organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Stevi­amine, a new class of indolizidine alkaloid [(1R,2S,3R,5R,8aR)-3-hy­droxy­meth­yl-5-methyl­octa­hydro­indolizine-1,2-diol hydro­bromide]

aChemical Crystallography, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, England, bPhytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, cSummit PLC, 91, Milton Park, Abingdon, Oxfordshire OX14 4RY, England, dChemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England, and eInstitute of Chemistry, Chinese Academy of Science, Beijing 100190, People's Republic of China
*Correspondence e-mail: amber.thompson@chem.ox.ac.uk

(Received 28 September 2009; accepted 22 October 2009; online 28 October 2009)

X-ray crystallographic analysis of the title hydro­bromide salt, C10H20N+·Br, of (1R,2S,3R,5R,8aR)-3-hydroxy­meth­yl-5-methyl­octa­hydro­indolizine-1,2-diol defines the absolute and relative stereochemistry at the five chiral centres in steviamine, a new class of polyhydroxy­lated indolizidine alkaloid isolated from Stevia rebaudiana (Asteraceae) leaves. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯Br and N—H⋯Br hydrogen bonds, forming double chains around the twofold screw axes along the b-axis direction. Intra­molecular O—H⋯O inter­actions occur.

Related literature

For background to the biological activity of indolizidines, see: Asano et al. (2000a[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000a). Tetrahedron Asymmetry, 11, 1645-1680.],2000b[Asano, N., Kuroi, H., Ikeda, K., Kizu, H., Kameda, Y., Kato, A., Adachi, I., Watson, A. A., Nash, R. J. & Fleet, G. W. J. (2000b). Tetrahedron Asymmetry, 11, 1-8.]); Colegate et al. (1979[Colegate, S. M., Dorling, P. R. & Huxtable, C. R. (1979). Aust. J. Chem. 32, 2257-2264.]); Davis et al. (1996[Davis, B., Bell, A. A., Nash, R. J., Watson, A. A., Griffiths, R. C., Jones, M. G., Smith, C. & Fleet, G. W. J. (1996). Tetrahedron Lett. 37, 8565-8568.]); Donohoe et al. (2008[Donohoe, T. J., Thomas, R. E., Cheeseman, M. D., Rigby, C. L., Bhalay, G. & Linney, I. D. (2008). Org. Lett. 10, 3615-3618.]); Durantel (2009[Durantel, D. (2009). Curr. Opin. Invest. Drugs, 10, 860-870.]); Hakansson et al. (2008[Hakansson, A. E., van Ameijde, J., Horne, G., Nash, R. J., Wormald, M. R., Kato, A., Besra, G. S., Gurcha, S. & Fleet, G. W. J. (2008). Tetrahedron Lett. 49, 179-184.]); Hohenschutz et al. (1981[Hohenschutz, L. D., Bell, E. A., Jewess, P. J., Leworthy, D. P., Pryce, R. J., Arnold, E. & Clardy, J. (1981). Phytochemistry, 20, 811-14.]); Kato et al. (1999[Kato, A., Adachi, I., Miyauchi, M., Ikeda, K., Komae, T., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J., Wormald, M. R., Fleet, G. W. J. & Asano, N. (1999). Carbohydr. Res. 316, 95-103.], 2007[Kato, A., Kato, N., Adachi, I., Hollinshead, J., Fleet, G. W. J., Kuriyama, C., Ikeda, K., Asano, N. & Nash, R. J. (2007). J. Nat. Prod. 70, 993-997.]); Klein et al. (1999[Klein, J. L. D., Roberts, J. D., George, M. D., Kurtzberg, J., Breton, P., Chermann, J. C. & Olden, K. (1999). Br. J. Cancer, 80, 87-95.]); Lagana et al. (2006[Lagana, A., Goetz, J. G., Cheung, P., Raz, A., Dennis, J. W. & Nabi, I. R. (2006). Mol. Cell. Biol. 26, 3181-3193.]); Sengoku et al. (2009[Sengoku, T., Satoh, Y., Takahashi, M. & Yoda, H. (2009). Tetrahedron Lett. 50, 4937-4940.]); Watson et al. (2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]); Whitby et al. (2005[Whitby, K., Pierson, T. C., Geiss, B., Lane, K., Engle, M., Zhou, Y., Doms, R. W. & Diamond, M. S. (2005). J. Virol. 79, 8698-8706.]); Yamashita et al. (2002[Yamashita, T., Yasuda, K., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J., Fleet, G. W. J. & Asano, N. (2002). J. Nat. Prod. 65, 1875-1881.]). For the Hooft parameter, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For the extinction correction, see: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C10H20N+·Br

  • Mr = 282.18

  • Orthorhombic, P 21 21 21

  • a = 8.4616 (1) Å

  • b = 8.8762 (1) Å

  • c = 15.8270 (2) Å

  • V = 1188.72 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 150 K

  • 0.46 × 0.46 × 0.26 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.20, Tmax = 0.41

  • 2675 measured reflections

  • 2658 independent reflections

  • 2484 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.052

  • S = 1.00

  • 2658 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1102 Friedel pairs

  • Flack parameter: 0.002 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O2 0.84 2.34 2.684 (3) 105
O5—H51⋯O15 0.84 2.53 3.018 (3) 118
N7—H71⋯Br1 0.98 2.29 3.268 (2) 172
O2—H21⋯Br1i 0.82 2.55 3.364 (2) 177
O15—H151⋯Br1ii 0.84 2.39 3.211 (2) 169
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Well over 100 iminosugars - analogues of sugars in which the ring oxygen is replaced by nitrogen - have been isolated as natural products (Asano et al., 2000a; Watson et al., 2001). This paper establishes both the relative and absolute stereochemistry of the five chiral centres in steviamine (1), recently isolated from the leaves of Stevia rebaudiana (Asteraceae); (1) is the first example of a new class of indolizidine alkaloid with an alkyl group attached to the piperidine ring. Swainsonine (2, see Fig. 1), a trihydroxyindolizidine isolated from Swainsona canescens (Colegate et al., 1979), is a powerful inhibitor of α-mannosidases and has potential as a chemotherapeutic agent for the treatment of cancer (Lagana et al., 2006; Klein et al., 1999). l-Swainsonine 3, the enantiomer of 2, is a very powerful α-rhamnosidase inhibitor (Davis et al., 1996); 4 in which a methyl group is introduced into the piperidine ring is nearly 100 times more potent an inhibitor than 2 (Hakansson et al., 2008). Castanospermine 5, isolated from Castanospermum australe (Hohenschutz et al., 1981), is an inhibitor of some α-glucosidases and a potent inhibitor of dengue virus infection in vivo (Whitby et al., 2005); Celgosivir, a simple derivative of 5, is in development for the treatment of HCV infection (Durantel, 2009). Hyacinthacine A4 6, isolated from Scilla sibirica (Asano et al., 2000b; Yamashita et al., 2002), is the pyrrolizidine equivalent of steviamine 1. Many hyacinthacines have been isolated from a range of plants (Kato et al., 1999; Kato et al., 2007) and have attracted considerable attention from synthetic organic chemists (Sengoku et al., 2009; Donohoe et al., 2008). Steviamine 1 is unlikely to be the only naturally occurring indolizidine with a methyl branch which will provide similarly challenging synthetic targets.

As a natural product, the crystal was expected to be enantiopure and the Flack x parameter refined to 0.002 (10) (Flack, 1983). Analysis of the Bijvoet differences using within CRYSTALS (Betteridge et al., 2003) gives the Hooft y parameter as 0.023 (6), indicating that the probability that the configuration is incorrect allowing for the posibility of racemic twinning is less than 0.000001% (Hooft et al., 2008).

On examination of hydrogen bonding interactions in 1, the position of H51 initially seemed incorrect, lying between atoms O2 and O15. However, examination of the difference map indicates the presence of a peak believed to be a hydrogen atom which moves little on refinement suggesting the hydrogen bond is bifurcated (Fig. 2, Table 1). The molecules are linked together by three hydrogen bonds (two O—H···Br and one N—H···Br, Table 1) to form double chains around the twofold screw axes along the b direction (Fig. 3).

Related literature top

For background to the biological activity of indolizidines, see: Asano et al. (2000a,2000b); Colegate et al. (1979); Davis et al. (1996); Donohoe et al. (2008); Durantel (2009); Hakansson et al. (2008); Hohenschutz et al. (1981); Kato et al. (1999, 2007); Klein et al. (1999); Lagana et al. (2006); Sengoku et al. (2009); Watson et al. (2001); Whitby et al. (2005); Yamashita et al. (2002). For the Hooft parameter, see: Hooft et al. (2008). For the extinction correction, see: Larson (1970).

Experimental top

Steviamine was isolated by a combination of strongly acidic cation, and strongly basic anion, exchange chromatography. The compound was retained on cation exchange resin (IR120) and was chromatographed on the anion exchange resin (CG400) from which it was eluted with water. Isolation was monitored using GC-MS of the trimethylsilyl-derivative (distinctive major ion at 314 amu). Steviamine was crystallized as its hydrobromide salt from ethanol.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined separately with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

On comparison of Fo and Fc, it was apparent that for large values, of Fo was noticably less than Fc, so an extinction parameter was refined (Larson, 1970).

Structure description top

Well over 100 iminosugars - analogues of sugars in which the ring oxygen is replaced by nitrogen - have been isolated as natural products (Asano et al., 2000a; Watson et al., 2001). This paper establishes both the relative and absolute stereochemistry of the five chiral centres in steviamine (1), recently isolated from the leaves of Stevia rebaudiana (Asteraceae); (1) is the first example of a new class of indolizidine alkaloid with an alkyl group attached to the piperidine ring. Swainsonine (2, see Fig. 1), a trihydroxyindolizidine isolated from Swainsona canescens (Colegate et al., 1979), is a powerful inhibitor of α-mannosidases and has potential as a chemotherapeutic agent for the treatment of cancer (Lagana et al., 2006; Klein et al., 1999). l-Swainsonine 3, the enantiomer of 2, is a very powerful α-rhamnosidase inhibitor (Davis et al., 1996); 4 in which a methyl group is introduced into the piperidine ring is nearly 100 times more potent an inhibitor than 2 (Hakansson et al., 2008). Castanospermine 5, isolated from Castanospermum australe (Hohenschutz et al., 1981), is an inhibitor of some α-glucosidases and a potent inhibitor of dengue virus infection in vivo (Whitby et al., 2005); Celgosivir, a simple derivative of 5, is in development for the treatment of HCV infection (Durantel, 2009). Hyacinthacine A4 6, isolated from Scilla sibirica (Asano et al., 2000b; Yamashita et al., 2002), is the pyrrolizidine equivalent of steviamine 1. Many hyacinthacines have been isolated from a range of plants (Kato et al., 1999; Kato et al., 2007) and have attracted considerable attention from synthetic organic chemists (Sengoku et al., 2009; Donohoe et al., 2008). Steviamine 1 is unlikely to be the only naturally occurring indolizidine with a methyl branch which will provide similarly challenging synthetic targets.

As a natural product, the crystal was expected to be enantiopure and the Flack x parameter refined to 0.002 (10) (Flack, 1983). Analysis of the Bijvoet differences using within CRYSTALS (Betteridge et al., 2003) gives the Hooft y parameter as 0.023 (6), indicating that the probability that the configuration is incorrect allowing for the posibility of racemic twinning is less than 0.000001% (Hooft et al., 2008).

On examination of hydrogen bonding interactions in 1, the position of H51 initially seemed incorrect, lying between atoms O2 and O15. However, examination of the difference map indicates the presence of a peak believed to be a hydrogen atom which moves little on refinement suggesting the hydrogen bond is bifurcated (Fig. 2, Table 1). The molecules are linked together by three hydrogen bonds (two O—H···Br and one N—H···Br, Table 1) to form double chains around the twofold screw axes along the b direction (Fig. 3).

For background to the biological activity of indolizidines, see: Asano et al. (2000a,2000b); Colegate et al. (1979); Davis et al. (1996); Donohoe et al. (2008); Durantel (2009); Hakansson et al. (2008); Hohenschutz et al. (1981); Kato et al. (1999, 2007); Klein et al. (1999); Lagana et al. (2006); Sengoku et al. (2009); Watson et al. (2001); Whitby et al. (2005); Yamashita et al. (2002). For the Hooft parameter, see: Hooft et al. (2008). For the extinction correction, see: Larson (1970).

Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Chemical structures of compounds 1 - 6.
[Figure 2] Fig. 2. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown with a dotted lines.
[Figure 3] Fig. 3. 1 forms hydrogen bonded double chains around around the twofold screw axis parallel to the b-axis (viewed down the c-axis). Hydrogen bonding interactions are shown as dotted lines and all hydrogen atoms not involved are omitted for clarity.
(1R,2S,3R,5R,8aR)-3-Hydroxymethyl-5- methyloctahydroindolizine-1,2-diol hydrobromide top
Crystal data top
C10H20N+·BrDx = 1.577 Mg m3
Mr = 282.18Melting point: not measured K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1544 reflections
a = 8.4616 (1) Åθ = 5–27°
b = 8.8762 (1) ŵ = 3.45 mm1
c = 15.8270 (2) ÅT = 150 K
V = 1188.72 (2) Å3Plate, colourless
Z = 40.46 × 0.46 × 0.26 mm
F(000) = 584
Data collection top
Nonius KappaCCD area-detector
diffractometer
2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.20, Tmax = 0.41k = 1111
2675 measured reflectionsl = 2020
2658 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.01P)2 + 0.86P],
where P = [max(Fo2,0) + 2Fc2]/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.001
wR(F2) = 0.052Δρmax = 0.37 e Å3
S = 1.00Δρmin = 0.52 e Å3
2658 reflectionsExtinction correction: Larson (1970), Equation 22
138 parametersExtinction coefficient: 75 (8)
0 restraintsAbsolute structure: Flack (1983), 1102 Friedel-pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (10)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
C10H20N+·BrV = 1188.72 (2) Å3
Mr = 282.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4616 (1) ŵ = 3.45 mm1
b = 8.8762 (1) ÅT = 150 K
c = 15.8270 (2) Å0.46 × 0.46 × 0.26 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2658 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2484 reflections with I > 2σ(I)
Tmin = 0.20, Tmax = 0.41Rint = 0.042
2675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.37 e Å3
S = 1.00Δρmin = 0.52 e Å3
2658 reflectionsAbsolute structure: Flack (1983), 1102 Friedel-pairs
138 parametersAbsolute structure parameter: 0.002 (10)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29652 (3)0.79140 (2)0.693045 (16)0.0373
O20.0613 (2)0.2681 (2)0.63610 (12)0.0470
C30.0377 (3)0.3939 (3)0.65007 (17)0.0381
C40.1564 (4)0.3703 (3)0.72343 (15)0.0436
O50.1230 (3)0.2427 (2)0.77338 (12)0.0682
C60.3207 (4)0.3611 (2)0.68353 (14)0.0362
N70.2994 (3)0.45785 (19)0.60566 (10)0.0248
C80.1381 (3)0.4183 (3)0.57125 (14)0.0267
C90.0873 (3)0.5356 (3)0.50829 (16)0.0349
C100.2069 (4)0.5435 (3)0.43633 (14)0.0389
C110.3726 (3)0.5724 (3)0.47093 (16)0.0394
C120.4244 (3)0.4594 (3)0.53787 (15)0.0330
C130.5841 (3)0.4996 (4)0.5756 (2)0.0490
C140.3784 (4)0.2019 (3)0.66419 (17)0.0517
O150.2695 (3)0.12282 (19)0.61308 (12)0.0522
H310.02580.48400.66130.0459*
H410.15450.45760.76090.0522*
H610.40030.41160.71860.0435*
H810.14810.32160.54350.0325*
H920.08220.63340.53660.0421*
H910.01700.50960.48610.0419*
H1020.17620.62190.39730.0473*
H1010.20440.44580.40630.0468*
H1110.37410.67200.49580.0478*
H1120.44500.57000.42370.0485*
H1210.42430.35800.51380.0384*
H1320.66020.50240.53100.0746*
H1310.57810.59700.60210.0735*
H1330.61310.42540.61670.0738*
H1410.39230.15090.71630.0614*
H1420.47980.20800.63550.0607*
H1510.28500.03360.62780.0778*
H210.12160.27260.67620.0723*
H510.09990.16870.74240.1018*
H710.29000.56070.62790.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04557 (13)0.02142 (11)0.04505 (13)0.00181 (11)0.00573 (13)0.00477 (10)
O20.0451 (11)0.0463 (11)0.0495 (11)0.0168 (9)0.0134 (8)0.0013 (9)
C30.0472 (16)0.0264 (12)0.0406 (14)0.0030 (11)0.0188 (12)0.0031 (10)
C40.078 (2)0.0311 (12)0.0220 (11)0.0217 (13)0.0128 (12)0.0036 (9)
O50.1153 (19)0.0591 (14)0.0301 (9)0.0488 (13)0.0052 (11)0.0145 (9)
C60.0647 (17)0.0209 (10)0.0230 (11)0.0009 (11)0.0096 (13)0.0022 (9)
N70.0324 (9)0.0199 (8)0.0220 (8)0.0004 (9)0.0005 (9)0.0002 (6)
C80.0307 (12)0.0229 (10)0.0266 (11)0.0031 (9)0.0027 (10)0.0016 (8)
C90.0349 (13)0.0358 (13)0.0339 (13)0.0056 (11)0.0047 (11)0.0005 (11)
C100.0489 (14)0.0414 (13)0.0263 (11)0.0028 (14)0.0021 (13)0.0093 (10)
C110.0466 (15)0.0391 (14)0.0326 (13)0.0071 (12)0.0113 (12)0.0065 (11)
C120.0317 (13)0.0356 (13)0.0316 (12)0.0015 (10)0.0044 (10)0.0048 (10)
C130.0316 (14)0.0627 (19)0.0526 (17)0.0008 (13)0.0022 (13)0.0101 (14)
C140.091 (2)0.0238 (12)0.0401 (13)0.0082 (16)0.0209 (14)0.0002 (12)
O150.0927 (18)0.0219 (8)0.0419 (10)0.0030 (10)0.0184 (11)0.0038 (7)
Geometric parameters (Å, º) top
O2—C31.414 (3)C9—H920.978
O2—H210.815C9—H910.977
C3—C41.549 (4)C10—C111.527 (4)
C3—C81.525 (3)C10—H1020.965
C3—H310.980C10—H1010.989
C4—O51.409 (3)C11—C121.523 (4)
C4—C61.529 (4)C11—H1110.968
C4—H410.976C11—H1120.967
O5—H510.843C12—C131.519 (4)
C6—N71.513 (3)C12—H1210.977
C6—C141.526 (3)C13—H1320.955
C6—H610.981C13—H1310.963
N7—C81.511 (3)C13—H1330.958
N7—C121.507 (3)C14—O151.412 (3)
N7—H710.982C14—H1410.949
C8—C91.504 (3)C14—H1420.972
C8—H810.967O15—H1510.836
C9—C101.525 (4)
C3—O2—H21102.1C8—C9—H91109.4
O2—C3—C4113.2 (2)C10—C9—H91110.0
O2—C3—C8108.3 (2)H92—C9—H91109.5
C4—C3—C8105.7 (2)C9—C10—C11110.44 (19)
O2—C3—H31110.4C9—C10—H102109.4
C4—C3—H31109.3C11—C10—H102110.8
C8—C3—H31109.8C9—C10—H101107.7
C3—C4—O5113.5 (2)C11—C10—H101109.8
C3—C4—C6106.69 (19)H102—C10—H101108.6
O5—C4—C6111.8 (2)C10—C11—C12113.8 (2)
C3—C4—H41109.7C10—C11—H111108.1
O5—C4—H41107.1C12—C11—H111108.4
C6—C4—H41107.9C10—C11—H112107.5
C4—O5—H51110.3C12—C11—H112109.9
C4—C6—N7101.4 (2)H111—C11—H112109.0
C4—C6—C14115.0 (2)C11—C12—N7107.4 (2)
N7—C6—C14113.58 (19)C11—C12—C13112.0 (2)
C4—C6—H61111.5N7—C12—C13110.3 (2)
N7—C6—H61106.4C11—C12—H121109.6
C14—C6—H61108.5N7—C12—H121105.6
C6—N7—C8105.63 (18)C13—C12—H121111.7
C6—N7—C12120.1 (2)C12—C13—H132108.4
C8—N7—C12112.30 (16)C12—C13—H131109.6
C6—N7—H71104.2H132—C13—H131109.5
C8—N7—H71105.8C12—C13—H133109.5
C12—N7—H71107.6H132—C13—H133110.3
C3—C8—N7103.98 (19)H131—C13—H133109.6
C3—C8—C9118.7 (2)C6—C14—O15111.5 (2)
N7—C8—C9109.66 (19)C6—C14—H141107.9
C3—C8—H81107.1O15—C14—H141110.0
N7—C8—H81106.9C6—C14—H142108.9
C9—C8—H81109.8O15—C14—H142109.6
C8—C9—C10109.7 (2)H141—C14—H142108.8
C8—C9—H92108.9C14—O15—H151102.1
C10—C9—H92109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O20.842.342.684 (3)105
O5—H51···O150.842.533.018 (3)118
N7—H71···Br10.982.293.268 (2)172
O2—H21···Br1i0.822.553.364 (2)177
O15—H151···Br1ii0.842.393.211 (2)169
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H20N+·Br
Mr282.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)8.4616 (1), 8.8762 (1), 15.8270 (2)
V3)1188.72 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.45
Crystal size (mm)0.46 × 0.46 × 0.26
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.20, 0.41
No. of measured, independent and
observed [I > 2σ(I)] reflections
2675, 2658, 2484
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.052, 1.00
No. of reflections2658
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.52
Absolute structureFlack (1983), 1102 Friedel-pairs
Absolute structure parameter0.002 (10)

Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O20.8432.3392.684 (3)105.06
O5—H51···O150.8432.5333.018 (3)117.63
N7—H71···Br10.9822.2933.268 (2)171.74
O2—H21···Br1i0.8152.5503.364 (2)176.63
O15—H151···Br1ii0.8362.3873.211 (2)168.56
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsano, N., Kuroi, H., Ikeda, K., Kizu, H., Kameda, Y., Kato, A., Adachi, I., Watson, A. A., Nash, R. J. & Fleet, G. W. J. (2000b). Tetrahedron Asymmetry, 11, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000a). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationColegate, S. M., Dorling, P. R. & Huxtable, C. R. (1979). Aust. J. Chem. 32, 2257–2264.  CrossRef CAS Google Scholar
First citationDavis, B., Bell, A. A., Nash, R. J., Watson, A. A., Griffiths, R. C., Jones, M. G., Smith, C. & Fleet, G. W. J. (1996). Tetrahedron Lett. 37, 8565–8568.  CrossRef CAS Web of Science Google Scholar
First citationDonohoe, T. J., Thomas, R. E., Cheeseman, M. D., Rigby, C. L., Bhalay, G. & Linney, I. D. (2008). Org. Lett. 10, 3615–3618.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDurantel, D. (2009). Curr. Opin. Invest. Drugs, 10, 860–870.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHakansson, A. E., van Ameijde, J., Horne, G., Nash, R. J., Wormald, M. R., Kato, A., Besra, G. S., Gurcha, S. & Fleet, G. W. J. (2008). Tetrahedron Lett. 49, 179–184.  Web of Science CrossRef CAS Google Scholar
First citationHohenschutz, L. D., Bell, E. A., Jewess, P. J., Leworthy, D. P., Pryce, R. J., Arnold, E. & Clardy, J. (1981). Phytochemistry, 20, 811–14.  CSD CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKato, A., Adachi, I., Miyauchi, M., Ikeda, K., Komae, T., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J., Wormald, M. R., Fleet, G. W. J. & Asano, N. (1999). Carbohydr. Res. 316, 95–103.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKato, A., Kato, N., Adachi, I., Hollinshead, J., Fleet, G. W. J., Kuriyama, C., Ikeda, K., Asano, N. & Nash, R. J. (2007). J. Nat. Prod. 70, 993–997.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlein, J. L. D., Roberts, J. D., George, M. D., Kurtzberg, J., Breton, P., Chermann, J. C. & Olden, K. (1999). Br. J. Cancer, 80, 87–95.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLagana, A., Goetz, J. G., Cheung, P., Raz, A., Dennis, J. W. & Nabi, I. R. (2006). Mol. Cell. Biol. 26, 3181–3193.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSengoku, T., Satoh, Y., Takahashi, M. & Yoda, H. (2009). Tetrahedron Lett. 50, 4937–4940.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWhitby, K., Pierson, T. C., Geiss, B., Lane, K., Engle, M., Zhou, Y., Doms, R. W. & Diamond, M. S. (2005). J. Virol. 79, 8698–8706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamashita, T., Yasuda, K., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J., Fleet, G. W. J. & Asano, N. (2002). J. Nat. Prod. 65, 1875–1881.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds