metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carbonyl­chlorido(1-methyl­sulfanylpenta-1,3-dien-1-yl-5-yl­­idene)bis­­(tri­phenyl­phosphane)osmium(II)

aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: lj.wright@auckland.ac.nz

(Received 25 September 2009; accepted 29 September 2009; online 7 October 2009)

The crystal structure of the title compound, [Os(C6H7S)Cl(C18H15P)2(CO)], confirms the formulation as an osmabenzene. There is a slightly distorted octa­hedral coordination environment at the OsII ion, with the triphenyl­phosphane ligands mutually trans and the chloride cis to the carbon bearing the –SMe substituent. Within the metallacyclic ring, the C—C distances are appropriate for aromatic bonds and the two Os—C distances are shorter than typical Os—C single bonds. The maximum deviation from the least-squares plane through the osmabenzene ring occurs for the carbon bearing the SMe substituent [0.1037 (18) Å].

Related literature

For the synthesis and properties of metallabenzenes, see: Bleeke (2001[Bleeke, J. R. (2001). Chem. Rev. 101, 1205-1227.]); Landorf & Haley (2006[Landorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed. 45, 3914-3936.]); Wright (2006[Wright, L. J. (2006). Dalton Trans. pp. 1821-1827.]). For the synthesis and properties of osmabenzenes, see: Elliott et al. (1982[Elliott, G. P., Roper, W. R. & Waters, J. M. (1982). J. Chem. Soc. Chem. Commun. pp. 811-813.], 1989[Elliott, G. P., McAuley, N. M. & Roper, W. R. (1989). Inorg. Synth. 26, 184-189.]); Rickard et al. (2000[Rickard, C. E. F., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2000). Angew. Chem. Int. Ed. 39, 750-752.], 2001[Rickard, C. E. F., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2001). Organomet. Chem. 623, 109-115.]). For a discussion of ring planarity in metallabenzenes, see: Zhu et al. (2007[Zhu, J., Jia, G. & Lin, Z. (2007). Organometallics, 26, 1986-1995.]). For spectroscopic data, see: Maddock et al. (1996[Maddock, S. M., Rickard, C. E. F., Roper, W. R. & Wright, L. J. (1996). Organometallics, 15, 1793-1803.]).

[Scheme 1]

Experimental

Crystal data
  • [Os(C6H7S)Cl(C18H15P)2(CO)]

  • Mr = 889.38

  • Monoclinic, P 21 /n

  • a = 13.5565 (1) Å

  • b = 15.7136 (2) Å

  • c = 18.2264 (3) Å

  • β = 109.978 (1)°

  • V = 3648.97 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.75 mm−1

  • T = 203 K

  • 0.33 × 0.28 × 0.11 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.491, Tmax = 0.739

  • 22209 measured reflections

  • 7812 independent reflections

  • 6032 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.060

  • S = 1.01

  • 7812 reflections

  • 444 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Os1—C1 2.109 (3)
Os1—C5 2.026 (3)
C1—C2 1.410 (4)
C2—C3 1.370 (4)
C3—C4 1.393 (5)
C4—C5 1.367 (4)

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Metallabenzenes are now a well established class of organometallic compounds and a considerable number of studies involving the syntheses, reactivity and aromatic character of these materials have been made. To obtain further data relating to the nature of the delocalized bonding in osmabenzenes (Rickard et al., 2000; Rickard et al., 2001) we have obtained the single-crystal X–ray structure of the title complex [Os(C5H4{SMe–1})Cl(CO)(PPh3)2]. The geometry about Os is approximately octahedral with the two PPh3 ligands mutually trans. Within the metallacyclic ring the Os—C1 and Os—C5 distances are shorter than those observed for normal Os—C single bonds suggesting there is some multiple character to these bonds (see Table 1). The C—C distances in this ring are very close to those found in simple aromatic compounds and come within the range of distances reported for other metallabenzenes (Bleeke, 2001; Landorf & Haley, 2006; Wright, 2006). The osmabenzene ring is not planar and the atoms that show the greatest displacement from the mean plane through Os and the five ring carbons are C1 (0.1037 (18) Å) and Os (0.1000 (13) Å). Non-planarity has been observed for a number of other metallabenzenes. This phenomenon has been investigated theoretically and shown not to compromise the electron delocalization within the ring (Zhu et al., 2007).

Related literature top

For the synthesis and properties of metallabenzenes, see: Bleeke (2001); Landorf & Haley (2006); Wright (2006). For the synthesis and properties of osmabenzenes, see: Elliott et al. (1982, 1989); Rickard et al. (2000, 2001). For a discussion of ring planarity in metallabenzenes, see: Zhu et al. (2007). For spectroscopic data, see: Maddock et al. (1996).

Experimental top

[Os(C5H4{S–1})(CO)(PPh3)2] (Elliott et al., 1982; Elliott et al., 1989) (200 mg, 0.238 mmol) was dissolved in dry dichloromethane (25 ml) and methyl trifluoromethanesulfonate (534 µL, 0.48 mmol) was added. NaCl (27.8 mg, 0.476 mmol) dissolved in water (1 ml) was added to the blue solution and the mixture stirred for one hour. The dichloromethane layer was seperated and then eluted through a chromatography column (silica gel support, 2.5 cm x 1.5 cm) using dichloromethane as the eluent. The fast-moving dark blue band was collected and recrystallized from dichloromethane/ethanol (25 ml/10 ml) to give crystals of the title compound (188 mg, 89%). The crystal used for the single-crystal X-ray diffraction study was also grown from dichloromethane/ethanol. MS: Calcd for C43H37OOsP2S [M–Cl]+ 853.1624. Found: 853.1603 m/z. Anal. Found: C, 57.50; H 4.19. C43H37ClOOsP2S requires C, 58.07; H, 4.19%. 1H NMR (CDCl3, δ): 1.70 (s, 3H, SCH3), 6.57 (apparent t, 1H, H4, 3JHH = 8.5 Hz), 6.65 (d, 1H, H2, 3JHH = 8.8 Hz), 7.07 (d apparent t, 1H, H3, 3JHH = 8.8 Hz, 4JHH = 1.7 Hz), 7.45–7.69 (m, 30H, PPh3), 13.27 (d, 1H, H5, 3JHH = 9.3 Hz). 13C{1H} NMR (CDCl3, δ): 23.21 (s, SCH3), 121.60 (s, C2), 123.75 (s, C4), 126.89 (t'(Maddock et al., 1996), o-PPh3, 2,4JCP = 10.1 Hz), 129.32 (s, p-PPh3), 133.22 (t', i-PPh3, 1,3JCP = 53.3 Hz), 134.62 (t', m-PPh3, 3,5JCP = 11.1 Hz), 145.81 (s, C3), 191.61 (t, CO, 2JCP = 11.1 Hz), 220.96 (t, C5, 2JCP = 6.3 Hz), 237.42 (t, C1, 2JCP = 9.1 Hz).

Refinement top

Hydrogen atoms were placed in calculated positions and refined using the riding model [C— H 0.93–0.97 Å, with Uiso(H) = 1.2 or 1.5 times Ueq(C). The highest density peak and deepest hole are located 0.84 Å and 0.54 Å from atoms Os1 and Cl1 respectively.

Structure description top

Metallabenzenes are now a well established class of organometallic compounds and a considerable number of studies involving the syntheses, reactivity and aromatic character of these materials have been made. To obtain further data relating to the nature of the delocalized bonding in osmabenzenes (Rickard et al., 2000; Rickard et al., 2001) we have obtained the single-crystal X–ray structure of the title complex [Os(C5H4{SMe–1})Cl(CO)(PPh3)2]. The geometry about Os is approximately octahedral with the two PPh3 ligands mutually trans. Within the metallacyclic ring the Os—C1 and Os—C5 distances are shorter than those observed for normal Os—C single bonds suggesting there is some multiple character to these bonds (see Table 1). The C—C distances in this ring are very close to those found in simple aromatic compounds and come within the range of distances reported for other metallabenzenes (Bleeke, 2001; Landorf & Haley, 2006; Wright, 2006). The osmabenzene ring is not planar and the atoms that show the greatest displacement from the mean plane through Os and the five ring carbons are C1 (0.1037 (18) Å) and Os (0.1000 (13) Å). Non-planarity has been observed for a number of other metallabenzenes. This phenomenon has been investigated theoretically and shown not to compromise the electron delocalization within the ring (Zhu et al., 2007).

For the synthesis and properties of metallabenzenes, see: Bleeke (2001); Landorf & Haley (2006); Wright (2006). For the synthesis and properties of osmabenzenes, see: Elliott et al. (1982, 1989); Rickard et al. (2000, 2001). For a discussion of ring planarity in metallabenzenes, see: Zhu et al. (2007). For spectroscopic data, see: Maddock et al. (1996).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Os(C5H4{SMe–1})Cl(CO)(PPh3)2] showing 50% probability displacement ellipsoids for non-hydrogen atoms. H atoms omitted for clarity.
Carbonylchlorido(1-methylsulfanylpenta-1,3-dien-1-yl-5- ylidene)bis(triphenylphosphane)osmium(II) top
Crystal data top
[Os(C6H7S)Cl(C18H15P)2(CO)]F(000) = 1768
Mr = 889.38Dx = 1.619 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8192 reflections
a = 13.5565 (1) Åθ = 1.6–28.3°
b = 15.7136 (2) ŵ = 3.75 mm1
c = 18.2264 (3) ÅT = 203 K
β = 109.978 (1)°Plates, blue
V = 3648.97 (8) Å30.33 × 0.28 × 0.11 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
7812 independent reflections
Radiation source: fine-focus sealed tube6032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1716
Tmin = 0.491, Tmax = 0.739k = 019
22209 measured reflectionsl = 023
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0268P)2 + 2.9139P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.004
7812 reflectionsΔρmax = 1.01 e Å3
444 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00065 (5)
Crystal data top
[Os(C6H7S)Cl(C18H15P)2(CO)]V = 3648.97 (8) Å3
Mr = 889.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.5565 (1) ŵ = 3.75 mm1
b = 15.7136 (2) ÅT = 203 K
c = 18.2264 (3) Å0.33 × 0.28 × 0.11 mm
β = 109.978 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
7812 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6032 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.739Rint = 0.023
22209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.01Δρmax = 1.01 e Å3
7812 reflectionsΔρmin = 0.53 e Å3
444 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Os10.503721 (7)0.750195 (6)0.123794 (5)0.01728 (5)
Cl10.52137 (6)0.89985 (5)0.17787 (4)0.03293 (16)
P10.35379 (5)0.75535 (4)0.16571 (4)0.02055 (14)
P20.65608 (5)0.75710 (4)0.08534 (4)0.02050 (14)
S10.41485 (6)0.90387 (5)0.00041 (4)0.02726 (15)
O10.6180 (2)0.6574 (2)0.26956 (18)0.0572 (7)
C10.4083 (2)0.79638 (18)0.01381 (16)0.0235 (6)
C20.3413 (2)0.74700 (19)0.04778 (18)0.0314 (7)
H2A0.29370.77540.09070.038*
C30.3422 (2)0.6598 (2)0.04821 (18)0.0351 (7)
H3A0.29130.63360.09090.042*
C40.4089 (3)0.6051 (2)0.00668 (19)0.0353 (7)
H4A0.40570.54660.00470.042*
C50.4789 (2)0.63212 (18)0.07632 (18)0.0280 (6)
H5A0.52220.58930.10690.034*
C60.5838 (2)0.6926 (2)0.2226 (2)0.0331 (7)
C70.3395 (3)0.9277 (2)0.10003 (18)0.0413 (8)
H7A0.35500.98510.11220.062*
H7B0.26520.92290.10790.062*
H7C0.35770.88780.13400.062*
C110.3842 (2)0.76453 (17)0.27235 (16)0.0235 (6)
C120.3095 (3)0.7412 (2)0.30511 (19)0.0353 (7)
H12A0.24360.72140.27270.042*
C130.3310 (3)0.7467 (2)0.3850 (2)0.0426 (9)
H13A0.27970.73030.40630.051*
C140.4268 (3)0.7760 (2)0.43332 (18)0.0374 (8)
H14A0.44110.77950.48750.045*
C150.5017 (2)0.8001 (2)0.40201 (17)0.0326 (7)
H15A0.56730.82030.43470.039*
C160.4802 (2)0.79462 (19)0.32186 (16)0.0278 (6)
H16A0.53160.81150.30080.033*
C210.2689 (2)0.6613 (2)0.14554 (17)0.0290 (7)
C220.3159 (3)0.5816 (2)0.16040 (18)0.0359 (7)
H22A0.38940.57750.17590.043*
C230.2570 (3)0.5082 (2)0.1529 (2)0.0493 (10)
H23A0.29000.45470.16340.059*
C240.1479 (3)0.5146 (3)0.1294 (2)0.0570 (12)
H24A0.10700.46520.12430.068*
C250.1005 (3)0.5922 (3)0.1140 (2)0.0549 (11)
H25A0.02700.59580.09760.066*
C260.1597 (3)0.6659 (2)0.12214 (19)0.0406 (8)
H26A0.12620.71920.11190.049*
C310.2631 (2)0.8443 (2)0.12691 (16)0.0253 (6)
C320.2611 (2)0.9141 (2)0.17292 (19)0.0314 (7)
H32A0.30270.91410.22610.038*
C330.1988 (3)0.9836 (2)0.1415 (2)0.0401 (8)
H33A0.19831.03040.17340.048*
C340.1374 (2)0.9848 (2)0.0637 (2)0.0428 (9)
H34A0.09581.03260.04240.051*
C350.1373 (2)0.9154 (2)0.0172 (2)0.0409 (8)
H35A0.09470.91570.03570.049*
C360.1997 (2)0.8454 (2)0.04829 (18)0.0335 (7)
H36A0.19940.79840.01630.040*
C410.6232 (2)0.78681 (19)0.01726 (16)0.0249 (6)
C420.5683 (2)0.7288 (2)0.07572 (18)0.0325 (7)
H42A0.55280.67400.06220.039*
C430.5370 (3)0.7532 (2)0.1540 (2)0.0442 (9)
H43A0.50270.71380.19320.053*
C440.5558 (3)0.8340 (3)0.1742 (2)0.0459 (9)
H44A0.53470.84970.22710.055*
C450.6055 (3)0.8925 (2)0.1170 (2)0.0426 (9)
H45A0.61610.94850.13090.051*
C460.6399 (2)0.8687 (2)0.03906 (19)0.0321 (7)
H46A0.67490.90850.00050.038*
C510.7660 (2)0.82842 (19)0.13641 (17)0.0265 (6)
C520.7716 (2)0.8719 (2)0.2035 (2)0.0363 (8)
H52A0.71830.86530.22520.044*
C530.8567 (3)0.9258 (2)0.2393 (2)0.0502 (10)
H53A0.85990.95590.28460.060*
C540.9353 (3)0.9348 (2)0.2086 (2)0.0512 (10)
H54A0.99130.97230.23210.061*
C550.9324 (3)0.8887 (3)0.1431 (2)0.0523 (10)
H55A0.98780.89310.12330.063*
C560.8481 (3)0.8365 (2)0.1071 (2)0.0413 (8)
H56A0.84580.80600.06230.050*
C610.7313 (2)0.65751 (18)0.09802 (17)0.0233 (6)
C620.7491 (2)0.6108 (2)0.03920 (18)0.0320 (7)
H62A0.72020.62920.01290.038*
C630.8093 (3)0.5370 (2)0.0568 (2)0.0389 (8)
H63A0.82040.50570.01640.047*
C640.8526 (2)0.5094 (2)0.13256 (19)0.0334 (7)
H64A0.89270.45920.14400.040*
C650.8371 (3)0.5558 (2)0.19159 (19)0.0364 (7)
H65A0.86680.53750.24360.044*
C660.7779 (2)0.6290 (2)0.17438 (18)0.0353 (7)
H66A0.76880.66060.21530.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.01787 (6)0.01638 (6)0.01841 (6)0.00104 (4)0.00725 (4)0.00086 (4)
Cl10.0314 (4)0.0327 (4)0.0342 (4)0.0012 (3)0.0105 (3)0.0008 (3)
P10.0185 (3)0.0244 (4)0.0191 (3)0.0022 (3)0.0069 (3)0.0012 (3)
P20.0199 (3)0.0218 (4)0.0214 (3)0.0007 (3)0.0091 (3)0.0001 (3)
S10.0287 (4)0.0259 (4)0.0262 (4)0.0020 (3)0.0081 (3)0.0052 (3)
O10.0490 (16)0.068 (2)0.0625 (19)0.0120 (15)0.0288 (15)0.0092 (16)
C10.0216 (13)0.0274 (15)0.0245 (14)0.0001 (11)0.0117 (11)0.0008 (12)
C20.0269 (14)0.0362 (17)0.0276 (15)0.0031 (13)0.0048 (12)0.0002 (13)
C30.0302 (16)0.0405 (19)0.0320 (17)0.0140 (14)0.0072 (13)0.0079 (14)
C40.0419 (18)0.0235 (15)0.0453 (19)0.0079 (14)0.0210 (15)0.0047 (14)
C50.0300 (15)0.0228 (14)0.0366 (17)0.0020 (12)0.0187 (13)0.0002 (12)
C60.0261 (16)0.0375 (19)0.0424 (19)0.0048 (14)0.0207 (15)0.0094 (15)
C70.049 (2)0.044 (2)0.0268 (16)0.0060 (16)0.0071 (15)0.0135 (14)
C110.0260 (14)0.0235 (14)0.0205 (13)0.0003 (11)0.0073 (11)0.0017 (11)
C120.0294 (15)0.051 (2)0.0290 (16)0.0121 (14)0.0145 (13)0.0062 (14)
C130.0410 (18)0.064 (3)0.0313 (17)0.0146 (17)0.0228 (15)0.0024 (16)
C140.0458 (19)0.0481 (19)0.0208 (15)0.0048 (16)0.0143 (14)0.0001 (14)
C150.0336 (17)0.0376 (18)0.0224 (15)0.0039 (13)0.0041 (13)0.0000 (13)
C160.0281 (15)0.0322 (16)0.0240 (14)0.0053 (13)0.0101 (12)0.0019 (12)
C210.0314 (15)0.0355 (17)0.0206 (14)0.0126 (13)0.0096 (12)0.0002 (12)
C220.0433 (19)0.0350 (18)0.0321 (17)0.0121 (15)0.0166 (15)0.0006 (14)
C230.079 (3)0.0332 (19)0.040 (2)0.0201 (19)0.0262 (19)0.0002 (16)
C240.070 (3)0.061 (3)0.037 (2)0.043 (2)0.0148 (19)0.0004 (19)
C250.0381 (19)0.078 (3)0.043 (2)0.030 (2)0.0065 (16)0.006 (2)
C260.0288 (16)0.052 (2)0.0386 (19)0.0146 (15)0.0088 (14)0.0055 (16)
C310.0167 (12)0.0344 (17)0.0274 (15)0.0017 (12)0.0107 (11)0.0069 (12)
C320.0275 (15)0.0335 (17)0.0340 (16)0.0028 (13)0.0116 (13)0.0033 (14)
C330.0327 (17)0.0363 (19)0.054 (2)0.0054 (14)0.0179 (16)0.0041 (16)
C340.0255 (16)0.043 (2)0.062 (2)0.0101 (14)0.0178 (16)0.0202 (18)
C350.0217 (15)0.064 (2)0.0350 (18)0.0087 (15)0.0067 (13)0.0186 (17)
C360.0256 (15)0.0463 (19)0.0299 (16)0.0022 (14)0.0110 (13)0.0041 (14)
C410.0243 (14)0.0291 (15)0.0246 (14)0.0035 (12)0.0127 (12)0.0050 (12)
C420.0258 (15)0.0433 (18)0.0278 (16)0.0019 (13)0.0084 (13)0.0027 (13)
C430.0329 (17)0.071 (3)0.0270 (16)0.0006 (17)0.0081 (14)0.0040 (17)
C440.0354 (18)0.073 (3)0.0328 (18)0.0145 (18)0.0162 (15)0.0186 (18)
C450.0390 (18)0.048 (2)0.049 (2)0.0121 (16)0.0245 (17)0.0231 (17)
C460.0315 (16)0.0301 (16)0.0377 (17)0.0078 (13)0.0158 (14)0.0064 (13)
C510.0216 (13)0.0247 (15)0.0318 (16)0.0023 (11)0.0072 (12)0.0013 (12)
C520.0231 (15)0.0390 (19)0.0425 (19)0.0009 (13)0.0057 (14)0.0112 (15)
C530.0356 (18)0.045 (2)0.058 (2)0.0001 (16)0.0003 (17)0.0200 (18)
C540.0326 (18)0.037 (2)0.072 (3)0.0124 (15)0.0012 (18)0.0025 (19)
C550.0328 (18)0.066 (3)0.059 (2)0.0197 (18)0.0167 (18)0.008 (2)
C560.0372 (18)0.051 (2)0.0406 (19)0.0133 (16)0.0191 (16)0.0053 (16)
C610.0217 (13)0.0223 (14)0.0284 (15)0.0008 (11)0.0117 (11)0.0008 (12)
C620.0350 (16)0.0359 (17)0.0262 (15)0.0035 (14)0.0117 (13)0.0004 (13)
C630.0455 (19)0.0341 (18)0.0397 (18)0.0071 (15)0.0177 (16)0.0108 (14)
C640.0316 (16)0.0246 (15)0.0435 (19)0.0037 (13)0.0120 (14)0.0012 (14)
C650.0362 (17)0.0371 (18)0.0347 (17)0.0111 (14)0.0106 (14)0.0067 (14)
C660.0381 (18)0.0425 (19)0.0258 (16)0.0130 (14)0.0118 (14)0.0029 (14)
Geometric parameters (Å, º) top
Os1—C61.976 (4)C25—H25A0.9400
Os1—C12.109 (3)C26—H26A0.9400
Os1—C52.026 (3)C31—C321.387 (4)
Os1—P22.3996 (7)C31—C361.397 (4)
Os1—P12.4047 (7)C32—C331.379 (4)
Os1—Cl12.5293 (8)C32—H32A0.9400
P1—C211.832 (3)C33—C341.378 (5)
P1—C311.836 (3)C33—H33A0.9400
P1—C111.850 (3)C34—C351.380 (5)
P2—C411.829 (3)C34—H34A0.9400
P2—C611.839 (3)C35—C361.385 (4)
P2—C511.843 (3)C35—H35A0.9400
S1—C11.713 (3)C36—H36A0.9400
S1—C71.805 (3)C41—C461.388 (4)
O1—C60.992 (4)C41—C421.406 (4)
C1—C21.410 (4)C42—C431.396 (5)
C2—C31.370 (4)C42—H42A0.9400
C2—H2A0.9400C43—C441.371 (5)
C3—C41.393 (5)C43—H43A0.9400
C3—H3A0.9400C44—C451.380 (5)
C4—C51.367 (4)C44—H44A0.9400
C4—H4A0.9400C45—C461.388 (4)
C5—H5A0.9400C45—H45A0.9400
C7—H7A0.9700C46—H46A0.9400
C7—H7B0.9700C51—C521.380 (4)
C7—H7C0.9700C51—C561.394 (4)
C11—C121.389 (4)C52—C531.400 (4)
C11—C161.389 (4)C52—H52A0.9400
C12—C131.387 (4)C53—C541.370 (6)
C12—H12A0.9400C53—H53A0.9400
C13—C141.376 (5)C54—C551.386 (6)
C13—H13A0.9400C54—H54A0.9400
C14—C151.378 (4)C55—C561.378 (5)
C14—H14A0.9400C55—H55A0.9400
C15—C161.391 (4)C56—H56A0.9400
C15—H15A0.9400C61—C621.386 (4)
C16—H16A0.9400C61—C661.391 (4)
C21—C221.389 (5)C62—C631.392 (4)
C21—C261.395 (4)C62—H62A0.9400
C22—C231.383 (4)C63—C641.373 (5)
C22—H22A0.9400C63—H63A0.9400
C23—C241.395 (6)C64—C651.374 (4)
C23—H23A0.9400C64—H64A0.9400
C24—C251.362 (6)C65—C661.376 (4)
C24—H24A0.9400C65—H65A0.9400
C25—C261.388 (5)C66—H66A0.9400
C6—Os1—C585.91 (13)C23—C24—H24A119.9
C6—Os1—C1172.52 (12)C24—C25—C26120.7 (4)
C5—Os1—C187.18 (12)C24—C25—H25A119.7
C6—Os1—P291.54 (9)C26—C25—H25A119.7
C5—Os1—P287.16 (8)C25—C26—C21120.2 (4)
C1—Os1—P290.95 (7)C25—C26—H26A119.9
C6—Os1—P189.25 (9)C21—C26—H26A119.9
C5—Os1—P197.56 (8)C32—C31—C36118.5 (3)
C1—Os1—P188.84 (7)C32—C31—P1121.2 (2)
P2—Os1—P1175.26 (2)C36—C31—P1120.1 (2)
C6—Os1—Cl197.00 (10)C33—C32—C31120.7 (3)
C5—Os1—Cl1176.00 (9)C33—C32—H32A119.6
C1—Os1—Cl189.78 (8)C31—C32—H32A119.6
P2—Os1—Cl195.48 (2)C34—C33—C32120.5 (3)
P1—Os1—Cl179.78 (2)C34—C33—H33A119.7
C21—P1—C31104.19 (15)C32—C33—H33A119.7
C21—P1—C1199.96 (13)C33—C34—C35119.6 (3)
C31—P1—C11103.00 (13)C33—C34—H34A120.2
C21—P1—Os1116.76 (10)C35—C34—H34A120.2
C31—P1—Os1115.50 (9)C34—C35—C36120.3 (3)
C11—P1—Os1115.31 (10)C34—C35—H35A119.8
C41—P2—C61106.08 (13)C36—C35—H35A119.8
C41—P2—C51103.53 (14)C35—C36—C31120.3 (3)
C61—P2—C5197.81 (13)C35—C36—H36A119.8
C41—P2—Os1112.12 (9)C31—C36—H36A119.8
C61—P2—Os1114.88 (9)C46—C41—C42118.7 (3)
C51—P2—Os1120.54 (10)C46—C41—P2121.5 (2)
C1—S1—C7108.06 (15)C42—C41—P2119.4 (2)
C2—C1—S1118.7 (2)C43—C42—C41119.6 (3)
C2—C1—Os1125.9 (2)C43—C42—H42A120.2
S1—C1—Os1115.46 (15)C41—C42—H42A120.2
C3—C2—C1123.4 (3)C44—C43—C42120.6 (3)
C3—C2—H2A118.3C44—C43—H43A119.7
C1—C2—H2A118.3C42—C43—H43A119.7
C2—C3—C4128.2 (3)C43—C44—C45120.1 (3)
C2—C3—H3A115.9C43—C44—H44A119.9
C4—C3—H3A115.9C45—C44—H44A119.9
C5—C4—C3123.3 (3)C44—C45—C46120.0 (3)
C5—C4—H4A118.3C44—C45—H45A120.0
C3—C4—H4A118.3C46—C45—H45A120.0
C4—C5—Os1130.0 (2)C45—C46—C41120.9 (3)
C4—C5—H5A115.0C45—C46—H46A119.6
Os1—C5—H5A115.0C41—C46—H46A119.6
O1—C6—Os1172.7 (4)C52—C51—C56119.0 (3)
S1—C7—H7A109.5C52—C51—P2122.6 (2)
S1—C7—H7B109.5C56—C51—P2118.4 (2)
H7A—C7—H7B109.5C51—C52—C53119.9 (3)
S1—C7—H7C109.5C51—C52—H52A120.0
H7A—C7—H7C109.5C53—C52—H52A120.0
H7B—C7—H7C109.5C54—C53—C52120.4 (4)
C12—C11—C16118.0 (3)C54—C53—H53A119.8
C12—C11—P1119.8 (2)C52—C53—H53A119.8
C16—C11—P1122.1 (2)C53—C54—C55120.0 (3)
C13—C12—C11120.8 (3)C53—C54—H54A120.0
C13—C12—H12A119.6C55—C54—H54A120.0
C11—C12—H12A119.6C56—C55—C54119.7 (3)
C14—C13—C12120.4 (3)C56—C55—H55A120.1
C14—C13—H13A119.8C54—C55—H55A120.1
C12—C13—H13A119.8C55—C56—C51120.9 (3)
C13—C14—C15119.7 (3)C55—C56—H56A119.5
C13—C14—H14A120.1C51—C56—H56A119.5
C15—C14—H14A120.1C62—C61—C66117.6 (3)
C14—C15—C16119.9 (3)C62—C61—P2126.0 (2)
C14—C15—H15A120.1C66—C61—P2116.3 (2)
C16—C15—H15A120.1C61—C62—C63120.4 (3)
C11—C16—C15121.1 (3)C61—C62—H62A119.8
C11—C16—H16A119.4C63—C62—H62A119.8
C15—C16—H16A119.4C64—C63—C62120.7 (3)
C22—C21—C26118.4 (3)C64—C63—H63A119.6
C22—C21—P1118.3 (2)C62—C63—H63A119.6
C26—C21—P1123.2 (3)C63—C64—C65119.5 (3)
C23—C22—C21121.5 (3)C63—C64—H64A120.2
C23—C22—H22A119.3C65—C64—H64A120.2
C21—C22—H22A119.3C64—C65—C66119.9 (3)
C22—C23—C24119.1 (4)C64—C65—H65A120.1
C22—C23—H23A120.5C66—C65—H65A120.1
C24—C23—H23A120.5C65—C66—C61121.8 (3)
C25—C24—C23120.2 (3)C65—C66—H66A119.1
C25—C24—H24A119.9C61—C66—H66A119.1

Experimental details

Crystal data
Chemical formula[Os(C6H7S)Cl(C18H15P)2(CO)]
Mr889.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)203
a, b, c (Å)13.5565 (1), 15.7136 (2), 18.2264 (3)
β (°) 109.978 (1)
V3)3648.97 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.75
Crystal size (mm)0.33 × 0.28 × 0.11
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.491, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
22209, 7812, 6032
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.060, 1.01
No. of reflections7812
No. of parameters444
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.53

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Os1—C12.109 (3)C2—C31.370 (4)
Os1—C52.026 (3)C3—C41.393 (5)
C1—C21.410 (4)C4—C51.367 (4)
 

Acknowledgements

We thank the University of Auckland for granting a doctoral scholarship to SDW and the Marsden Fund for granting a doctoral scholarship to PMJ.

References

First citationBleeke, J. R. (2001). Chem. Rev. 101, 1205–1227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElliott, G. P., McAuley, N. M. & Roper, W. R. (1989). Inorg. Synth. 26, 184–189.  CrossRef CAS Web of Science Google Scholar
First citationElliott, G. P., Roper, W. R. & Waters, J. M. (1982). J. Chem. Soc. Chem. Commun. pp. 811–813.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLandorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed. 45, 3914–3936.  Web of Science CrossRef CAS Google Scholar
First citationMaddock, S. M., Rickard, C. E. F., Roper, W. R. & Wright, L. J. (1996). Organometallics, 15, 1793–1803.  CSD CrossRef CAS Web of Science Google Scholar
First citationRickard, C. E. F., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2000). Angew. Chem. Int. Ed. 39, 750–752.  CrossRef CAS Google Scholar
First citationRickard, C. E. F., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2001). Organomet. Chem. 623, 109–115.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWright, L. J. (2006). Dalton Trans. pp. 1821–1827.  Web of Science CrossRef Google Scholar
First citationZhu, J., Jia, G. & Lin, Z. (2007). Organometallics, 26, 1986–1995.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds