metal-organic compounds
Carbonylchlorido(1-methylsulfanylpenta-1,3-dien-1-yl-5-ylidene)bis(triphenylphosphane)osmium(II)
aDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: lj.wright@auckland.ac.nz
The 6H7S)Cl(C18H15P)2(CO)], confirms the formulation as an osmabenzene. There is a slightly distorted octahedral coordination environment at the OsII ion, with the triphenylphosphane ligands mutually trans and the chloride cis to the carbon bearing the –SMe substituent. Within the metallacyclic ring, the C—C distances are appropriate for aromatic bonds and the two Os—C distances are shorter than typical Os—C single bonds. The maximum deviation from the least-squares plane through the osmabenzene ring occurs for the carbon bearing the SMe substituent [0.1037 (18) Å].
of the title compound, [Os(CRelated literature
For the synthesis and properties of metallabenzenes, see: Bleeke (2001); Landorf & Haley (2006); Wright (2006). For the synthesis and properties of osmabenzenes, see: Elliott et al. (1982, 1989); Rickard et al. (2000, 2001). For a discussion of ring planarity in metallabenzenes, see: Zhu et al. (2007). For spectroscopic data, see: Maddock et al. (1996).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1995); cell SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536809039695/lh2916sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809039695/lh2916Isup2.hkl
[Os(C5H4{S–1})(CO)(PPh3)2] (Elliott et al., 1982; Elliott et al., 1989) (200 mg, 0.238 mmol) was dissolved in dry dichloromethane (25 ml) and methyl trifluoromethanesulfonate (534 µL, 0.48 mmol) was added. NaCl (27.8 mg, 0.476 mmol) dissolved in water (1 ml) was added to the blue solution and the mixture stirred for one hour. The dichloromethane layer was seperated and then eluted through a δ): 1.70 (s, 3H, SCH3), 6.57 (apparent t, 1H, H4, 3JHH = 8.5 Hz), 6.65 (d, 1H, H2, 3JHH = 8.8 Hz), 7.07 (d apparent t, 1H, H3, 3JHH = 8.8 Hz, 4JHH = 1.7 Hz), 7.45–7.69 (m, 30H, PPh3), 13.27 (d, 1H, H5, 3JHH = 9.3 Hz). 13C{1H} NMR (CDCl3, δ): 23.21 (s, SCH3), 121.60 (s, C2), 123.75 (s, C4), 126.89 (t'(Maddock et al., 1996), o-PPh3, 2,4JCP = 10.1 Hz), 129.32 (s, p-PPh3), 133.22 (t', i-PPh3, 1,3JCP = 53.3 Hz), 134.62 (t', m-PPh3, 3,5JCP = 11.1 Hz), 145.81 (s, C3), 191.61 (t, CO, 2JCP = 11.1 Hz), 220.96 (t, C5, 2JCP = 6.3 Hz), 237.42 (t, C1, 2JCP = 9.1 Hz).
column (silica gel support, 2.5 cm x 1.5 cm) using dichloromethane as the The fast-moving dark blue band was collected and recrystallized from dichloromethane/ethanol (25 ml/10 ml) to give crystals of the title compound (188 mg, 89%). The crystal used for the single-crystal X-ray diffraction study was also grown from dichloromethane/ethanol. MS: Calcd for C43H37OOsP2S [M–Cl]+ 853.1624. Found: 853.1603 m/z. Anal. Found: C, 57.50; H 4.19. C43H37ClOOsP2S requires C, 58.07; H, 4.19%. 1H NMR (CDCl3,Hydrogen atoms were placed in calculated positions and refined using the riding model [C— H 0.93–0.97 Å, with Uiso(H) = 1.2 or 1.5 times Ueq(C). The highest density peak and deepest hole are located 0.84 Å and 0.54 Å from atoms Os1 and Cl1 respectively.
Metallabenzenes are now a well established class of organometallic compounds and a considerable number of studies involving the syntheses, reactivity and aromatic character of these materials have been made. To obtain further data relating to the nature of the delocalized bonding in osmabenzenes (Rickard et al., 2000; Rickard et al., 2001) we have obtained the single-crystal X–ray structure of the title complex [Os(C5H4{SMe–1})Cl(CO)(PPh3)2]. The geometry about Os is approximately octahedral with the two PPh3 ligands mutually trans. Within the metallacyclic ring the Os—C1 and Os—C5 distances are shorter than those observed for normal Os—C single bonds suggesting there is some multiple character to these bonds (see Table 1). The C—C distances in this ring are very close to those found in simple aromatic compounds and come within the range of distances reported for other metallabenzenes (Bleeke, 2001; Landorf & Haley, 2006; Wright, 2006). The osmabenzene ring is not planar and the atoms that show the greatest displacement from the mean plane through Os and the five ring carbons are C1 (0.1037 (18) Å) and Os (0.1000 (13) Å). Non-planarity has been observed for a number of other metallabenzenes. This phenomenon has been investigated theoretically and shown not to compromise the electron delocalization within the ring (Zhu et al., 2007).
For the synthesis and properties of metallabenzenes, see: Bleeke (2001); Landorf & Haley (2006); Wright (2006). For the synthesis and properties of osmabenzenes, see: Elliott et al. (1982, 1989); Rickard et al. (2000, 2001). For a discussion of ring planarity in metallabenzenes, see: Zhu et al. (2007). For spectroscopic data, see: Maddock et al. (1996).
Data collection: SMART (Siemens, 1995); cell
SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of [Os(C5H4{SMe–1})Cl(CO)(PPh3)2] showing 50% probability displacement ellipsoids for non-hydrogen atoms. H atoms omitted for clarity. |
[Os(C6H7S)Cl(C18H15P)2(CO)] | F(000) = 1768 |
Mr = 889.38 | Dx = 1.619 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 8192 reflections |
a = 13.5565 (1) Å | θ = 1.6–28.3° |
b = 15.7136 (2) Å | µ = 3.75 mm−1 |
c = 18.2264 (3) Å | T = 203 K |
β = 109.978 (1)° | Plates, blue |
V = 3648.97 (8) Å3 | 0.33 × 0.28 × 0.11 mm |
Z = 4 |
Siemens SMART CCD area-detector diffractometer | 7812 independent reflections |
Radiation source: fine-focus sealed tube | 6032 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω scans | θmax = 27.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −17→16 |
Tmin = 0.491, Tmax = 0.739 | k = 0→19 |
22209 measured reflections | l = 0→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0268P)2 + 2.9139P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.004 |
7812 reflections | Δρmax = 1.01 e Å−3 |
444 parameters | Δρmin = −0.53 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00065 (5) |
[Os(C6H7S)Cl(C18H15P)2(CO)] | V = 3648.97 (8) Å3 |
Mr = 889.38 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.5565 (1) Å | µ = 3.75 mm−1 |
b = 15.7136 (2) Å | T = 203 K |
c = 18.2264 (3) Å | 0.33 × 0.28 × 0.11 mm |
β = 109.978 (1)° |
Siemens SMART CCD area-detector diffractometer | 7812 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 6032 reflections with I > 2σ(I) |
Tmin = 0.491, Tmax = 0.739 | Rint = 0.023 |
22209 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.01 | Δρmax = 1.01 e Å−3 |
7812 reflections | Δρmin = −0.53 e Å−3 |
444 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Os1 | 0.503721 (7) | 0.750195 (6) | 0.123794 (5) | 0.01728 (5) | |
Cl1 | 0.52137 (6) | 0.89985 (5) | 0.17787 (4) | 0.03293 (16) | |
P1 | 0.35379 (5) | 0.75535 (4) | 0.16571 (4) | 0.02055 (14) | |
P2 | 0.65608 (5) | 0.75710 (4) | 0.08534 (4) | 0.02050 (14) | |
S1 | 0.41485 (6) | 0.90387 (5) | 0.00041 (4) | 0.02726 (15) | |
O1 | 0.6180 (2) | 0.6574 (2) | 0.26956 (18) | 0.0572 (7) | |
C1 | 0.4083 (2) | 0.79638 (18) | 0.01381 (16) | 0.0235 (6) | |
C2 | 0.3413 (2) | 0.74700 (19) | −0.04778 (18) | 0.0314 (7) | |
H2A | 0.2937 | 0.7754 | −0.0907 | 0.038* | |
C3 | 0.3422 (2) | 0.6598 (2) | −0.04821 (18) | 0.0351 (7) | |
H3A | 0.2913 | 0.6336 | −0.0909 | 0.042* | |
C4 | 0.4089 (3) | 0.6051 (2) | 0.00668 (19) | 0.0353 (7) | |
H4A | 0.4057 | 0.5466 | −0.0047 | 0.042* | |
C5 | 0.4789 (2) | 0.63212 (18) | 0.07632 (18) | 0.0280 (6) | |
H5A | 0.5222 | 0.5893 | 0.1069 | 0.034* | |
C6 | 0.5838 (2) | 0.6926 (2) | 0.2226 (2) | 0.0331 (7) | |
C7 | 0.3395 (3) | 0.9277 (2) | −0.10003 (18) | 0.0413 (8) | |
H7A | 0.3550 | 0.9851 | −0.1122 | 0.062* | |
H7B | 0.2652 | 0.9229 | −0.1079 | 0.062* | |
H7C | 0.3577 | 0.8878 | −0.1340 | 0.062* | |
C11 | 0.3842 (2) | 0.76453 (17) | 0.27235 (16) | 0.0235 (6) | |
C12 | 0.3095 (3) | 0.7412 (2) | 0.30511 (19) | 0.0353 (7) | |
H12A | 0.2436 | 0.7214 | 0.2727 | 0.042* | |
C13 | 0.3310 (3) | 0.7467 (2) | 0.3850 (2) | 0.0426 (9) | |
H13A | 0.2797 | 0.7303 | 0.4063 | 0.051* | |
C14 | 0.4268 (3) | 0.7760 (2) | 0.43332 (18) | 0.0374 (8) | |
H14A | 0.4411 | 0.7795 | 0.4875 | 0.045* | |
C15 | 0.5017 (2) | 0.8001 (2) | 0.40201 (17) | 0.0326 (7) | |
H15A | 0.5673 | 0.8203 | 0.4347 | 0.039* | |
C16 | 0.4802 (2) | 0.79462 (19) | 0.32186 (16) | 0.0278 (6) | |
H16A | 0.5316 | 0.8115 | 0.3008 | 0.033* | |
C21 | 0.2689 (2) | 0.6613 (2) | 0.14554 (17) | 0.0290 (7) | |
C22 | 0.3159 (3) | 0.5816 (2) | 0.16040 (18) | 0.0359 (7) | |
H22A | 0.3894 | 0.5775 | 0.1759 | 0.043* | |
C23 | 0.2570 (3) | 0.5082 (2) | 0.1529 (2) | 0.0493 (10) | |
H23A | 0.2900 | 0.4547 | 0.1634 | 0.059* | |
C24 | 0.1479 (3) | 0.5146 (3) | 0.1294 (2) | 0.0570 (12) | |
H24A | 0.1070 | 0.4652 | 0.1243 | 0.068* | |
C25 | 0.1005 (3) | 0.5922 (3) | 0.1140 (2) | 0.0549 (11) | |
H25A | 0.0270 | 0.5958 | 0.0976 | 0.066* | |
C26 | 0.1597 (3) | 0.6659 (2) | 0.12214 (19) | 0.0406 (8) | |
H26A | 0.1262 | 0.7192 | 0.1119 | 0.049* | |
C31 | 0.2631 (2) | 0.8443 (2) | 0.12691 (16) | 0.0253 (6) | |
C32 | 0.2611 (2) | 0.9141 (2) | 0.17292 (19) | 0.0314 (7) | |
H32A | 0.3027 | 0.9141 | 0.2261 | 0.038* | |
C33 | 0.1988 (3) | 0.9836 (2) | 0.1415 (2) | 0.0401 (8) | |
H33A | 0.1983 | 1.0304 | 0.1734 | 0.048* | |
C34 | 0.1374 (2) | 0.9848 (2) | 0.0637 (2) | 0.0428 (9) | |
H34A | 0.0958 | 1.0326 | 0.0424 | 0.051* | |
C35 | 0.1373 (2) | 0.9154 (2) | 0.0172 (2) | 0.0409 (8) | |
H35A | 0.0947 | 0.9157 | −0.0357 | 0.049* | |
C36 | 0.1997 (2) | 0.8454 (2) | 0.04829 (18) | 0.0335 (7) | |
H36A | 0.1994 | 0.7984 | 0.0163 | 0.040* | |
C41 | 0.6232 (2) | 0.78681 (19) | −0.01726 (16) | 0.0249 (6) | |
C42 | 0.5683 (2) | 0.7288 (2) | −0.07572 (18) | 0.0325 (7) | |
H42A | 0.5528 | 0.6740 | −0.0622 | 0.039* | |
C43 | 0.5370 (3) | 0.7532 (2) | −0.1540 (2) | 0.0442 (9) | |
H43A | 0.5027 | 0.7138 | −0.1932 | 0.053* | |
C44 | 0.5558 (3) | 0.8340 (3) | −0.1742 (2) | 0.0459 (9) | |
H44A | 0.5347 | 0.8497 | −0.2271 | 0.055* | |
C45 | 0.6055 (3) | 0.8925 (2) | −0.1170 (2) | 0.0426 (9) | |
H45A | 0.6161 | 0.9485 | −0.1309 | 0.051* | |
C46 | 0.6399 (2) | 0.8687 (2) | −0.03906 (19) | 0.0321 (7) | |
H46A | 0.6749 | 0.9085 | −0.0005 | 0.038* | |
C51 | 0.7660 (2) | 0.82842 (19) | 0.13641 (17) | 0.0265 (6) | |
C52 | 0.7716 (2) | 0.8719 (2) | 0.2035 (2) | 0.0363 (8) | |
H52A | 0.7183 | 0.8653 | 0.2252 | 0.044* | |
C53 | 0.8567 (3) | 0.9258 (2) | 0.2393 (2) | 0.0502 (10) | |
H53A | 0.8599 | 0.9559 | 0.2846 | 0.060* | |
C54 | 0.9353 (3) | 0.9348 (2) | 0.2086 (2) | 0.0512 (10) | |
H54A | 0.9913 | 0.9723 | 0.2321 | 0.061* | |
C55 | 0.9324 (3) | 0.8887 (3) | 0.1431 (2) | 0.0523 (10) | |
H55A | 0.9878 | 0.8931 | 0.1233 | 0.063* | |
C56 | 0.8481 (3) | 0.8365 (2) | 0.1071 (2) | 0.0413 (8) | |
H56A | 0.8458 | 0.8060 | 0.0623 | 0.050* | |
C61 | 0.7313 (2) | 0.65751 (18) | 0.09802 (17) | 0.0233 (6) | |
C62 | 0.7491 (2) | 0.6108 (2) | 0.03920 (18) | 0.0320 (7) | |
H62A | 0.7202 | 0.6292 | −0.0129 | 0.038* | |
C63 | 0.8093 (3) | 0.5370 (2) | 0.0568 (2) | 0.0389 (8) | |
H63A | 0.8204 | 0.5057 | 0.0164 | 0.047* | |
C64 | 0.8526 (2) | 0.5094 (2) | 0.13256 (19) | 0.0334 (7) | |
H64A | 0.8927 | 0.4592 | 0.1440 | 0.040* | |
C65 | 0.8371 (3) | 0.5558 (2) | 0.19159 (19) | 0.0364 (7) | |
H65A | 0.8668 | 0.5375 | 0.2436 | 0.044* | |
C66 | 0.7779 (2) | 0.6290 (2) | 0.17438 (18) | 0.0353 (7) | |
H66A | 0.7688 | 0.6606 | 0.2153 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Os1 | 0.01787 (6) | 0.01638 (6) | 0.01841 (6) | −0.00104 (4) | 0.00725 (4) | 0.00086 (4) |
Cl1 | 0.0314 (4) | 0.0327 (4) | 0.0342 (4) | −0.0012 (3) | 0.0105 (3) | 0.0008 (3) |
P1 | 0.0185 (3) | 0.0244 (4) | 0.0191 (3) | −0.0022 (3) | 0.0069 (3) | 0.0012 (3) |
P2 | 0.0199 (3) | 0.0218 (4) | 0.0214 (3) | −0.0007 (3) | 0.0091 (3) | 0.0001 (3) |
S1 | 0.0287 (4) | 0.0259 (4) | 0.0262 (4) | 0.0020 (3) | 0.0081 (3) | 0.0052 (3) |
O1 | 0.0490 (16) | 0.068 (2) | 0.0625 (19) | 0.0120 (15) | 0.0288 (15) | 0.0092 (16) |
C1 | 0.0216 (13) | 0.0274 (15) | 0.0245 (14) | −0.0001 (11) | 0.0117 (11) | 0.0008 (12) |
C2 | 0.0269 (14) | 0.0362 (17) | 0.0276 (15) | −0.0031 (13) | 0.0048 (12) | −0.0002 (13) |
C3 | 0.0302 (16) | 0.0405 (19) | 0.0320 (17) | −0.0140 (14) | 0.0072 (13) | −0.0079 (14) |
C4 | 0.0419 (18) | 0.0235 (15) | 0.0453 (19) | −0.0079 (14) | 0.0210 (15) | −0.0047 (14) |
C5 | 0.0300 (15) | 0.0228 (14) | 0.0366 (17) | −0.0020 (12) | 0.0187 (13) | −0.0002 (12) |
C6 | 0.0261 (16) | 0.0375 (19) | 0.0424 (19) | −0.0048 (14) | 0.0207 (15) | −0.0094 (15) |
C7 | 0.049 (2) | 0.044 (2) | 0.0268 (16) | 0.0060 (16) | 0.0071 (15) | 0.0135 (14) |
C11 | 0.0260 (14) | 0.0235 (14) | 0.0205 (13) | −0.0003 (11) | 0.0073 (11) | 0.0017 (11) |
C12 | 0.0294 (15) | 0.051 (2) | 0.0290 (16) | −0.0121 (14) | 0.0145 (13) | −0.0062 (14) |
C13 | 0.0410 (18) | 0.064 (3) | 0.0313 (17) | −0.0146 (17) | 0.0228 (15) | −0.0024 (16) |
C14 | 0.0458 (19) | 0.0481 (19) | 0.0208 (15) | −0.0048 (16) | 0.0143 (14) | −0.0001 (14) |
C15 | 0.0336 (17) | 0.0376 (18) | 0.0224 (15) | −0.0039 (13) | 0.0041 (13) | 0.0000 (13) |
C16 | 0.0281 (15) | 0.0322 (16) | 0.0240 (14) | −0.0053 (13) | 0.0101 (12) | 0.0019 (12) |
C21 | 0.0314 (15) | 0.0355 (17) | 0.0206 (14) | −0.0126 (13) | 0.0096 (12) | −0.0002 (12) |
C22 | 0.0433 (19) | 0.0350 (18) | 0.0321 (17) | −0.0121 (15) | 0.0166 (15) | 0.0006 (14) |
C23 | 0.079 (3) | 0.0332 (19) | 0.040 (2) | −0.0201 (19) | 0.0262 (19) | 0.0002 (16) |
C24 | 0.070 (3) | 0.061 (3) | 0.037 (2) | −0.043 (2) | 0.0148 (19) | −0.0004 (19) |
C25 | 0.0381 (19) | 0.078 (3) | 0.043 (2) | −0.030 (2) | 0.0065 (16) | 0.006 (2) |
C26 | 0.0288 (16) | 0.052 (2) | 0.0386 (19) | −0.0146 (15) | 0.0088 (14) | 0.0055 (16) |
C31 | 0.0167 (12) | 0.0344 (17) | 0.0274 (15) | 0.0017 (12) | 0.0107 (11) | 0.0069 (12) |
C32 | 0.0275 (15) | 0.0335 (17) | 0.0340 (16) | 0.0028 (13) | 0.0116 (13) | 0.0033 (14) |
C33 | 0.0327 (17) | 0.0363 (19) | 0.054 (2) | 0.0054 (14) | 0.0179 (16) | 0.0041 (16) |
C34 | 0.0255 (16) | 0.043 (2) | 0.062 (2) | 0.0101 (14) | 0.0178 (16) | 0.0202 (18) |
C35 | 0.0217 (15) | 0.064 (2) | 0.0350 (18) | 0.0087 (15) | 0.0067 (13) | 0.0186 (17) |
C36 | 0.0256 (15) | 0.0463 (19) | 0.0299 (16) | 0.0022 (14) | 0.0110 (13) | 0.0041 (14) |
C41 | 0.0243 (14) | 0.0291 (15) | 0.0246 (14) | 0.0035 (12) | 0.0127 (12) | 0.0050 (12) |
C42 | 0.0258 (15) | 0.0433 (18) | 0.0278 (16) | −0.0019 (13) | 0.0084 (13) | 0.0027 (13) |
C43 | 0.0329 (17) | 0.071 (3) | 0.0270 (16) | −0.0006 (17) | 0.0081 (14) | −0.0040 (17) |
C44 | 0.0354 (18) | 0.073 (3) | 0.0328 (18) | 0.0145 (18) | 0.0162 (15) | 0.0186 (18) |
C45 | 0.0390 (18) | 0.048 (2) | 0.049 (2) | 0.0121 (16) | 0.0245 (17) | 0.0231 (17) |
C46 | 0.0315 (16) | 0.0301 (16) | 0.0377 (17) | 0.0078 (13) | 0.0158 (14) | 0.0064 (13) |
C51 | 0.0216 (13) | 0.0247 (15) | 0.0318 (16) | −0.0023 (11) | 0.0072 (12) | 0.0013 (12) |
C52 | 0.0231 (15) | 0.0390 (19) | 0.0425 (19) | 0.0009 (13) | 0.0057 (14) | −0.0112 (15) |
C53 | 0.0356 (18) | 0.045 (2) | 0.058 (2) | 0.0001 (16) | 0.0003 (17) | −0.0200 (18) |
C54 | 0.0326 (18) | 0.037 (2) | 0.072 (3) | −0.0124 (15) | 0.0012 (18) | −0.0025 (19) |
C55 | 0.0328 (18) | 0.066 (3) | 0.059 (2) | −0.0197 (18) | 0.0167 (18) | 0.008 (2) |
C56 | 0.0372 (18) | 0.051 (2) | 0.0406 (19) | −0.0133 (16) | 0.0191 (16) | −0.0053 (16) |
C61 | 0.0217 (13) | 0.0223 (14) | 0.0284 (15) | 0.0008 (11) | 0.0117 (11) | 0.0008 (12) |
C62 | 0.0350 (16) | 0.0359 (17) | 0.0262 (15) | 0.0035 (14) | 0.0117 (13) | 0.0004 (13) |
C63 | 0.0455 (19) | 0.0341 (18) | 0.0397 (18) | 0.0071 (15) | 0.0177 (16) | −0.0108 (14) |
C64 | 0.0316 (16) | 0.0246 (15) | 0.0435 (19) | 0.0037 (13) | 0.0120 (14) | 0.0012 (14) |
C65 | 0.0362 (17) | 0.0371 (18) | 0.0347 (17) | 0.0111 (14) | 0.0106 (14) | 0.0067 (14) |
C66 | 0.0381 (18) | 0.0425 (19) | 0.0258 (16) | 0.0130 (14) | 0.0118 (14) | 0.0029 (14) |
Os1—C6 | 1.976 (4) | C25—H25A | 0.9400 |
Os1—C1 | 2.109 (3) | C26—H26A | 0.9400 |
Os1—C5 | 2.026 (3) | C31—C32 | 1.387 (4) |
Os1—P2 | 2.3996 (7) | C31—C36 | 1.397 (4) |
Os1—P1 | 2.4047 (7) | C32—C33 | 1.379 (4) |
Os1—Cl1 | 2.5293 (8) | C32—H32A | 0.9400 |
P1—C21 | 1.832 (3) | C33—C34 | 1.378 (5) |
P1—C31 | 1.836 (3) | C33—H33A | 0.9400 |
P1—C11 | 1.850 (3) | C34—C35 | 1.380 (5) |
P2—C41 | 1.829 (3) | C34—H34A | 0.9400 |
P2—C61 | 1.839 (3) | C35—C36 | 1.385 (4) |
P2—C51 | 1.843 (3) | C35—H35A | 0.9400 |
S1—C1 | 1.713 (3) | C36—H36A | 0.9400 |
S1—C7 | 1.805 (3) | C41—C46 | 1.388 (4) |
O1—C6 | 0.992 (4) | C41—C42 | 1.406 (4) |
C1—C2 | 1.410 (4) | C42—C43 | 1.396 (5) |
C2—C3 | 1.370 (4) | C42—H42A | 0.9400 |
C2—H2A | 0.9400 | C43—C44 | 1.371 (5) |
C3—C4 | 1.393 (5) | C43—H43A | 0.9400 |
C3—H3A | 0.9400 | C44—C45 | 1.380 (5) |
C4—C5 | 1.367 (4) | C44—H44A | 0.9400 |
C4—H4A | 0.9400 | C45—C46 | 1.388 (4) |
C5—H5A | 0.9400 | C45—H45A | 0.9400 |
C7—H7A | 0.9700 | C46—H46A | 0.9400 |
C7—H7B | 0.9700 | C51—C52 | 1.380 (4) |
C7—H7C | 0.9700 | C51—C56 | 1.394 (4) |
C11—C12 | 1.389 (4) | C52—C53 | 1.400 (4) |
C11—C16 | 1.389 (4) | C52—H52A | 0.9400 |
C12—C13 | 1.387 (4) | C53—C54 | 1.370 (6) |
C12—H12A | 0.9400 | C53—H53A | 0.9400 |
C13—C14 | 1.376 (5) | C54—C55 | 1.386 (6) |
C13—H13A | 0.9400 | C54—H54A | 0.9400 |
C14—C15 | 1.378 (4) | C55—C56 | 1.378 (5) |
C14—H14A | 0.9400 | C55—H55A | 0.9400 |
C15—C16 | 1.391 (4) | C56—H56A | 0.9400 |
C15—H15A | 0.9400 | C61—C62 | 1.386 (4) |
C16—H16A | 0.9400 | C61—C66 | 1.391 (4) |
C21—C22 | 1.389 (5) | C62—C63 | 1.392 (4) |
C21—C26 | 1.395 (4) | C62—H62A | 0.9400 |
C22—C23 | 1.383 (4) | C63—C64 | 1.373 (5) |
C22—H22A | 0.9400 | C63—H63A | 0.9400 |
C23—C24 | 1.395 (6) | C64—C65 | 1.374 (4) |
C23—H23A | 0.9400 | C64—H64A | 0.9400 |
C24—C25 | 1.362 (6) | C65—C66 | 1.376 (4) |
C24—H24A | 0.9400 | C65—H65A | 0.9400 |
C25—C26 | 1.388 (5) | C66—H66A | 0.9400 |
C6—Os1—C5 | 85.91 (13) | C23—C24—H24A | 119.9 |
C6—Os1—C1 | 172.52 (12) | C24—C25—C26 | 120.7 (4) |
C5—Os1—C1 | 87.18 (12) | C24—C25—H25A | 119.7 |
C6—Os1—P2 | 91.54 (9) | C26—C25—H25A | 119.7 |
C5—Os1—P2 | 87.16 (8) | C25—C26—C21 | 120.2 (4) |
C1—Os1—P2 | 90.95 (7) | C25—C26—H26A | 119.9 |
C6—Os1—P1 | 89.25 (9) | C21—C26—H26A | 119.9 |
C5—Os1—P1 | 97.56 (8) | C32—C31—C36 | 118.5 (3) |
C1—Os1—P1 | 88.84 (7) | C32—C31—P1 | 121.2 (2) |
P2—Os1—P1 | 175.26 (2) | C36—C31—P1 | 120.1 (2) |
C6—Os1—Cl1 | 97.00 (10) | C33—C32—C31 | 120.7 (3) |
C5—Os1—Cl1 | 176.00 (9) | C33—C32—H32A | 119.6 |
C1—Os1—Cl1 | 89.78 (8) | C31—C32—H32A | 119.6 |
P2—Os1—Cl1 | 95.48 (2) | C34—C33—C32 | 120.5 (3) |
P1—Os1—Cl1 | 79.78 (2) | C34—C33—H33A | 119.7 |
C21—P1—C31 | 104.19 (15) | C32—C33—H33A | 119.7 |
C21—P1—C11 | 99.96 (13) | C33—C34—C35 | 119.6 (3) |
C31—P1—C11 | 103.00 (13) | C33—C34—H34A | 120.2 |
C21—P1—Os1 | 116.76 (10) | C35—C34—H34A | 120.2 |
C31—P1—Os1 | 115.50 (9) | C34—C35—C36 | 120.3 (3) |
C11—P1—Os1 | 115.31 (10) | C34—C35—H35A | 119.8 |
C41—P2—C61 | 106.08 (13) | C36—C35—H35A | 119.8 |
C41—P2—C51 | 103.53 (14) | C35—C36—C31 | 120.3 (3) |
C61—P2—C51 | 97.81 (13) | C35—C36—H36A | 119.8 |
C41—P2—Os1 | 112.12 (9) | C31—C36—H36A | 119.8 |
C61—P2—Os1 | 114.88 (9) | C46—C41—C42 | 118.7 (3) |
C51—P2—Os1 | 120.54 (10) | C46—C41—P2 | 121.5 (2) |
C1—S1—C7 | 108.06 (15) | C42—C41—P2 | 119.4 (2) |
C2—C1—S1 | 118.7 (2) | C43—C42—C41 | 119.6 (3) |
C2—C1—Os1 | 125.9 (2) | C43—C42—H42A | 120.2 |
S1—C1—Os1 | 115.46 (15) | C41—C42—H42A | 120.2 |
C3—C2—C1 | 123.4 (3) | C44—C43—C42 | 120.6 (3) |
C3—C2—H2A | 118.3 | C44—C43—H43A | 119.7 |
C1—C2—H2A | 118.3 | C42—C43—H43A | 119.7 |
C2—C3—C4 | 128.2 (3) | C43—C44—C45 | 120.1 (3) |
C2—C3—H3A | 115.9 | C43—C44—H44A | 119.9 |
C4—C3—H3A | 115.9 | C45—C44—H44A | 119.9 |
C5—C4—C3 | 123.3 (3) | C44—C45—C46 | 120.0 (3) |
C5—C4—H4A | 118.3 | C44—C45—H45A | 120.0 |
C3—C4—H4A | 118.3 | C46—C45—H45A | 120.0 |
C4—C5—Os1 | 130.0 (2) | C45—C46—C41 | 120.9 (3) |
C4—C5—H5A | 115.0 | C45—C46—H46A | 119.6 |
Os1—C5—H5A | 115.0 | C41—C46—H46A | 119.6 |
O1—C6—Os1 | 172.7 (4) | C52—C51—C56 | 119.0 (3) |
S1—C7—H7A | 109.5 | C52—C51—P2 | 122.6 (2) |
S1—C7—H7B | 109.5 | C56—C51—P2 | 118.4 (2) |
H7A—C7—H7B | 109.5 | C51—C52—C53 | 119.9 (3) |
S1—C7—H7C | 109.5 | C51—C52—H52A | 120.0 |
H7A—C7—H7C | 109.5 | C53—C52—H52A | 120.0 |
H7B—C7—H7C | 109.5 | C54—C53—C52 | 120.4 (4) |
C12—C11—C16 | 118.0 (3) | C54—C53—H53A | 119.8 |
C12—C11—P1 | 119.8 (2) | C52—C53—H53A | 119.8 |
C16—C11—P1 | 122.1 (2) | C53—C54—C55 | 120.0 (3) |
C13—C12—C11 | 120.8 (3) | C53—C54—H54A | 120.0 |
C13—C12—H12A | 119.6 | C55—C54—H54A | 120.0 |
C11—C12—H12A | 119.6 | C56—C55—C54 | 119.7 (3) |
C14—C13—C12 | 120.4 (3) | C56—C55—H55A | 120.1 |
C14—C13—H13A | 119.8 | C54—C55—H55A | 120.1 |
C12—C13—H13A | 119.8 | C55—C56—C51 | 120.9 (3) |
C13—C14—C15 | 119.7 (3) | C55—C56—H56A | 119.5 |
C13—C14—H14A | 120.1 | C51—C56—H56A | 119.5 |
C15—C14—H14A | 120.1 | C62—C61—C66 | 117.6 (3) |
C14—C15—C16 | 119.9 (3) | C62—C61—P2 | 126.0 (2) |
C14—C15—H15A | 120.1 | C66—C61—P2 | 116.3 (2) |
C16—C15—H15A | 120.1 | C61—C62—C63 | 120.4 (3) |
C11—C16—C15 | 121.1 (3) | C61—C62—H62A | 119.8 |
C11—C16—H16A | 119.4 | C63—C62—H62A | 119.8 |
C15—C16—H16A | 119.4 | C64—C63—C62 | 120.7 (3) |
C22—C21—C26 | 118.4 (3) | C64—C63—H63A | 119.6 |
C22—C21—P1 | 118.3 (2) | C62—C63—H63A | 119.6 |
C26—C21—P1 | 123.2 (3) | C63—C64—C65 | 119.5 (3) |
C23—C22—C21 | 121.5 (3) | C63—C64—H64A | 120.2 |
C23—C22—H22A | 119.3 | C65—C64—H64A | 120.2 |
C21—C22—H22A | 119.3 | C64—C65—C66 | 119.9 (3) |
C22—C23—C24 | 119.1 (4) | C64—C65—H65A | 120.1 |
C22—C23—H23A | 120.5 | C66—C65—H65A | 120.1 |
C24—C23—H23A | 120.5 | C65—C66—C61 | 121.8 (3) |
C25—C24—C23 | 120.2 (3) | C65—C66—H66A | 119.1 |
C25—C24—H24A | 119.9 | C61—C66—H66A | 119.1 |
Experimental details
Crystal data | |
Chemical formula | [Os(C6H7S)Cl(C18H15P)2(CO)] |
Mr | 889.38 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 203 |
a, b, c (Å) | 13.5565 (1), 15.7136 (2), 18.2264 (3) |
β (°) | 109.978 (1) |
V (Å3) | 3648.97 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.75 |
Crystal size (mm) | 0.33 × 0.28 × 0.11 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.491, 0.739 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22209, 7812, 6032 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.060, 1.01 |
No. of reflections | 7812 |
No. of parameters | 444 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.01, −0.53 |
Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Os1—C1 | 2.109 (3) | C2—C3 | 1.370 (4) |
Os1—C5 | 2.026 (3) | C3—C4 | 1.393 (5) |
C1—C2 | 1.410 (4) | C4—C5 | 1.367 (4) |
Acknowledgements
We thank the University of Auckland for granting a doctoral scholarship to SDW and the Marsden Fund for granting a doctoral scholarship to PMJ.
References
Bleeke, J. R. (2001). Chem. Rev. 101, 1205–1227. Web of Science CrossRef PubMed CAS Google Scholar
Elliott, G. P., McAuley, N. M. & Roper, W. R. (1989). Inorg. Synth. 26, 184–189. CrossRef CAS Web of Science Google Scholar
Elliott, G. P., Roper, W. R. & Waters, J. M. (1982). J. Chem. Soc. Chem. Commun. pp. 811–813. CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Landorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed. 45, 3914–3936. Web of Science CrossRef CAS Google Scholar
Maddock, S. M., Rickard, C. E. F., Roper, W. R. & Wright, L. J. (1996). Organometallics, 15, 1793–1803. CSD CrossRef CAS Web of Science Google Scholar
Rickard, C. E. F., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2000). Angew. Chem. Int. Ed. 39, 750–752. CrossRef CAS Google Scholar
Rickard, C. E. F., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2001). Organomet. Chem. 623, 109–115. CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Wright, L. J. (2006). Dalton Trans. pp. 1821–1827. Web of Science CrossRef Google Scholar
Zhu, J., Jia, G. & Lin, Z. (2007). Organometallics, 26, 1986–1995. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metallabenzenes are now a well established class of organometallic compounds and a considerable number of studies involving the syntheses, reactivity and aromatic character of these materials have been made. To obtain further data relating to the nature of the delocalized bonding in osmabenzenes (Rickard et al., 2000; Rickard et al., 2001) we have obtained the single-crystal X–ray structure of the title complex [Os(C5H4{SMe–1})Cl(CO)(PPh3)2]. The geometry about Os is approximately octahedral with the two PPh3 ligands mutually trans. Within the metallacyclic ring the Os—C1 and Os—C5 distances are shorter than those observed for normal Os—C single bonds suggesting there is some multiple character to these bonds (see Table 1). The C—C distances in this ring are very close to those found in simple aromatic compounds and come within the range of distances reported for other metallabenzenes (Bleeke, 2001; Landorf & Haley, 2006; Wright, 2006). The osmabenzene ring is not planar and the atoms that show the greatest displacement from the mean plane through Os and the five ring carbons are C1 (0.1037 (18) Å) and Os (0.1000 (13) Å). Non-planarity has been observed for a number of other metallabenzenes. This phenomenon has been investigated theoretically and shown not to compromise the electron delocalization within the ring (Zhu et al., 2007).