metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-nitrito-κ3O:O,O′;κ3O,O′:O-bis­­{[2,6-bis­­(pyrazol-1-yl-κN2)pyridine-κN](nitrito-κ2O,O′)cadmium(II)}

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: shijingmin1955@yahoo.com.cn

(Received 27 September 2009; accepted 30 September 2009; online 7 October 2009)

In the title centrosymmetric binuclear complex, [Cd2(NO2)4(C11H9N5)2], the unique CdII ion is in a distorted dodeca­hedral CdN3O5 coordination environment. The two inversion-related CdII ions are separated by 3.9920 (6) Å and are bridged by two O atoms from two nitrite ligands. There are two types of ππ stacking inter­actions involving symmetry-related pyrazole rings, with centroid–centroid distances of 3.445 (2) and 3.431 (2) Å.

Related literature

For related structures, see: Yang & Sun (2008[Yang, Z. N. & Sun, T. T. (2008). Acta Cryst. E64, m1374.]); Bessel et al. (1993[Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1563-1576.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(NO2)4(C11H9N5)2]

  • Mr = 831.30

  • Triclinic, [P \overline 1]

  • a = 7.7618 (13) Å

  • b = 9.5522 (16) Å

  • c = 10.9665 (19) Å

  • α = 110.285 (2)°

  • β = 90.616 (2)°

  • γ = 112.155 (2)°

  • V = 696.9 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 298 K

  • 0.32 × 0.21 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.628, Tmax = 0.856

  • 3815 measured reflections

  • 2666 independent reflections

  • 2468 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.09

  • 2666 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,6-Dipyrazol-1-ylpyridine is expected be a useful tridentate ligand, but complexes with it as ligand to our knowledge are somewhat rare (e.g. Yang & Sun, 2008; Bessel et al., 1993). Our interest in complexes with 2,6-dipyrazol-1-ylpyridine as a ligand has motivated us to prepare the title complex, (I), and herein we report its crystal structure.

Fig. 1 shows the molecular structure of the title complex. Each CdII ion is coordinated by five O atoms and three N atoms in a distorted dodecahedral coordination environment (see Fig. 2). It is rare for CdII to assume this coordination mode. Fig. 1 also shows that two nitrite anions function as bridging ligands, linking two inversion related CdII ions with a separation of 3.9920 (6) Å leading to a binuclear CdII complex. In the crystal there are the strong ππ stacking interactions involving the symmetry related triazole rings, with the relevant distances being Cg1···Cg2i = 3.445 (2) Å, Cg2···Cg2ii = 3.431 (2) Å, Cg1···Cg2iperp = 3.299 Å and Cg2···Cg2iiperp = 3.274 Å (symmetric codes: (i) -1+x, y, z; (ii) 1-x, 1-y, 2-z; Cg1 and Cg2 are the centroids of C1-C3/N1/N2; C9-C11/N4/N5 triazole rings, respectively; Cgi···Cgjperp is the perpendicular distance from Cgi ring to Cgj ring).

Related literature top

For related structures, see: Yang & Sun (2008); Bessel et al. (1993).

Experimental top

10 ml dichloromethane solution of 2,6-Dipyrazol-1-ylpyridine (0.0692 g, 0.328 mmol) was added into 10 ml methanol solution containing Cd(ClO4).6H2O (0.0740 g, 0.176 mmol) and sodium nitrite (0.0138 g, 0.200 mmol) and the mixed soluton was stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for about one month.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å, Uiso = 1.2Ueq(C).

Structure description top

2,6-Dipyrazol-1-ylpyridine is expected be a useful tridentate ligand, but complexes with it as ligand to our knowledge are somewhat rare (e.g. Yang & Sun, 2008; Bessel et al., 1993). Our interest in complexes with 2,6-dipyrazol-1-ylpyridine as a ligand has motivated us to prepare the title complex, (I), and herein we report its crystal structure.

Fig. 1 shows the molecular structure of the title complex. Each CdII ion is coordinated by five O atoms and three N atoms in a distorted dodecahedral coordination environment (see Fig. 2). It is rare for CdII to assume this coordination mode. Fig. 1 also shows that two nitrite anions function as bridging ligands, linking two inversion related CdII ions with a separation of 3.9920 (6) Å leading to a binuclear CdII complex. In the crystal there are the strong ππ stacking interactions involving the symmetry related triazole rings, with the relevant distances being Cg1···Cg2i = 3.445 (2) Å, Cg2···Cg2ii = 3.431 (2) Å, Cg1···Cg2iperp = 3.299 Å and Cg2···Cg2iiperp = 3.274 Å (symmetric codes: (i) -1+x, y, z; (ii) 1-x, 1-y, 2-z; Cg1 and Cg2 are the centroids of C1-C3/N1/N2; C9-C11/N4/N5 triazole rings, respectively; Cgi···Cgjperp is the perpendicular distance from Cgi ring to Cgj ring).

For related structures, see: Yang & Sun (2008); Bessel et al. (1993).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) 1 - x, 2 - y, 2 - z
[Figure 2] Fig. 2. The coordination environment of CdII
Di-µ-nitrito- κ3O:O,O';κ3O,O':O- bis{[2,6-bis(pyrazol-1-yl-κN2)pyridine-κN](nitrito- κ2O,O')cadmium(II)} top
Crystal data top
[Cd2(NO2)4(C11H9N5)2]Z = 1
Mr = 831.30F(000) = 408
Triclinic, P1Dx = 1.981 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7618 (13) ÅCell parameters from 2504 reflections
b = 9.5522 (16) Åθ = 2.5–27.8°
c = 10.9665 (19) ŵ = 1.60 mm1
α = 110.285 (2)°T = 298 K
β = 90.616 (2)°Block, colorless
γ = 112.155 (2)°0.32 × 0.21 × 0.10 mm
V = 696.9 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2666 independent reflections
Radiation source: fine-focus sealed tube2468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.628, Tmax = 0.856k = 1111
3815 measured reflectionsl = 713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
2666 reflections(Δ/σ)max = 0.002
208 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cd2(NO2)4(C11H9N5)2]γ = 112.155 (2)°
Mr = 831.30V = 696.9 (2) Å3
Triclinic, P1Z = 1
a = 7.7618 (13) ÅMo Kα radiation
b = 9.5522 (16) ŵ = 1.60 mm1
c = 10.9665 (19) ÅT = 298 K
α = 110.285 (2)°0.32 × 0.21 × 0.10 mm
β = 90.616 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2666 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2468 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.856Rint = 0.017
3815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.09Δρmax = 0.56 e Å3
2666 reflectionsΔρmin = 0.53 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0700 (5)0.7853 (5)0.7004 (4)0.0445 (8)
H10.03640.89740.73450.053*
C20.2364 (5)0.6713 (5)0.6144 (4)0.0454 (8)
H20.33150.69200.58170.055*
C30.2301 (4)0.5239 (5)0.5885 (3)0.0431 (8)
H30.32070.42270.53380.052*
C40.0015 (4)0.4386 (4)0.6698 (3)0.0296 (6)
C50.2520 (4)0.4068 (3)0.7464 (3)0.0298 (6)
C60.1560 (4)0.2398 (4)0.7011 (4)0.0405 (7)
H60.21250.17360.71170.049*
C70.0287 (5)0.1747 (4)0.6390 (3)0.0449 (8)
H70.09840.06230.60740.054*
C80.1103 (5)0.2735 (4)0.6234 (3)0.0410 (8)
H80.23500.23110.58350.049*
C90.5554 (4)0.4211 (4)0.8411 (3)0.0357 (7)
H90.52910.31050.81420.043*
C100.7180 (4)0.5479 (4)0.9151 (3)0.0373 (7)
H100.82470.54190.94810.045*
C110.6898 (4)0.6888 (4)0.9306 (3)0.0364 (7)
H110.77810.79450.97780.044*
Cd10.35091 (3)0.79984 (2)0.84217 (2)0.03281 (10)
N10.0340 (4)0.7146 (3)0.7277 (3)0.0374 (6)
N20.0654 (3)0.5526 (3)0.6580 (3)0.0340 (6)
N30.1788 (3)0.5057 (3)0.7307 (2)0.0290 (5)
N40.4388 (3)0.4869 (3)0.8142 (2)0.0291 (5)
N50.5215 (3)0.6530 (3)0.8697 (2)0.0323 (5)
N60.2056 (4)0.8778 (4)1.0874 (3)0.0506 (7)
N70.4464 (4)0.9665 (4)0.6637 (3)0.0485 (7)
O10.1706 (4)0.7339 (3)1.0265 (3)0.0568 (7)
O20.3107 (4)0.9700 (3)1.0329 (3)0.0542 (7)
O30.3877 (4)1.0225 (3)0.7663 (3)0.0506 (6)
O40.4610 (4)0.8348 (3)0.6500 (3)0.0491 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0479 (19)0.048 (2)0.054 (2)0.0301 (17)0.0146 (16)0.0260 (18)
C20.0422 (18)0.062 (2)0.048 (2)0.0337 (17)0.0107 (15)0.0256 (18)
C30.0323 (16)0.056 (2)0.0377 (18)0.0187 (16)0.0004 (14)0.0135 (16)
C40.0314 (14)0.0328 (15)0.0262 (14)0.0157 (13)0.0086 (12)0.0100 (12)
C50.0325 (14)0.0285 (14)0.0298 (14)0.0139 (12)0.0074 (12)0.0110 (12)
C60.0434 (18)0.0305 (15)0.0486 (19)0.0162 (14)0.0023 (15)0.0147 (14)
C70.0458 (19)0.0280 (16)0.051 (2)0.0087 (14)0.0021 (16)0.0111 (15)
C80.0353 (16)0.0388 (18)0.0395 (18)0.0087 (14)0.0009 (14)0.0112 (15)
C90.0379 (16)0.0376 (16)0.0449 (18)0.0231 (14)0.0152 (14)0.0219 (15)
C100.0312 (15)0.0472 (19)0.0455 (18)0.0210 (14)0.0100 (14)0.0256 (16)
C110.0314 (15)0.0367 (16)0.0412 (17)0.0109 (13)0.0041 (13)0.0182 (14)
Cd10.03791 (15)0.02645 (14)0.03535 (15)0.01474 (11)0.00396 (10)0.01137 (10)
N10.0360 (14)0.0340 (14)0.0457 (16)0.0174 (12)0.0059 (12)0.0158 (12)
N20.0312 (13)0.0396 (14)0.0345 (14)0.0175 (12)0.0061 (11)0.0144 (12)
N30.0303 (12)0.0283 (12)0.0305 (13)0.0138 (10)0.0043 (10)0.0115 (10)
N40.0302 (12)0.0271 (12)0.0338 (13)0.0136 (10)0.0055 (10)0.0137 (11)
N50.0324 (13)0.0262 (12)0.0396 (14)0.0120 (11)0.0054 (11)0.0138 (11)
N60.0513 (18)0.0524 (19)0.0435 (17)0.0200 (15)0.0137 (14)0.0140 (15)
N70.0554 (18)0.0436 (17)0.0508 (18)0.0175 (15)0.0031 (15)0.0257 (15)
O10.0566 (16)0.0422 (15)0.0591 (17)0.0080 (13)0.0077 (13)0.0181 (14)
O20.0708 (17)0.0338 (13)0.0464 (14)0.0131 (12)0.0090 (13)0.0108 (11)
O30.0584 (15)0.0340 (12)0.0602 (17)0.0202 (12)0.0044 (13)0.0171 (12)
O40.0610 (16)0.0464 (14)0.0462 (14)0.0291 (13)0.0099 (12)0.0166 (12)
Geometric parameters (Å, º) top
C1—N11.320 (4)C9—C101.364 (4)
C1—C21.395 (5)C9—H90.9300
C1—H10.9300C10—C111.397 (5)
C2—C31.357 (5)C10—H100.9300
C2—H20.9300C11—N51.325 (4)
C3—N21.364 (4)C11—H110.9300
C3—H30.9300Cd1—O22.270 (3)
C4—N31.330 (4)Cd1—N52.345 (2)
C4—C81.379 (4)Cd1—O42.365 (3)
C4—N21.413 (4)Cd1—N32.434 (2)
C5—N31.328 (4)Cd1—N12.450 (3)
C5—C61.376 (4)Cd1—O32.464 (2)
C5—N41.409 (4)Cd1—O12.592 (3)
C6—C71.385 (4)N1—N21.357 (4)
C6—H60.9300N4—N51.361 (3)
C7—C81.371 (5)N6—O11.220 (4)
C7—H70.9300N6—O21.277 (4)
C8—H80.9300N7—O31.240 (4)
C9—N41.361 (4)N7—O41.264 (4)
N1—C1—C2111.8 (3)O4—Cd1—N393.58 (9)
N1—C1—H1124.1O2—Cd1—N194.34 (10)
C2—C1—H1124.1N5—Cd1—N1132.58 (9)
C3—C2—C1105.3 (3)O4—Cd1—N186.53 (9)
C3—C2—H2127.3N3—Cd1—N165.49 (8)
C1—C2—H2127.3O2—Cd1—O383.63 (9)
C2—C3—N2106.8 (3)N5—Cd1—O3139.36 (9)
C2—C3—H3126.6O4—Cd1—O351.23 (9)
N2—C3—H3126.6N3—Cd1—O3130.34 (8)
N3—C4—C8124.0 (3)N1—Cd1—O377.14 (8)
N3—C4—N2113.9 (3)O2—Cd1—O150.02 (9)
C8—C4—N2122.2 (3)N5—Cd1—O187.76 (9)
N3—C5—C6123.6 (3)O4—Cd1—O1169.63 (9)
N3—C5—N4114.4 (2)N3—Cd1—O180.15 (8)
C6—C5—N4122.0 (3)N1—Cd1—O183.36 (9)
C5—C6—C7117.0 (3)O3—Cd1—O1127.86 (9)
C5—C6—H6121.5C1—N1—N2104.8 (3)
C7—C6—H6121.5C1—N1—Cd1137.4 (2)
C8—C7—C6121.0 (3)N2—N1—Cd1117.31 (18)
C8—C7—H7119.5N1—N2—C3111.2 (3)
C6—C7—H7119.5N1—N2—C4120.0 (2)
C7—C8—C4116.8 (3)C3—N2—C4128.7 (3)
C7—C8—H8121.6C5—N3—C4117.6 (3)
C4—C8—H8121.6C5—N3—Cd1119.45 (19)
N4—C9—C10107.1 (3)C4—N3—Cd1122.21 (19)
N4—C9—H9126.4C9—N4—N5111.0 (2)
C10—C9—H9126.4C9—N4—C5128.9 (3)
C9—C10—C11105.3 (3)N5—N4—C5120.0 (2)
C9—C10—H10127.4C11—N5—N4105.1 (2)
C11—C10—H10127.4C11—N5—Cd1136.3 (2)
N5—C11—C10111.5 (3)N4—N5—Cd1118.55 (17)
N5—C11—H11124.2O1—N6—O2112.5 (3)
C10—C11—H11124.2O3—N7—O4113.2 (3)
O2—Cd1—N5114.66 (9)N6—O1—Cd191.5 (2)
O2—Cd1—O4133.53 (9)N6—O2—Cd1105.9 (2)
N5—Cd1—O497.45 (9)N7—O3—Cd195.73 (19)
O2—Cd1—N3128.85 (8)N7—O4—Cd199.9 (2)
N5—Cd1—N367.11 (8)
N1—C1—C2—C30.3 (4)O1—Cd1—N3—C483.5 (2)
C1—C2—C3—N20.2 (4)C10—C9—N4—N50.4 (3)
N3—C5—C6—C71.7 (5)C10—C9—N4—C5176.8 (3)
N4—C5—C6—C7178.2 (3)N3—C5—N4—C9176.9 (3)
C5—C6—C7—C80.3 (5)C6—C5—N4—C93.2 (5)
C6—C7—C8—C41.3 (5)N3—C5—N4—N57.0 (4)
N3—C4—C8—C71.8 (5)C6—C5—N4—N5172.9 (3)
N2—C4—C8—C7179.1 (3)C10—C11—N5—N40.2 (4)
N4—C9—C10—C110.5 (4)C10—C11—N5—Cd1179.2 (2)
C9—C10—C11—N50.5 (4)C9—N4—N5—C110.1 (3)
C2—C1—N1—N20.3 (4)C5—N4—N5—C11176.8 (3)
C2—C1—N1—Cd1171.8 (2)C9—N4—N5—Cd1179.10 (18)
O2—Cd1—N1—C155.0 (4)C5—N4—N5—Cd12.4 (3)
N5—Cd1—N1—C1175.4 (3)O2—Cd1—N5—C1156.5 (3)
O4—Cd1—N1—C178.5 (3)O4—Cd1—N5—C1189.0 (3)
N3—Cd1—N1—C1174.0 (4)N3—Cd1—N5—C11179.8 (3)
O3—Cd1—N1—C127.5 (3)N1—Cd1—N5—C11178.9 (3)
O1—Cd1—N1—C1103.8 (3)O3—Cd1—N5—C1153.8 (4)
O2—Cd1—N1—N2134.3 (2)O1—Cd1—N5—C11100.0 (3)
N5—Cd1—N1—N24.7 (3)O2—Cd1—N5—N4122.4 (2)
O4—Cd1—N1—N292.3 (2)O4—Cd1—N5—N492.1 (2)
N3—Cd1—N1—N23.3 (2)N3—Cd1—N5—N41.34 (19)
O3—Cd1—N1—N2143.2 (2)N1—Cd1—N5—N40.1 (3)
O1—Cd1—N1—N285.4 (2)O3—Cd1—N5—N4127.3 (2)
C1—N1—N2—C30.1 (4)O1—Cd1—N5—N478.9 (2)
Cd1—N1—N2—C3173.6 (2)O2—N6—O1—Cd13.4 (3)
C1—N1—N2—C4176.7 (3)O2—Cd1—O1—N62.3 (2)
Cd1—N1—N2—C49.8 (3)N5—Cd1—O1—N6127.6 (2)
C2—C3—N2—N10.1 (4)O4—Cd1—O1—N6112.0 (5)
C2—C3—N2—C4176.1 (3)N3—Cd1—O1—N6165.3 (2)
N3—C4—N2—N112.6 (4)N1—Cd1—O1—N699.1 (2)
C8—C4—N2—N1166.5 (3)O3—Cd1—O1—N631.1 (3)
N3—C4—N2—C3171.5 (3)O1—N6—O2—Cd14.0 (3)
C8—C4—N2—C39.4 (5)N5—Cd1—O2—N666.1 (2)
C6—C5—N3—C41.3 (5)O4—Cd1—O2—N6164.6 (2)
N4—C5—N3—C4178.6 (2)N3—Cd1—O2—N613.5 (3)
C6—C5—N3—Cd1171.7 (3)N1—Cd1—O2—N675.3 (2)
N4—C5—N3—Cd18.2 (3)O3—Cd1—O2—N6151.8 (2)
C8—C4—N3—C50.6 (4)O1—Cd1—O2—N62.3 (2)
N2—C4—N3—C5179.7 (3)O4—N7—O3—Cd11.1 (3)
C8—C4—N3—Cd1169.6 (2)O2—Cd1—O3—N7168.8 (2)
N2—C4—N3—Cd19.5 (3)N5—Cd1—O3—N747.8 (3)
O2—Cd1—N3—C598.7 (2)O4—Cd1—O3—N70.71 (19)
N5—Cd1—N3—C55.3 (2)N3—Cd1—O3—N754.0 (2)
O4—Cd1—N3—C5101.9 (2)N1—Cd1—O3—N795.2 (2)
N1—Cd1—N3—C5173.6 (2)O1—Cd1—O3—N7166.11 (18)
O3—Cd1—N3—C5141.5 (2)O3—N7—O4—Cd11.2 (3)
O1—Cd1—N3—C586.4 (2)O2—Cd1—O4—N717.1 (3)
O2—Cd1—N3—C471.3 (2)N5—Cd1—O4—N7151.9 (2)
N5—Cd1—N3—C4175.2 (2)N3—Cd1—O4—N7140.7 (2)
O4—Cd1—N3—C488.2 (2)N1—Cd1—O4—N775.6 (2)
N1—Cd1—N3—C43.6 (2)O3—Cd1—O4—N70.70 (19)
O3—Cd1—N3—C448.5 (3)O1—Cd1—O4—N788.4 (5)

Experimental details

Crystal data
Chemical formula[Cd2(NO2)4(C11H9N5)2]
Mr831.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.7618 (13), 9.5522 (16), 10.9665 (19)
α, β, γ (°)110.285 (2), 90.616 (2), 112.155 (2)
V3)696.9 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.32 × 0.21 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.628, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
3815, 2666, 2468
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.09
No. of reflections2666
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.53

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 20971080).

References

First citationBessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1563–1576.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z. N. & Sun, T. T. (2008). Acta Cryst. E64, m1374.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds