C-H···O hydrogen-bonds and ππ stacking interactions shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity.
Bis(2-methylimidazolium) fumarate dihydrate top
Crystal data top
2C4H7N2+·C4H2O42·2H2OF(000) = 336
Mr = 316.32Dx = 1.253 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 430 reflections
a = 8.3912 (8) Åθ = 3.0–22.0°
b = 7.3195 (7) ŵ = 0.10 mm1
c = 14.2475 (13) ÅT = 294 K
β = 106.624 (2)°Plate, colorless
V = 838.50 (14) Å30.20 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1920 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
0.3° wide ω exposures scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.970, Tmax = 0.996k = 99
9171 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.071P)2 + 0.1419P]
where P = (Fo2 + 2Fc2)/3
1920 reflections(Δ/σ)max = 0.027
114 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
2C4H7N2+·C4H2O42·2H2OV = 838.50 (14) Å3
Mr = 316.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3912 (8) ŵ = 0.10 mm1
b = 7.3195 (7) ÅT = 294 K
c = 14.2475 (13) Å0.20 × 0.10 × 0.04 mm
β = 106.624 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1920 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1261 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.996Rint = 0.036
9171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
1920 reflectionsΔρmin = 0.18 e Å3
114 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5386 (2)0.0238 (2)0.37212 (12)0.0401 (4)
C20.5606 (2)0.0086 (2)0.48028 (11)0.0428 (5)
H20.66850.01170.52200.051*
C30.6978 (3)0.1228 (2)0.10113 (13)0.0471 (5)
C40.4614 (3)0.2353 (3)0.11177 (14)0.0539 (5)
H40.37500.26820.13720.065*
C50.4689 (3)0.2673 (3)0.02039 (14)0.0516 (5)
H50.38950.32660.02940.062*
C60.8635 (3)0.0358 (3)0.12642 (17)0.0702 (7)
H6A0.94320.11420.16980.105*
H6B0.89580.01590.06780.105*
H6C0.85930.07910.15810.105*
N10.6039 (2)0.1456 (2)0.16080 (11)0.0517 (5)
H1A0.633 (2)0.101 (3)0.2268 (16)0.062*
N20.6165 (2)0.1953 (2)0.01497 (11)0.0482 (5)
H2A0.654 (3)0.191 (3)0.0380 (18)0.074 (7)*
O10.66885 (18)0.0373 (2)0.34674 (9)0.0569 (4)
O20.39407 (17)0.0221 (2)0.31492 (8)0.0556 (4)
O30.2028 (3)0.3054 (3)0.34768 (13)0.1009 (8)
H3B0.172 (5)0.371 (6)0.301 (3)0.151*
H3A0.256 (5)0.221 (5)0.335 (3)0.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0536 (12)0.0402 (9)0.0280 (8)0.0051 (8)0.0144 (8)0.0001 (7)
C20.0490 (12)0.0515 (11)0.0276 (9)0.0012 (9)0.0102 (7)0.0001 (7)
C30.0631 (13)0.0426 (10)0.0375 (9)0.0092 (9)0.0172 (9)0.0010 (8)
C40.0635 (14)0.0604 (13)0.0422 (10)0.0028 (11)0.0224 (10)0.0006 (9)
C50.0624 (14)0.0513 (11)0.0402 (10)0.0050 (10)0.0132 (9)0.0023 (8)
C60.0735 (17)0.0671 (15)0.0718 (15)0.0029 (12)0.0235 (13)0.0024 (12)
N10.0688 (12)0.0565 (10)0.0318 (8)0.0064 (9)0.0178 (8)0.0032 (7)
N20.0685 (12)0.0476 (9)0.0327 (8)0.0111 (8)0.0210 (8)0.0010 (7)
O10.0581 (9)0.0826 (11)0.0349 (7)0.0046 (7)0.0214 (6)0.0103 (6)
O20.0570 (9)0.0780 (10)0.0302 (6)0.0073 (7)0.0100 (6)0.0072 (6)
O30.150 (2)0.1188 (17)0.0515 (9)0.0793 (14)0.0575 (12)0.0364 (10)
Geometric parameters (Å, º) top
C1—O11.249 (2)C4—H40.9300
C1—O21.253 (2)C5—N21.368 (3)
C1—C21.503 (2)C5—H50.9300
C2—C2i1.301 (3)C6—H6A0.9600
C2—H20.9300C6—H6B0.9600
C3—N11.325 (2)C6—H6C0.9600
C3—N21.332 (2)N1—H1A0.96 (2)
C3—C61.477 (3)N2—H2A0.90 (2)
C4—C51.342 (3)O3—H3B0.80 (4)
C4—N11.368 (3)O3—H3A0.81 (4)
O1—C1—O2125.22 (15)N2—C5—H5126.8
O1—C1—C2116.20 (16)C3—C6—H6A109.5
O2—C1—C2118.57 (17)C3—C6—H6B109.5
C2i—C2—C1124.6 (2)H6A—C6—H6B109.5
C2i—C2—H2117.7C3—C6—H6C109.5
C1—C2—H2117.7H6A—C6—H6C109.5
N1—C3—N2107.42 (19)H6B—C6—H6C109.5
N1—C3—C6126.08 (18)C3—N1—C4109.04 (16)
N2—C3—C6126.5 (2)C3—N1—H1A123.6 (13)
C5—C4—N1107.61 (19)C4—N1—H1A127.4 (13)
C5—C4—H4126.2C3—N2—C5109.55 (17)
N1—C4—H4126.2C3—N2—H2A123.4 (15)
C4—C5—N2106.38 (19)C5—N2—H2A127.0 (15)
C4—C5—H5126.8H3B—O3—H3A110 (3)
O1—C1—C2—C2i179.1 (2)C5—C4—N1—C30.1 (2)
O2—C1—C2—C2i0.9 (3)N1—C3—N2—C50.7 (2)
N1—C4—C5—N20.3 (2)C6—C3—N2—C5178.31 (19)
N2—C3—N1—C40.5 (2)C4—C5—N2—C30.6 (2)
C6—C3—N1—C4178.5 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3ii0.90 (2)1.79 (2)2.682 (2)172 (2)
O3—H3B···O2iii0.80 (4)1.94 (4)2.733 (2)177 (4)
C5—H5···O1iv0.932.383.308 (3)175
N1—H1A···O10.96 (2)1.71 (2)2.668 (2)173 (2)
O3—H3A···O20.81 (4)1.94 (4)2.742 (2)176 (4)
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula2C4H7N2+·C4H2O42·2H2O
Mr316.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.3912 (8), 7.3195 (7), 14.2475 (13)
β (°) 106.624 (2)
V3)838.50 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.970, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
9171, 1920, 1261
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.152, 1.06
No. of reflections1920
No. of parameters114
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.90 (2)1.79 (2)2.682 (2)172 (2)
O3—H3B···O2ii0.80 (4)1.94 (4)2.733 (2)177 (4)
C5—H5···O1iii0.932.383.308 (3)175.1
N1—H1A···O10.96 (2)1.71 (2)2.668 (2)173 (2)
O3—H3A···O20.81 (4)1.94 (4)2.742 (2)176 (4)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The author thanks Xiangfan University for financial support.

References

First citationAakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). Mol. Pharm. 4, 317–322.  Web of Science PubMed Google Scholar
First citationAakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChilds, S. L. & Hardcastle, K. I. (2007). Cryst. Growth Des. 7, 1291–1304.  Web of Science CSD CrossRef CAS Google Scholar
First citationChilds, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds