organic compounds
Steviamine, a new class of indolizidine alkaloid [(1R,2S,3R,5R,8aR)-3-hydroxymethyl-5-methyloctahydroindolizine-1,2-diol hydrobromide]
aChemical Crystallography, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, England, bPhytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, cSummit PLC, 91, Milton Park, Abingdon, Oxfordshire OX14 4RY, England, dChemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England, and eInstitute of Chemistry, Chinese Academy of Science, Beijing 100190, People's Republic of China
*Correspondence e-mail: amber.thompson@chem.ox.ac.uk
X-ray crystallographic analysis of the title hydrobromide salt, C10H20N+·Br−, of (1R,2S,3R,5R,8aR)-3-hydroxymethyl-5-methyloctahydroindolizine-1,2-diol defines the absolute and relative stereochemistry at the five chiral centres in steviamine, a new class of polyhydroxylated indolizidine alkaloid isolated from Stevia rebaudiana (Asteraceae) leaves. In the molecules are linked by intermolecular O—H⋯Br and N—H⋯Br hydrogen bonds, forming double chains around the twofold screw axes along the b-axis direction. Intramolecular O—H⋯O interactions occur.
Related literature
For background to the biological activity of indolizidines, see: Asano et al. (2000a,2000b); Colegate et al. (1979); Davis et al. (1996); Donohoe et al. (2008); Durantel (2009); Hakansson et al. (2008); Hohenschutz et al. (1981); Kato et al. (1999, 2007); Klein et al. (1999); Lagana et al. (2006); Sengoku et al. (2009); Watson et al. (2001); Whitby et al. (2005); Yamashita et al. (2002). For the Hooft parameter, see: Hooft et al. (2008). For the extinction correction, see: Larson (1970).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2001).; cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536809043827/lh2918sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809043827/lh2918Isup2.hkl
Steviamine was isolated by a combination of strongly acidic cation, and strongly basic
The compound was retained on resin (IR120) and was chromatographed on the resin (CG400) from which it was eluted with water. Isolation was monitored using GC-MS of the trimethylsilyl-derivative (distinctive major ion at 314 amu). Steviamine was crystallized as its hydrobromide salt from ethanol.The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined separately with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
On comparison of Fo and Fc, it was apparent that for large values, of Fo was noticably less than Fc, so an extinction parameter was refined (Larson, 1970).
Well over 100 iminosugars - analogues of sugars in which the ring oxygen is replaced by nitrogen - have been isolated as natural products (Asano et al., 2000a; Watson et al., 2001). This paper establishes both the relative and absolute stereochemistry of the five chiral centres in steviamine (1), recently isolated from the leaves of Stevia rebaudiana (Asteraceae); (1) is the first example of a new class of indolizidine alkaloid with an alkyl group attached to the piperidine ring. Swainsonine (2, see Fig. 1), a trihydroxyindolizidine isolated from Swainsona canescens (Colegate et al., 1979), is a powerful inhibitor of α-mannosidases and has potential as a chemotherapeutic agent for the treatment of cancer (Lagana et al., 2006; Klein et al., 1999). l-Swainsonine 3, the of 2, is a very powerful α-rhamnosidase inhibitor (Davis et al., 1996); 4 in which a methyl group is introduced into the piperidine ring is nearly 100 times more potent an inhibitor than 2 (Hakansson et al., 2008). Castanospermine 5, isolated from Castanospermum australe (Hohenschutz et al., 1981), is an inhibitor of some α-glucosidases and a potent inhibitor of dengue virus infection in vivo (Whitby et al., 2005); Celgosivir, a simple derivative of 5, is in development for the treatment of HCV infection (Durantel, 2009). Hyacinthacine A4 6, isolated from Scilla sibirica (Asano et al., 2000b; Yamashita et al., 2002), is the pyrrolizidine equivalent of steviamine 1. Many hyacinthacines have been isolated from a range of plants (Kato et al., 1999; Kato et al., 2007) and have attracted considerable attention from synthetic organic chemists (Sengoku et al., 2009; Donohoe et al., 2008). Steviamine 1 is unlikely to be the only naturally occurring indolizidine with a methyl branch which will provide similarly challenging synthetic targets.
As a natural product, the crystal was expected to be
and the Flack x parameter refined to 0.002 (10) (Flack, 1983). Analysis of the Bijvoet differences using within CRYSTALS (Betteridge et al., 2003) gives the Hooft y parameter as 0.023 (6), indicating that the probability that the configuration is incorrect allowing for the posibility of racemic is less than 0.000001% (Hooft et al., 2008).On examination of hydrogen bonding interactions in 1, the position of H51 initially seemed incorrect, lying between atoms O2 and O15. However, examination of the difference map indicates the presence of a peak believed to be a hydrogen atom which moves little on
suggesting the hydrogen bond is bifurcated (Fig. 2, Table 1). The molecules are linked together by three hydrogen bonds (two O—H···Br and one N—H···Br, Table 1) to form double chains around the twofold screw axes along the b direction (Fig. 3).For background to the biological activity of indolizidines, see: Asano et al. (2000a,2000b); Colegate et al. (1979); Davis et al. (1996); Donohoe et al. (2008); Durantel (2009); Hakansson et al. (2008); Hohenschutz et al. (1981); Kato et al. (1999, 2007); Klein et al. (1999); Lagana et al. (2006); Sengoku et al. (2009); Watson et al. (2001); Whitby et al. (2005); Yamashita et al. (2002). For the Hooft parameter, see: Hooft et al. (2008). For the extinction correction, see: Larson (1970).
Data collection: COLLECT (Nonius, 2001).; cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C10H20N+·Br− | Dx = 1.577 Mg m−3 |
Mr = 282.18 | Melting point: not measured K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1544 reflections |
a = 8.4616 (1) Å | θ = 5–27° |
b = 8.8762 (1) Å | µ = 3.45 mm−1 |
c = 15.8270 (2) Å | T = 150 K |
V = 1188.72 (2) Å3 | Plate, colourless |
Z = 4 | 0.46 × 0.46 × 0.26 mm |
F(000) = 584 |
Nonius KappaCCD area-detector diffractometer | 2484 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 27.5°, θmin = 5.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −10→10 |
Tmin = 0.20, Tmax = 0.41 | k = −11→11 |
2675 measured reflections | l = −20→20 |
2658 independent reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.01P)2 + 0.86P], where P = [max(Fo2,0) + 2Fc2]/3 |
R[F2 > 2σ(F2)] = 0.025 | (Δ/σ)max = 0.001 |
wR(F2) = 0.052 | Δρmax = 0.37 e Å−3 |
S = 1.00 | Δρmin = −0.52 e Å−3 |
2658 reflections | Extinction correction: Larson (1970), Equation 22 |
138 parameters | Extinction coefficient: 75 (8) |
0 restraints | Absolute structure: Flack (1983), 1102 Friedel-pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.002 (10) |
Hydrogen site location: inferred from neighbouring sites |
C10H20N+·Br− | V = 1188.72 (2) Å3 |
Mr = 282.18 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.4616 (1) Å | µ = 3.45 mm−1 |
b = 8.8762 (1) Å | T = 150 K |
c = 15.8270 (2) Å | 0.46 × 0.46 × 0.26 mm |
Nonius KappaCCD area-detector diffractometer | 2658 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 2484 reflections with I > 2σ(I) |
Tmin = 0.20, Tmax = 0.41 | Rint = 0.042 |
2675 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.052 | Δρmax = 0.37 e Å−3 |
S = 1.00 | Δρmin = −0.52 e Å−3 |
2658 reflections | Absolute structure: Flack (1983), 1102 Friedel-pairs |
138 parameters | Absolute structure parameter: 0.002 (10) |
0 restraints |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.29652 (3) | 0.79140 (2) | 0.693045 (16) | 0.0373 | |
O2 | −0.0613 (2) | 0.2681 (2) | 0.63610 (12) | 0.0470 | |
C3 | 0.0377 (3) | 0.3939 (3) | 0.65007 (17) | 0.0381 | |
C4 | 0.1564 (4) | 0.3703 (3) | 0.72343 (15) | 0.0436 | |
O5 | 0.1230 (3) | 0.2427 (2) | 0.77338 (12) | 0.0682 | |
C6 | 0.3207 (4) | 0.3611 (2) | 0.68353 (14) | 0.0362 | |
N7 | 0.2994 (3) | 0.45785 (19) | 0.60566 (10) | 0.0248 | |
C8 | 0.1381 (3) | 0.4183 (3) | 0.57125 (14) | 0.0267 | |
C9 | 0.0873 (3) | 0.5356 (3) | 0.50829 (16) | 0.0349 | |
C10 | 0.2069 (4) | 0.5435 (3) | 0.43633 (14) | 0.0389 | |
C11 | 0.3726 (3) | 0.5724 (3) | 0.47093 (16) | 0.0394 | |
C12 | 0.4244 (3) | 0.4594 (3) | 0.53787 (15) | 0.0330 | |
C13 | 0.5841 (3) | 0.4996 (4) | 0.5756 (2) | 0.0490 | |
C14 | 0.3784 (4) | 0.2019 (3) | 0.66419 (17) | 0.0517 | |
O15 | 0.2695 (3) | 0.12282 (19) | 0.61308 (12) | 0.0522 | |
H31 | −0.0258 | 0.4840 | 0.6613 | 0.0459* | |
H41 | 0.1545 | 0.4576 | 0.7609 | 0.0522* | |
H61 | 0.4003 | 0.4116 | 0.7186 | 0.0435* | |
H81 | 0.1481 | 0.3216 | 0.5435 | 0.0325* | |
H92 | 0.0822 | 0.6334 | 0.5366 | 0.0421* | |
H91 | −0.0170 | 0.5096 | 0.4861 | 0.0419* | |
H102 | 0.1762 | 0.6219 | 0.3973 | 0.0473* | |
H101 | 0.2044 | 0.4458 | 0.4063 | 0.0468* | |
H111 | 0.3741 | 0.6720 | 0.4958 | 0.0478* | |
H112 | 0.4450 | 0.5700 | 0.4237 | 0.0485* | |
H121 | 0.4243 | 0.3580 | 0.5138 | 0.0384* | |
H132 | 0.6602 | 0.5024 | 0.5310 | 0.0746* | |
H131 | 0.5781 | 0.5970 | 0.6021 | 0.0735* | |
H133 | 0.6131 | 0.4254 | 0.6167 | 0.0738* | |
H141 | 0.3923 | 0.1509 | 0.7163 | 0.0614* | |
H142 | 0.4798 | 0.2080 | 0.6355 | 0.0607* | |
H151 | 0.2850 | 0.0336 | 0.6278 | 0.0778* | |
H21 | −0.1216 | 0.2726 | 0.6762 | 0.0723* | |
H51 | 0.0999 | 0.1687 | 0.7424 | 0.1018* | |
H71 | 0.2900 | 0.5607 | 0.6279 | 0.0500* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04557 (13) | 0.02142 (11) | 0.04505 (13) | −0.00181 (11) | 0.00573 (13) | −0.00477 (10) |
O2 | 0.0451 (11) | 0.0463 (11) | 0.0495 (11) | −0.0168 (9) | 0.0134 (8) | 0.0013 (9) |
C3 | 0.0472 (16) | 0.0264 (12) | 0.0406 (14) | −0.0030 (11) | 0.0188 (12) | −0.0031 (10) |
C4 | 0.078 (2) | 0.0311 (12) | 0.0220 (11) | −0.0217 (13) | 0.0128 (12) | −0.0036 (9) |
O5 | 0.1153 (19) | 0.0591 (14) | 0.0301 (9) | −0.0488 (13) | −0.0052 (11) | 0.0145 (9) |
C6 | 0.0647 (17) | 0.0209 (10) | 0.0230 (11) | −0.0009 (11) | −0.0096 (13) | 0.0022 (9) |
N7 | 0.0324 (9) | 0.0199 (8) | 0.0220 (8) | −0.0004 (9) | 0.0005 (9) | −0.0002 (6) |
C8 | 0.0307 (12) | 0.0229 (10) | 0.0266 (11) | −0.0031 (9) | 0.0027 (10) | −0.0016 (8) |
C9 | 0.0349 (13) | 0.0358 (13) | 0.0339 (13) | 0.0056 (11) | −0.0047 (11) | −0.0005 (11) |
C10 | 0.0489 (14) | 0.0414 (13) | 0.0263 (11) | 0.0028 (14) | −0.0021 (13) | 0.0093 (10) |
C11 | 0.0466 (15) | 0.0391 (14) | 0.0326 (13) | −0.0071 (12) | 0.0113 (12) | 0.0065 (11) |
C12 | 0.0317 (13) | 0.0356 (13) | 0.0316 (12) | 0.0015 (10) | 0.0044 (10) | −0.0048 (10) |
C13 | 0.0316 (14) | 0.0627 (19) | 0.0526 (17) | 0.0008 (13) | 0.0022 (13) | −0.0101 (14) |
C14 | 0.091 (2) | 0.0238 (12) | 0.0401 (13) | 0.0082 (16) | −0.0209 (14) | −0.0002 (12) |
O15 | 0.0927 (18) | 0.0219 (8) | 0.0419 (10) | 0.0030 (10) | −0.0184 (11) | −0.0038 (7) |
O2—C3 | 1.414 (3) | C9—H92 | 0.978 |
O2—H21 | 0.815 | C9—H91 | 0.977 |
C3—C4 | 1.549 (4) | C10—C11 | 1.527 (4) |
C3—C8 | 1.525 (3) | C10—H102 | 0.965 |
C3—H31 | 0.980 | C10—H101 | 0.989 |
C4—O5 | 1.409 (3) | C11—C12 | 1.523 (4) |
C4—C6 | 1.529 (4) | C11—H111 | 0.968 |
C4—H41 | 0.976 | C11—H112 | 0.967 |
O5—H51 | 0.843 | C12—C13 | 1.519 (4) |
C6—N7 | 1.513 (3) | C12—H121 | 0.977 |
C6—C14 | 1.526 (3) | C13—H132 | 0.955 |
C6—H61 | 0.981 | C13—H131 | 0.963 |
N7—C8 | 1.511 (3) | C13—H133 | 0.958 |
N7—C12 | 1.507 (3) | C14—O15 | 1.412 (3) |
N7—H71 | 0.982 | C14—H141 | 0.949 |
C8—C9 | 1.504 (3) | C14—H142 | 0.972 |
C8—H81 | 0.967 | O15—H151 | 0.836 |
C9—C10 | 1.525 (4) | ||
C3—O2—H21 | 102.1 | C8—C9—H91 | 109.4 |
O2—C3—C4 | 113.2 (2) | C10—C9—H91 | 110.0 |
O2—C3—C8 | 108.3 (2) | H92—C9—H91 | 109.5 |
C4—C3—C8 | 105.7 (2) | C9—C10—C11 | 110.44 (19) |
O2—C3—H31 | 110.4 | C9—C10—H102 | 109.4 |
C4—C3—H31 | 109.3 | C11—C10—H102 | 110.8 |
C8—C3—H31 | 109.8 | C9—C10—H101 | 107.7 |
C3—C4—O5 | 113.5 (2) | C11—C10—H101 | 109.8 |
C3—C4—C6 | 106.69 (19) | H102—C10—H101 | 108.6 |
O5—C4—C6 | 111.8 (2) | C10—C11—C12 | 113.8 (2) |
C3—C4—H41 | 109.7 | C10—C11—H111 | 108.1 |
O5—C4—H41 | 107.1 | C12—C11—H111 | 108.4 |
C6—C4—H41 | 107.9 | C10—C11—H112 | 107.5 |
C4—O5—H51 | 110.3 | C12—C11—H112 | 109.9 |
C4—C6—N7 | 101.4 (2) | H111—C11—H112 | 109.0 |
C4—C6—C14 | 115.0 (2) | C11—C12—N7 | 107.4 (2) |
N7—C6—C14 | 113.58 (19) | C11—C12—C13 | 112.0 (2) |
C4—C6—H61 | 111.5 | N7—C12—C13 | 110.3 (2) |
N7—C6—H61 | 106.4 | C11—C12—H121 | 109.6 |
C14—C6—H61 | 108.5 | N7—C12—H121 | 105.6 |
C6—N7—C8 | 105.63 (18) | C13—C12—H121 | 111.7 |
C6—N7—C12 | 120.1 (2) | C12—C13—H132 | 108.4 |
C8—N7—C12 | 112.30 (16) | C12—C13—H131 | 109.6 |
C6—N7—H71 | 104.2 | H132—C13—H131 | 109.5 |
C8—N7—H71 | 105.8 | C12—C13—H133 | 109.5 |
C12—N7—H71 | 107.6 | H132—C13—H133 | 110.3 |
C3—C8—N7 | 103.98 (19) | H131—C13—H133 | 109.6 |
C3—C8—C9 | 118.7 (2) | C6—C14—O15 | 111.5 (2) |
N7—C8—C9 | 109.66 (19) | C6—C14—H141 | 107.9 |
C3—C8—H81 | 107.1 | O15—C14—H141 | 110.0 |
N7—C8—H81 | 106.9 | C6—C14—H142 | 108.9 |
C9—C8—H81 | 109.8 | O15—C14—H142 | 109.6 |
C8—C9—C10 | 109.7 (2) | H141—C14—H142 | 108.8 |
C8—C9—H92 | 108.9 | C14—O15—H151 | 102.1 |
C10—C9—H92 | 109.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···O2 | 0.84 | 2.34 | 2.684 (3) | 105 |
O5—H51···O15 | 0.84 | 2.53 | 3.018 (3) | 118 |
N7—H71···Br1 | 0.98 | 2.29 | 3.268 (2) | 172 |
O2—H21···Br1i | 0.82 | 2.55 | 3.364 (2) | 177 |
O15—H151···Br1ii | 0.84 | 2.39 | 3.211 (2) | 169 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C10H20N+·Br− |
Mr | 282.18 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 8.4616 (1), 8.8762 (1), 15.8270 (2) |
V (Å3) | 1188.72 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.45 |
Crystal size (mm) | 0.46 × 0.46 × 0.26 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.20, 0.41 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2675, 2658, 2484 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.052, 1.00 |
No. of reflections | 2658 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.52 |
Absolute structure | Flack (1983), 1102 Friedel-pairs |
Absolute structure parameter | 0.002 (10) |
Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···O2 | 0.843 | 2.339 | 2.684 (3) | 105.06 |
O5—H51···O15 | 0.843 | 2.533 | 3.018 (3) | 117.63 |
N7—H71···Br1 | 0.982 | 2.293 | 3.268 (2) | 171.74 |
O2—H21···Br1i | 0.815 | 2.550 | 3.364 (2) | 176.63 |
O15—H151···Br1ii | 0.836 | 2.387 | 3.211 (2) | 168.56 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x, y−1, z. |
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Asano, N., Kuroi, H., Ikeda, K., Kizu, H., Kameda, Y., Kato, A., Adachi, I., Watson, A. A., Nash, R. J. & Fleet, G. W. J. (2000b). Tetrahedron Asymmetry, 11, 1–8. Web of Science CrossRef CAS Google Scholar
Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000a). Tetrahedron Asymmetry, 11, 1645–1680. Web of Science CrossRef CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Colegate, S. M., Dorling, P. R. & Huxtable, C. R. (1979). Aust. J. Chem. 32, 2257–2264. CrossRef CAS Google Scholar
Davis, B., Bell, A. A., Nash, R. J., Watson, A. A., Griffiths, R. C., Jones, M. G., Smith, C. & Fleet, G. W. J. (1996). Tetrahedron Lett. 37, 8565–8568. CrossRef CAS Web of Science Google Scholar
Donohoe, T. J., Thomas, R. E., Cheeseman, M. D., Rigby, C. L., Bhalay, G. & Linney, I. D. (2008). Org. Lett. 10, 3615–3618. Web of Science CSD CrossRef PubMed CAS Google Scholar
Durantel, D. (2009). Curr. Opin. Invest. Drugs, 10, 860–870. CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hakansson, A. E., van Ameijde, J., Horne, G., Nash, R. J., Wormald, M. R., Kato, A., Besra, G. S., Gurcha, S. & Fleet, G. W. J. (2008). Tetrahedron Lett. 49, 179–184. Web of Science CrossRef CAS Google Scholar
Hohenschutz, L. D., Bell, E. A., Jewess, P. J., Leworthy, D. P., Pryce, R. J., Arnold, E. & Clardy, J. (1981). Phytochemistry, 20, 811–14. CSD CrossRef CAS Web of Science Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kato, A., Adachi, I., Miyauchi, M., Ikeda, K., Komae, T., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J., Wormald, M. R., Fleet, G. W. J. & Asano, N. (1999). Carbohydr. Res. 316, 95–103. Web of Science CrossRef PubMed CAS Google Scholar
Kato, A., Kato, N., Adachi, I., Hollinshead, J., Fleet, G. W. J., Kuriyama, C., Ikeda, K., Asano, N. & Nash, R. J. (2007). J. Nat. Prod. 70, 993–997. Web of Science CrossRef PubMed CAS Google Scholar
Klein, J. L. D., Roberts, J. D., George, M. D., Kurtzberg, J., Breton, P., Chermann, J. C. & Olden, K. (1999). Br. J. Cancer, 80, 87–95. Web of Science CrossRef PubMed CAS Google Scholar
Lagana, A., Goetz, J. G., Cheung, P., Raz, A., Dennis, J. W. & Nabi, I. R. (2006). Mol. Cell. Biol. 26, 3181–3193. Web of Science CrossRef PubMed CAS Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sengoku, T., Satoh, Y., Takahashi, M. & Yoda, H. (2009). Tetrahedron Lett. 50, 4937–4940. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. Web of Science CrossRef PubMed CAS Google Scholar
Whitby, K., Pierson, T. C., Geiss, B., Lane, K., Engle, M., Zhou, Y., Doms, R. W. & Diamond, M. S. (2005). J. Virol. 79, 8698–8706. Web of Science CrossRef PubMed CAS Google Scholar
Yamashita, T., Yasuda, K., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J., Fleet, G. W. J. & Asano, N. (2002). J. Nat. Prod. 65, 1875–1881. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Well over 100 iminosugars - analogues of sugars in which the ring oxygen is replaced by nitrogen - have been isolated as natural products (Asano et al., 2000a; Watson et al., 2001). This paper establishes both the relative and absolute stereochemistry of the five chiral centres in steviamine (1), recently isolated from the leaves of Stevia rebaudiana (Asteraceae); (1) is the first example of a new class of indolizidine alkaloid with an alkyl group attached to the piperidine ring. Swainsonine (2, see Fig. 1), a trihydroxyindolizidine isolated from Swainsona canescens (Colegate et al., 1979), is a powerful inhibitor of α-mannosidases and has potential as a chemotherapeutic agent for the treatment of cancer (Lagana et al., 2006; Klein et al., 1999). l-Swainsonine 3, the enantiomer of 2, is a very powerful α-rhamnosidase inhibitor (Davis et al., 1996); 4 in which a methyl group is introduced into the piperidine ring is nearly 100 times more potent an inhibitor than 2 (Hakansson et al., 2008). Castanospermine 5, isolated from Castanospermum australe (Hohenschutz et al., 1981), is an inhibitor of some α-glucosidases and a potent inhibitor of dengue virus infection in vivo (Whitby et al., 2005); Celgosivir, a simple derivative of 5, is in development for the treatment of HCV infection (Durantel, 2009). Hyacinthacine A4 6, isolated from Scilla sibirica (Asano et al., 2000b; Yamashita et al., 2002), is the pyrrolizidine equivalent of steviamine 1. Many hyacinthacines have been isolated from a range of plants (Kato et al., 1999; Kato et al., 2007) and have attracted considerable attention from synthetic organic chemists (Sengoku et al., 2009; Donohoe et al., 2008). Steviamine 1 is unlikely to be the only naturally occurring indolizidine with a methyl branch which will provide similarly challenging synthetic targets.
As a natural product, the crystal was expected to be enantiopure and the Flack x parameter refined to 0.002 (10) (Flack, 1983). Analysis of the Bijvoet differences using within CRYSTALS (Betteridge et al., 2003) gives the Hooft y parameter as 0.023 (6), indicating that the probability that the configuration is incorrect allowing for the posibility of racemic twinning is less than 0.000001% (Hooft et al., 2008).
On examination of hydrogen bonding interactions in 1, the position of H51 initially seemed incorrect, lying between atoms O2 and O15. However, examination of the difference map indicates the presence of a peak believed to be a hydrogen atom which moves little on refinement suggesting the hydrogen bond is bifurcated (Fig. 2, Table 1). The molecules are linked together by three hydrogen bonds (two O—H···Br and one N—H···Br, Table 1) to form double chains around the twofold screw axes along the b direction (Fig. 3).