metal-organic compounds
Di-μ-nitrito-κ3O:O,O′;κ3O,O′:O-bis{[2,6-bis(pyrazol-1-yl-κN2)pyridine-κN](nitrito-κ2O,O′)cadmium(II)}
aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: shijingmin1955@yahoo.com.cn
In the title centrosymmetric binuclear complex, [Cd2(NO2)4(C11H9N5)2], the unique CdII ion is in a distorted dodecahedral CdN3O5 coordination environment. The two inversion-related CdII ions are separated by 3.9920 (6) Å and are bridged by two O atoms from two nitrite ligands. There are two types of π–π stacking interactions involving symmetry-related pyrazole rings, with centroid–centroid distances of 3.445 (2) and 3.431 (2) Å.
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536809039841/lh2917sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809039841/lh2917Isup2.hkl
10 ml dichloromethane solution of 2,6-Dipyrazol-1-ylpyridine (0.0692 g, 0.328 mmol) was added into 10 ml methanol solution containing Cd(ClO4).6H2O (0.0740 g, 0.176 mmol) and sodium nitrite (0.0138 g, 0.200 mmol) and the mixed soluton was stirred for a few minutes. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for about one month.
All H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å, Uiso = 1.2Ueq(C).
2,6-Dipyrazol-1-ylpyridine is expected be a useful tridentate ligand, but complexes with it as ligand to our knowledge are somewhat rare (e.g. Yang & Sun, 2008; Bessel et al., 1993). Our interest in complexes with 2,6-dipyrazol-1-ylpyridine as a ligand has motivated us to prepare the title complex, (I), and herein we report its crystal structure.
Fig. 1 shows the molecular structure of the title complex. Each CdII ion is coordinated by five O atoms and three N atoms in a distorted dodecahedral coordination environment (see Fig. 2). It is rare for CdII to assume this coordination mode. Fig. 1 also shows that two nitrite anions function as bridging ligands, linking two inversion related CdII ions with a separation of 3.9920 (6) Å leading to a binuclear CdII complex. In the crystal there are the strong π–π stacking interactions involving the symmetry related triazole rings, with the relevant distances being Cg1···Cg2i = 3.445 (2) Å, Cg2···Cg2ii = 3.431 (2) Å, Cg1···Cg2iperp = 3.299 Å and Cg2···Cg2iiperp = 3.274 Å (symmetric codes: (i) -1+x, y, z; (ii) 1-x, 1-y, 2-z; Cg1 and Cg2 are the centroids of C1-C3/N1/N2; C9-C11/N4/N5 triazole rings, respectively; Cgi···Cgjperp is the perpendicular distance from Cgi ring to Cgj ring).
For related structures, see: Yang & Sun (2008); Bessel et al. (1993).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cd2(NO2)4(C11H9N5)2] | Z = 1 |
Mr = 831.30 | F(000) = 408 |
Triclinic, P1 | Dx = 1.981 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7618 (13) Å | Cell parameters from 2504 reflections |
b = 9.5522 (16) Å | θ = 2.5–27.8° |
c = 10.9665 (19) Å | µ = 1.60 mm−1 |
α = 110.285 (2)° | T = 298 K |
β = 90.616 (2)° | Block, colorless |
γ = 112.155 (2)° | 0.32 × 0.21 × 0.10 mm |
V = 696.9 (2) Å3 |
Bruker SMART APEX CCD diffractometer | 2666 independent reflections |
Radiation source: fine-focus sealed tube | 2468 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
φ and ω scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.628, Tmax = 0.856 | k = −11→11 |
3815 measured reflections | l = −7→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.044P)2] where P = (Fo2 + 2Fc2)/3 |
2666 reflections | (Δ/σ)max = 0.002 |
208 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
[Cd2(NO2)4(C11H9N5)2] | γ = 112.155 (2)° |
Mr = 831.30 | V = 696.9 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.7618 (13) Å | Mo Kα radiation |
b = 9.5522 (16) Å | µ = 1.60 mm−1 |
c = 10.9665 (19) Å | T = 298 K |
α = 110.285 (2)° | 0.32 × 0.21 × 0.10 mm |
β = 90.616 (2)° |
Bruker SMART APEX CCD diffractometer | 2666 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2468 reflections with I > 2σ(I) |
Tmin = 0.628, Tmax = 0.856 | Rint = 0.017 |
3815 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.56 e Å−3 |
2666 reflections | Δρmin = −0.53 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0700 (5) | 0.7853 (5) | 0.7004 (4) | 0.0445 (8) | |
H1 | −0.0364 | 0.8974 | 0.7345 | 0.053* | |
C2 | −0.2364 (5) | 0.6713 (5) | 0.6144 (4) | 0.0454 (8) | |
H2 | −0.3315 | 0.6920 | 0.5817 | 0.055* | |
C3 | −0.2301 (4) | 0.5239 (5) | 0.5885 (3) | 0.0431 (8) | |
H3 | −0.3207 | 0.4227 | 0.5338 | 0.052* | |
C4 | 0.0015 (4) | 0.4386 (4) | 0.6698 (3) | 0.0296 (6) | |
C5 | 0.2520 (4) | 0.4068 (3) | 0.7464 (3) | 0.0298 (6) | |
C6 | 0.1560 (4) | 0.2398 (4) | 0.7011 (4) | 0.0405 (7) | |
H6 | 0.2125 | 0.1736 | 0.7117 | 0.049* | |
C7 | −0.0287 (5) | 0.1747 (4) | 0.6390 (3) | 0.0449 (8) | |
H7 | −0.0984 | 0.0623 | 0.6074 | 0.054* | |
C8 | −0.1103 (5) | 0.2735 (4) | 0.6234 (3) | 0.0410 (8) | |
H8 | −0.2350 | 0.2311 | 0.5835 | 0.049* | |
C9 | 0.5554 (4) | 0.4211 (4) | 0.8411 (3) | 0.0357 (7) | |
H9 | 0.5291 | 0.3105 | 0.8142 | 0.043* | |
C10 | 0.7180 (4) | 0.5479 (4) | 0.9151 (3) | 0.0373 (7) | |
H10 | 0.8247 | 0.5419 | 0.9481 | 0.045* | |
C11 | 0.6898 (4) | 0.6888 (4) | 0.9306 (3) | 0.0364 (7) | |
H11 | 0.7781 | 0.7945 | 0.9778 | 0.044* | |
Cd1 | 0.35091 (3) | 0.79984 (2) | 0.84217 (2) | 0.03281 (10) | |
N1 | 0.0340 (4) | 0.7146 (3) | 0.7277 (3) | 0.0374 (6) | |
N2 | −0.0654 (3) | 0.5526 (3) | 0.6580 (3) | 0.0340 (6) | |
N3 | 0.1788 (3) | 0.5057 (3) | 0.7307 (2) | 0.0290 (5) | |
N4 | 0.4388 (3) | 0.4869 (3) | 0.8142 (2) | 0.0291 (5) | |
N5 | 0.5215 (3) | 0.6530 (3) | 0.8697 (2) | 0.0323 (5) | |
N6 | 0.2056 (4) | 0.8778 (4) | 1.0874 (3) | 0.0506 (7) | |
N7 | 0.4464 (4) | 0.9665 (4) | 0.6637 (3) | 0.0485 (7) | |
O1 | 0.1706 (4) | 0.7339 (3) | 1.0265 (3) | 0.0568 (7) | |
O2 | 0.3107 (4) | 0.9700 (3) | 1.0329 (3) | 0.0542 (7) | |
O3 | 0.3877 (4) | 1.0225 (3) | 0.7663 (3) | 0.0506 (6) | |
O4 | 0.4610 (4) | 0.8348 (3) | 0.6500 (3) | 0.0491 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0479 (19) | 0.048 (2) | 0.054 (2) | 0.0301 (17) | 0.0146 (16) | 0.0260 (18) |
C2 | 0.0422 (18) | 0.062 (2) | 0.048 (2) | 0.0337 (17) | 0.0107 (15) | 0.0256 (18) |
C3 | 0.0323 (16) | 0.056 (2) | 0.0377 (18) | 0.0187 (16) | 0.0004 (14) | 0.0135 (16) |
C4 | 0.0314 (14) | 0.0328 (15) | 0.0262 (14) | 0.0157 (13) | 0.0086 (12) | 0.0100 (12) |
C5 | 0.0325 (14) | 0.0285 (14) | 0.0298 (14) | 0.0139 (12) | 0.0074 (12) | 0.0110 (12) |
C6 | 0.0434 (18) | 0.0305 (15) | 0.0486 (19) | 0.0162 (14) | 0.0023 (15) | 0.0147 (14) |
C7 | 0.0458 (19) | 0.0280 (16) | 0.051 (2) | 0.0087 (14) | −0.0021 (16) | 0.0111 (15) |
C8 | 0.0353 (16) | 0.0388 (18) | 0.0395 (18) | 0.0087 (14) | −0.0009 (14) | 0.0112 (15) |
C9 | 0.0379 (16) | 0.0376 (16) | 0.0449 (18) | 0.0231 (14) | 0.0152 (14) | 0.0219 (15) |
C10 | 0.0312 (15) | 0.0472 (19) | 0.0455 (18) | 0.0210 (14) | 0.0100 (14) | 0.0256 (16) |
C11 | 0.0314 (15) | 0.0367 (16) | 0.0412 (17) | 0.0109 (13) | 0.0041 (13) | 0.0182 (14) |
Cd1 | 0.03791 (15) | 0.02645 (14) | 0.03535 (15) | 0.01474 (11) | 0.00396 (10) | 0.01137 (10) |
N1 | 0.0360 (14) | 0.0340 (14) | 0.0457 (16) | 0.0174 (12) | 0.0059 (12) | 0.0158 (12) |
N2 | 0.0312 (13) | 0.0396 (14) | 0.0345 (14) | 0.0175 (12) | 0.0061 (11) | 0.0144 (12) |
N3 | 0.0303 (12) | 0.0283 (12) | 0.0305 (13) | 0.0138 (10) | 0.0043 (10) | 0.0115 (10) |
N4 | 0.0302 (12) | 0.0271 (12) | 0.0338 (13) | 0.0136 (10) | 0.0055 (10) | 0.0137 (11) |
N5 | 0.0324 (13) | 0.0262 (12) | 0.0396 (14) | 0.0120 (11) | 0.0054 (11) | 0.0138 (11) |
N6 | 0.0513 (18) | 0.0524 (19) | 0.0435 (17) | 0.0200 (15) | 0.0137 (14) | 0.0140 (15) |
N7 | 0.0554 (18) | 0.0436 (17) | 0.0508 (18) | 0.0175 (15) | 0.0031 (15) | 0.0257 (15) |
O1 | 0.0566 (16) | 0.0422 (15) | 0.0591 (17) | 0.0080 (13) | 0.0077 (13) | 0.0181 (14) |
O2 | 0.0708 (17) | 0.0338 (13) | 0.0464 (14) | 0.0131 (12) | 0.0090 (13) | 0.0108 (11) |
O3 | 0.0584 (15) | 0.0340 (12) | 0.0602 (17) | 0.0202 (12) | 0.0044 (13) | 0.0171 (12) |
O4 | 0.0610 (16) | 0.0464 (14) | 0.0462 (14) | 0.0291 (13) | 0.0099 (12) | 0.0166 (12) |
C1—N1 | 1.320 (4) | C9—C10 | 1.364 (4) |
C1—C2 | 1.395 (5) | C9—H9 | 0.9300 |
C1—H1 | 0.9300 | C10—C11 | 1.397 (5) |
C2—C3 | 1.357 (5) | C10—H10 | 0.9300 |
C2—H2 | 0.9300 | C11—N5 | 1.325 (4) |
C3—N2 | 1.364 (4) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | Cd1—O2 | 2.270 (3) |
C4—N3 | 1.330 (4) | Cd1—N5 | 2.345 (2) |
C4—C8 | 1.379 (4) | Cd1—O4 | 2.365 (3) |
C4—N2 | 1.413 (4) | Cd1—N3 | 2.434 (2) |
C5—N3 | 1.328 (4) | Cd1—N1 | 2.450 (3) |
C5—C6 | 1.376 (4) | Cd1—O3 | 2.464 (2) |
C5—N4 | 1.409 (4) | Cd1—O1 | 2.592 (3) |
C6—C7 | 1.385 (4) | N1—N2 | 1.357 (4) |
C6—H6 | 0.9300 | N4—N5 | 1.361 (3) |
C7—C8 | 1.371 (5) | N6—O1 | 1.220 (4) |
C7—H7 | 0.9300 | N6—O2 | 1.277 (4) |
C8—H8 | 0.9300 | N7—O3 | 1.240 (4) |
C9—N4 | 1.361 (4) | N7—O4 | 1.264 (4) |
N1—C1—C2 | 111.8 (3) | O4—Cd1—N3 | 93.58 (9) |
N1—C1—H1 | 124.1 | O2—Cd1—N1 | 94.34 (10) |
C2—C1—H1 | 124.1 | N5—Cd1—N1 | 132.58 (9) |
C3—C2—C1 | 105.3 (3) | O4—Cd1—N1 | 86.53 (9) |
C3—C2—H2 | 127.3 | N3—Cd1—N1 | 65.49 (8) |
C1—C2—H2 | 127.3 | O2—Cd1—O3 | 83.63 (9) |
C2—C3—N2 | 106.8 (3) | N5—Cd1—O3 | 139.36 (9) |
C2—C3—H3 | 126.6 | O4—Cd1—O3 | 51.23 (9) |
N2—C3—H3 | 126.6 | N3—Cd1—O3 | 130.34 (8) |
N3—C4—C8 | 124.0 (3) | N1—Cd1—O3 | 77.14 (8) |
N3—C4—N2 | 113.9 (3) | O2—Cd1—O1 | 50.02 (9) |
C8—C4—N2 | 122.2 (3) | N5—Cd1—O1 | 87.76 (9) |
N3—C5—C6 | 123.6 (3) | O4—Cd1—O1 | 169.63 (9) |
N3—C5—N4 | 114.4 (2) | N3—Cd1—O1 | 80.15 (8) |
C6—C5—N4 | 122.0 (3) | N1—Cd1—O1 | 83.36 (9) |
C5—C6—C7 | 117.0 (3) | O3—Cd1—O1 | 127.86 (9) |
C5—C6—H6 | 121.5 | C1—N1—N2 | 104.8 (3) |
C7—C6—H6 | 121.5 | C1—N1—Cd1 | 137.4 (2) |
C8—C7—C6 | 121.0 (3) | N2—N1—Cd1 | 117.31 (18) |
C8—C7—H7 | 119.5 | N1—N2—C3 | 111.2 (3) |
C6—C7—H7 | 119.5 | N1—N2—C4 | 120.0 (2) |
C7—C8—C4 | 116.8 (3) | C3—N2—C4 | 128.7 (3) |
C7—C8—H8 | 121.6 | C5—N3—C4 | 117.6 (3) |
C4—C8—H8 | 121.6 | C5—N3—Cd1 | 119.45 (19) |
N4—C9—C10 | 107.1 (3) | C4—N3—Cd1 | 122.21 (19) |
N4—C9—H9 | 126.4 | C9—N4—N5 | 111.0 (2) |
C10—C9—H9 | 126.4 | C9—N4—C5 | 128.9 (3) |
C9—C10—C11 | 105.3 (3) | N5—N4—C5 | 120.0 (2) |
C9—C10—H10 | 127.4 | C11—N5—N4 | 105.1 (2) |
C11—C10—H10 | 127.4 | C11—N5—Cd1 | 136.3 (2) |
N5—C11—C10 | 111.5 (3) | N4—N5—Cd1 | 118.55 (17) |
N5—C11—H11 | 124.2 | O1—N6—O2 | 112.5 (3) |
C10—C11—H11 | 124.2 | O3—N7—O4 | 113.2 (3) |
O2—Cd1—N5 | 114.66 (9) | N6—O1—Cd1 | 91.5 (2) |
O2—Cd1—O4 | 133.53 (9) | N6—O2—Cd1 | 105.9 (2) |
N5—Cd1—O4 | 97.45 (9) | N7—O3—Cd1 | 95.73 (19) |
O2—Cd1—N3 | 128.85 (8) | N7—O4—Cd1 | 99.9 (2) |
N5—Cd1—N3 | 67.11 (8) | ||
N1—C1—C2—C3 | −0.3 (4) | O1—Cd1—N3—C4 | 83.5 (2) |
C1—C2—C3—N2 | 0.2 (4) | C10—C9—N4—N5 | −0.4 (3) |
N3—C5—C6—C7 | −1.7 (5) | C10—C9—N4—C5 | −176.8 (3) |
N4—C5—C6—C7 | 178.2 (3) | N3—C5—N4—C9 | −176.9 (3) |
C5—C6—C7—C8 | 0.3 (5) | C6—C5—N4—C9 | 3.2 (5) |
C6—C7—C8—C4 | 1.3 (5) | N3—C5—N4—N5 | 7.0 (4) |
N3—C4—C8—C7 | −1.8 (5) | C6—C5—N4—N5 | −172.9 (3) |
N2—C4—C8—C7 | 179.1 (3) | C10—C11—N5—N4 | 0.2 (4) |
N4—C9—C10—C11 | 0.5 (4) | C10—C11—N5—Cd1 | 179.2 (2) |
C9—C10—C11—N5 | −0.5 (4) | C9—N4—N5—C11 | 0.1 (3) |
C2—C1—N1—N2 | 0.3 (4) | C5—N4—N5—C11 | 176.8 (3) |
C2—C1—N1—Cd1 | 171.8 (2) | C9—N4—N5—Cd1 | −179.10 (18) |
O2—Cd1—N1—C1 | 55.0 (4) | C5—N4—N5—Cd1 | −2.4 (3) |
N5—Cd1—N1—C1 | −175.4 (3) | O2—Cd1—N5—C11 | −56.5 (3) |
O4—Cd1—N1—C1 | −78.5 (3) | O4—Cd1—N5—C11 | 89.0 (3) |
N3—Cd1—N1—C1 | −174.0 (4) | N3—Cd1—N5—C11 | 179.8 (3) |
O3—Cd1—N1—C1 | −27.5 (3) | N1—Cd1—N5—C11 | −178.9 (3) |
O1—Cd1—N1—C1 | 103.8 (3) | O3—Cd1—N5—C11 | 53.8 (4) |
O2—Cd1—N1—N2 | −134.3 (2) | O1—Cd1—N5—C11 | −100.0 (3) |
N5—Cd1—N1—N2 | −4.7 (3) | O2—Cd1—N5—N4 | 122.4 (2) |
O4—Cd1—N1—N2 | 92.3 (2) | O4—Cd1—N5—N4 | −92.1 (2) |
N3—Cd1—N1—N2 | −3.3 (2) | N3—Cd1—N5—N4 | −1.34 (19) |
O3—Cd1—N1—N2 | 143.2 (2) | N1—Cd1—N5—N4 | 0.1 (3) |
O1—Cd1—N1—N2 | −85.4 (2) | O3—Cd1—N5—N4 | −127.3 (2) |
C1—N1—N2—C3 | −0.1 (4) | O1—Cd1—N5—N4 | 78.9 (2) |
Cd1—N1—N2—C3 | −173.6 (2) | O2—N6—O1—Cd1 | −3.4 (3) |
C1—N1—N2—C4 | −176.7 (3) | O2—Cd1—O1—N6 | 2.3 (2) |
Cd1—N1—N2—C4 | 9.8 (3) | N5—Cd1—O1—N6 | 127.6 (2) |
C2—C3—N2—N1 | −0.1 (4) | O4—Cd1—O1—N6 | −112.0 (5) |
C2—C3—N2—C4 | 176.1 (3) | N3—Cd1—O1—N6 | −165.3 (2) |
N3—C4—N2—N1 | −12.6 (4) | N1—Cd1—O1—N6 | −99.1 (2) |
C8—C4—N2—N1 | 166.5 (3) | O3—Cd1—O1—N6 | −31.1 (3) |
N3—C4—N2—C3 | 171.5 (3) | O1—N6—O2—Cd1 | 4.0 (3) |
C8—C4—N2—C3 | −9.4 (5) | N5—Cd1—O2—N6 | −66.1 (2) |
C6—C5—N3—C4 | 1.3 (5) | O4—Cd1—O2—N6 | 164.6 (2) |
N4—C5—N3—C4 | −178.6 (2) | N3—Cd1—O2—N6 | 13.5 (3) |
C6—C5—N3—Cd1 | 171.7 (3) | N1—Cd1—O2—N6 | 75.3 (2) |
N4—C5—N3—Cd1 | −8.2 (3) | O3—Cd1—O2—N6 | 151.8 (2) |
C8—C4—N3—C5 | 0.6 (4) | O1—Cd1—O2—N6 | −2.3 (2) |
N2—C4—N3—C5 | 179.7 (3) | O4—N7—O3—Cd1 | −1.1 (3) |
C8—C4—N3—Cd1 | −169.6 (2) | O2—Cd1—O3—N7 | 168.8 (2) |
N2—C4—N3—Cd1 | 9.5 (3) | N5—Cd1—O3—N7 | 47.8 (3) |
O2—Cd1—N3—C5 | −98.7 (2) | O4—Cd1—O3—N7 | 0.71 (19) |
N5—Cd1—N3—C5 | 5.3 (2) | N3—Cd1—O3—N7 | −54.0 (2) |
O4—Cd1—N3—C5 | 101.9 (2) | N1—Cd1—O3—N7 | −95.2 (2) |
N1—Cd1—N3—C5 | −173.6 (2) | O1—Cd1—O3—N7 | −166.11 (18) |
O3—Cd1—N3—C5 | 141.5 (2) | O3—N7—O4—Cd1 | 1.2 (3) |
O1—Cd1—N3—C5 | −86.4 (2) | O2—Cd1—O4—N7 | −17.1 (3) |
O2—Cd1—N3—C4 | 71.3 (2) | N5—Cd1—O4—N7 | −151.9 (2) |
N5—Cd1—N3—C4 | 175.2 (2) | N3—Cd1—O4—N7 | 140.7 (2) |
O4—Cd1—N3—C4 | −88.2 (2) | N1—Cd1—O4—N7 | 75.6 (2) |
N1—Cd1—N3—C4 | −3.6 (2) | O3—Cd1—O4—N7 | −0.70 (19) |
O3—Cd1—N3—C4 | −48.5 (3) | O1—Cd1—O4—N7 | 88.4 (5) |
Experimental details
Crystal data | |
Chemical formula | [Cd2(NO2)4(C11H9N5)2] |
Mr | 831.30 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.7618 (13), 9.5522 (16), 10.9665 (19) |
α, β, γ (°) | 110.285 (2), 90.616 (2), 112.155 (2) |
V (Å3) | 696.9 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.60 |
Crystal size (mm) | 0.32 × 0.21 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.628, 0.856 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3815, 2666, 2468 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.076, 1.09 |
No. of reflections | 2666 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.53 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).
Acknowledgements
This project was supported by the National Natural Science Foundation of China (No. 20971080).
References
Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1563–1576. CSD CrossRef Web of Science Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, Z. N. & Sun, T. T. (2008). Acta Cryst. E64, m1374. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,6-Dipyrazol-1-ylpyridine is expected be a useful tridentate ligand, but complexes with it as ligand to our knowledge are somewhat rare (e.g. Yang & Sun, 2008; Bessel et al., 1993). Our interest in complexes with 2,6-dipyrazol-1-ylpyridine as a ligand has motivated us to prepare the title complex, (I), and herein we report its crystal structure.
Fig. 1 shows the molecular structure of the title complex. Each CdII ion is coordinated by five O atoms and three N atoms in a distorted dodecahedral coordination environment (see Fig. 2). It is rare for CdII to assume this coordination mode. Fig. 1 also shows that two nitrite anions function as bridging ligands, linking two inversion related CdII ions with a separation of 3.9920 (6) Å leading to a binuclear CdII complex. In the crystal there are the strong π–π stacking interactions involving the symmetry related triazole rings, with the relevant distances being Cg1···Cg2i = 3.445 (2) Å, Cg2···Cg2ii = 3.431 (2) Å, Cg1···Cg2iperp = 3.299 Å and Cg2···Cg2iiperp = 3.274 Å (symmetric codes: (i) -1+x, y, z; (ii) 1-x, 1-y, 2-z; Cg1 and Cg2 are the centroids of C1-C3/N1/N2; C9-C11/N4/N5 triazole rings, respectively; Cgi···Cgjperp is the perpendicular distance from Cgi ring to Cgj ring).