organic compounds
4-Nitrophenyl 4-bromobenzenesulfonate
aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: vembu57@yahoo.com
In the title molecule, C12H8BrNO5S, the dihedral angle between the two benzene rings is 30.02 (7)°. The is stabilized by weak C—H⋯O interactions.
Related literature
For a detailed account of the molecular and supramolecular architectures of aromatic sulfonates, see: Vembu et al. (2007) and references cited therein. For the uses of aromatic sulfonates, see: Alford et al. (1991); Jiang et al. (1990); Narayanan & Krakow (1983); Spungin et al. (1992); Tharakan et al. (1992); Yachi et al. (1989). For C—H⋯O interactions, see: Desiraju & Steiner (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536809040033/lh2921sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809040033/lh2921Isup2.hkl
4-Bromobenzenesulfonyl chloride (10 mmol), dissolved in acetone (10 ml), was added dropwise to 4-Nitrophenol (10 mmol) in aqueous NaOH (8 ml, 5%) with constant stirring. The precipitate (6.5 mmol, yield 65%) was filtered and recrystallized from aqueous ethanol.
All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined.
Aromatic sulfonates are used in monitoring the merging of
(Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al.,1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure of (I) is shown in Fig. 1. The S—C, S—O and S=O bond lengths are comparable with those found in related structures which have been previously reported by us (Vembu et al. 2007 and references cited therein).The C4–S–O9–C10 torsion angle of -86.5 (2)° corresponds to -synclinal conformation; as expected the dihedral angle between the mean planes of the nitrophenyl and bromobenzene rings of 30.02 (7)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Vembu et al. 2007 and references cited therein)
The
of (I) is stabilized by weak intermolecular C—H···O interactions (Desiraju et al., 1999) (Table 1, Fig. 2). Two symmetry related C15–H15···O7ii interactions generate a binary motif of graph set, R22(12) (Bernstein et al., 1995).For a detailed account of the molecular and supramolecular architectures of aromatic sulfonates, see: Vembu et al. (2007) and references cited therein. For the uses of aromatic sulfonates, see: Alford et al. (1991); Jiang et al. (1990); Narayanan & Krakow (1983); Spungin et al. (1992); Tharakan et al. (1992); Yachi et al. (1989). For C—H···O interactions, see: Desiraju & Steiner (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Data collection: COLLECT (Nonius, 2000); cell
DENZO & SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO & SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C12H8BrNO5S | F(000) = 712 |
Mr = 358.16 | Dx = 1.836 Mg m−3 |
Monoclinic, P21/c | Melting point: 376 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.150 (2) Å | Cell parameters from 4455 reflections |
b = 8.3387 (10) Å | θ = 2.5–32.6° |
c = 12.292 (2) Å | µ = 3.35 mm−1 |
β = 105.932 (7)° | T = 90 K |
V = 1296.1 (3) Å3 | Plate, colorless |
Z = 4 | 0.20 × 0.15 × 0.07 mm |
Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler | 4458 independent reflections |
Radiation source: fine-focus sealed tube | 3518 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω scans with κ offsets | θmax = 32.6°, θmin = 2.9° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | h = −19→19 |
Tmin = 0.554, Tmax = 0.799 | k = −12→12 |
35540 measured reflections | l = −17→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0315P)2 + 2.0753P] where P = (Fo2 + 2Fc2)/3 |
4458 reflections | (Δ/σ)max = 0.001 |
213 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.81 e Å−3 |
C12H8BrNO5S | V = 1296.1 (3) Å3 |
Mr = 358.16 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.150 (2) Å | µ = 3.35 mm−1 |
b = 8.3387 (10) Å | T = 90 K |
c = 12.292 (2) Å | 0.20 × 0.15 × 0.07 mm |
β = 105.932 (7)° |
Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler | 4458 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | 3518 reflections with I > 2σ(I) |
Tmin = 0.554, Tmax = 0.799 | Rint = 0.024 |
35540 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.085 | All H-atom parameters refined |
S = 1.04 | Δρmax = 0.57 e Å−3 |
4458 reflections | Δρmin = −0.81 e Å−3 |
213 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.421887 (17) | 0.40490 (3) | 0.26901 (2) | 0.02131 (7) | |
S | 0.78218 (4) | 0.39271 (6) | 0.01144 (4) | 0.01524 (10) | |
C1 | 0.52731 (16) | 0.3985 (3) | 0.19030 (18) | 0.0161 (4) | |
C2 | 0.51138 (17) | 0.3089 (3) | 0.09190 (19) | 0.0190 (4) | |
C3 | 0.59099 (17) | 0.3057 (3) | 0.03702 (18) | 0.0182 (4) | |
C4 | 0.68192 (16) | 0.3964 (3) | 0.08048 (17) | 0.0150 (4) | |
C5 | 0.69638 (16) | 0.4885 (3) | 0.17766 (18) | 0.0162 (4) | |
C6 | 0.61882 (17) | 0.4870 (3) | 0.23466 (18) | 0.0172 (4) | |
O7 | 0.83334 (13) | 0.5453 (2) | 0.02325 (14) | 0.0205 (3) | |
O8 | 0.74442 (13) | 0.3181 (2) | −0.09633 (13) | 0.0219 (3) | |
O9 | 0.86612 (12) | 0.26386 (18) | 0.08300 (13) | 0.0166 (3) | |
C10 | 0.94553 (16) | 0.3146 (2) | 0.17970 (17) | 0.0150 (4) | |
C11 | 0.92572 (16) | 0.3055 (3) | 0.28444 (18) | 0.0169 (4) | |
C12 | 1.00721 (17) | 0.3432 (3) | 0.37986 (18) | 0.0170 (4) | |
C13 | 1.10505 (16) | 0.3843 (2) | 0.36629 (18) | 0.0156 (4) | |
C14 | 1.12437 (16) | 0.3955 (3) | 0.26150 (19) | 0.0180 (4) | |
C15 | 1.04210 (17) | 0.3612 (3) | 0.16568 (19) | 0.0178 (4) | |
N16 | 1.19300 (15) | 0.4124 (2) | 0.46863 (16) | 0.0184 (3) | |
O17 | 1.17261 (14) | 0.4151 (2) | 0.56006 (13) | 0.0234 (3) | |
O18 | 1.28217 (13) | 0.4302 (2) | 0.45684 (15) | 0.0256 (4) | |
H2 | 0.449 (2) | 0.245 (4) | 0.062 (2) | 0.024 (7)* | |
H3 | 0.582 (2) | 0.249 (3) | −0.029 (2) | 0.020 (7)* | |
H5 | 0.758 (2) | 0.552 (3) | 0.205 (2) | 0.019 (7)* | |
H6 | 0.627 (2) | 0.542 (3) | 0.302 (2) | 0.018 (7)* | |
H11 | 0.858 (2) | 0.274 (4) | 0.291 (2) | 0.028 (8)* | |
H12 | 0.994 (2) | 0.340 (3) | 0.452 (2) | 0.021 (7)* | |
H14 | 1.188 (2) | 0.425 (3) | 0.254 (2) | 0.022 (7)* | |
H15 | 1.053 (2) | 0.367 (4) | 0.090 (2) | 0.025 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.01653 (10) | 0.02210 (11) | 0.02718 (12) | 0.00233 (8) | 0.00914 (8) | 0.00332 (9) |
S | 0.0167 (2) | 0.0152 (2) | 0.0142 (2) | 0.00039 (18) | 0.00489 (17) | 0.00036 (18) |
C1 | 0.0145 (8) | 0.0160 (9) | 0.0190 (9) | 0.0025 (7) | 0.0067 (7) | 0.0034 (8) |
C2 | 0.0158 (9) | 0.0182 (10) | 0.0211 (10) | −0.0028 (8) | 0.0017 (8) | 0.0007 (8) |
C3 | 0.0194 (10) | 0.0171 (10) | 0.0162 (9) | −0.0019 (8) | 0.0019 (7) | −0.0031 (8) |
C4 | 0.0148 (8) | 0.0161 (9) | 0.0145 (9) | 0.0012 (7) | 0.0045 (7) | 0.0014 (7) |
C5 | 0.0154 (9) | 0.0139 (9) | 0.0190 (10) | −0.0005 (7) | 0.0042 (7) | −0.0018 (7) |
C6 | 0.0180 (9) | 0.0164 (10) | 0.0163 (9) | 0.0005 (8) | 0.0034 (7) | −0.0015 (8) |
O7 | 0.0228 (8) | 0.0173 (7) | 0.0239 (8) | −0.0018 (6) | 0.0106 (6) | 0.0024 (6) |
O8 | 0.0229 (8) | 0.0266 (9) | 0.0164 (7) | 0.0016 (6) | 0.0056 (6) | −0.0027 (6) |
O9 | 0.0157 (7) | 0.0138 (7) | 0.0191 (7) | −0.0006 (5) | 0.0029 (5) | −0.0023 (5) |
C10 | 0.0156 (9) | 0.0127 (9) | 0.0164 (9) | −0.0004 (7) | 0.0037 (7) | −0.0001 (7) |
C11 | 0.0150 (9) | 0.0167 (9) | 0.0204 (10) | 0.0005 (8) | 0.0070 (8) | 0.0037 (8) |
C12 | 0.0183 (9) | 0.0163 (9) | 0.0169 (9) | 0.0016 (8) | 0.0055 (8) | 0.0035 (8) |
C13 | 0.0150 (9) | 0.0137 (9) | 0.0172 (9) | 0.0014 (7) | 0.0028 (7) | −0.0005 (7) |
C14 | 0.0142 (9) | 0.0175 (10) | 0.0231 (10) | −0.0008 (8) | 0.0065 (8) | −0.0008 (8) |
C15 | 0.0183 (9) | 0.0180 (10) | 0.0187 (10) | −0.0013 (8) | 0.0076 (8) | −0.0009 (8) |
N16 | 0.0188 (8) | 0.0149 (8) | 0.0198 (8) | 0.0007 (7) | 0.0026 (7) | 0.0008 (7) |
O17 | 0.0268 (8) | 0.0254 (9) | 0.0168 (7) | −0.0015 (7) | 0.0039 (6) | −0.0015 (6) |
O18 | 0.0157 (7) | 0.0318 (10) | 0.0279 (9) | −0.0007 (7) | 0.0034 (6) | −0.0010 (7) |
Br—C1 | 1.897 (2) | O9—C10 | 1.414 (2) |
S—O8 | 1.4239 (16) | C10—C15 | 1.383 (3) |
S—O7 | 1.4277 (17) | C10—C11 | 1.384 (3) |
S—O9 | 1.6167 (16) | C11—C12 | 1.390 (3) |
S—C4 | 1.753 (2) | C11—H11 | 0.96 (3) |
C1—C2 | 1.388 (3) | C12—C13 | 1.385 (3) |
C1—C6 | 1.389 (3) | C12—H12 | 0.95 (3) |
C2—C3 | 1.393 (3) | C13—C14 | 1.383 (3) |
C2—H2 | 0.96 (3) | C13—N16 | 1.475 (3) |
C3—C4 | 1.392 (3) | C14—C15 | 1.393 (3) |
C3—H3 | 0.92 (3) | C14—H14 | 0.91 (3) |
C4—C5 | 1.389 (3) | C15—H15 | 0.98 (3) |
C5—C6 | 1.387 (3) | N16—O17 | 1.225 (2) |
C5—H5 | 0.95 (3) | N16—O18 | 1.229 (2) |
C6—H6 | 0.93 (3) | ||
O8—S—O7 | 121.22 (10) | C1—C6—H6 | 119.2 (17) |
O8—S—O9 | 103.14 (9) | C10—O9—S | 119.66 (13) |
O7—S—O9 | 107.73 (9) | C15—C10—C11 | 123.02 (19) |
O8—S—C4 | 109.96 (10) | C15—C10—O9 | 118.07 (18) |
O7—S—C4 | 109.35 (10) | C11—C10—O9 | 118.77 (18) |
O9—S—C4 | 103.88 (9) | C10—C11—C12 | 118.31 (19) |
C2—C1—C6 | 122.4 (2) | C10—C11—H11 | 120.7 (18) |
C2—C1—Br | 120.21 (16) | C12—C11—H11 | 121.0 (18) |
C6—C1—Br | 117.42 (16) | C13—C12—C11 | 118.7 (2) |
C1—C2—C3 | 118.6 (2) | C13—C12—H12 | 122.0 (17) |
C1—C2—H2 | 122.1 (17) | C11—C12—H12 | 119.2 (17) |
C3—C2—H2 | 119.2 (17) | C14—C13—C12 | 122.90 (19) |
C4—C3—C2 | 119.0 (2) | C14—C13—N16 | 118.82 (18) |
C4—C3—H3 | 120.2 (16) | C12—C13—N16 | 118.25 (19) |
C2—C3—H3 | 120.8 (16) | C13—C14—C15 | 118.37 (19) |
C5—C4—C3 | 122.1 (2) | C13—C14—H14 | 121.6 (18) |
C5—C4—S | 118.84 (16) | C15—C14—H14 | 120.1 (18) |
C3—C4—S | 119.07 (16) | C10—C15—C14 | 118.6 (2) |
C6—C5—C4 | 118.91 (19) | C10—C15—H15 | 120.4 (17) |
C6—C5—H5 | 120.2 (17) | C14—C15—H15 | 120.9 (17) |
C4—C5—H5 | 120.9 (17) | O17—N16—O18 | 124.18 (19) |
C5—C6—C1 | 119.0 (2) | O17—N16—C13 | 117.87 (18) |
C5—C6—H6 | 121.8 (17) | O18—N16—C13 | 117.95 (18) |
C6—C1—C2—C3 | 1.2 (3) | C4—S—O9—C10 | −86.54 (16) |
Br—C1—C2—C3 | −179.34 (16) | S—O9—C10—C15 | −91.9 (2) |
C1—C2—C3—C4 | −2.1 (3) | S—O9—C10—C11 | 92.2 (2) |
C2—C3—C4—C5 | 0.8 (3) | C15—C10—C11—C12 | −0.8 (3) |
C2—C3—C4—S | −179.91 (17) | O9—C10—C11—C12 | 174.83 (19) |
O8—S—C4—C5 | −168.82 (17) | C10—C11—C12—C13 | −1.5 (3) |
O7—S—C4—C5 | −33.4 (2) | C11—C12—C13—C14 | 2.5 (3) |
O9—S—C4—C5 | 81.36 (18) | C11—C12—C13—N16 | −175.55 (19) |
O8—S—C4—C3 | 11.9 (2) | C12—C13—C14—C15 | −1.1 (3) |
O7—S—C4—C3 | 147.24 (17) | N16—C13—C14—C15 | 176.93 (19) |
O9—S—C4—C3 | −97.96 (18) | C11—C10—C15—C14 | 2.2 (3) |
C3—C4—C5—C6 | 1.6 (3) | O9—C10—C15—C14 | −173.47 (19) |
S—C4—C5—C6 | −177.71 (16) | C13—C14—C15—C10 | −1.2 (3) |
C4—C5—C6—C1 | −2.5 (3) | C14—C13—N16—O17 | 174.0 (2) |
C2—C1—C6—C5 | 1.2 (3) | C12—C13—N16—O17 | −7.8 (3) |
Br—C1—C6—C5 | −178.29 (16) | C14—C13—N16—O18 | −6.5 (3) |
O8—S—O9—C10 | 158.70 (15) | C12—C13—N16—O18 | 171.6 (2) |
O7—S—O9—C10 | 29.39 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O8 | 0.92 (3) | 2.55 (3) | 2.930 (3) | 105.0 (19) |
C11—H11···O8i | 0.96 (3) | 2.42 (3) | 3.288 (3) | 150 (2) |
C15—H15···O7ii | 0.98 (3) | 2.42 (3) | 3.282 (3) | 146 (2) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C12H8BrNO5S |
Mr | 358.16 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 90 |
a, b, c (Å) | 13.150 (2), 8.3387 (10), 12.292 (2) |
β (°) | 105.932 (7) |
V (Å3) | 1296.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.35 |
Crystal size (mm) | 0.20 × 0.15 × 0.07 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.554, 0.799 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35540, 4458, 3518 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.759 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.085, 1.04 |
No. of reflections | 4458 |
No. of parameters | 213 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.57, −0.81 |
Computer programs: COLLECT (Nonius, 2000), DENZO & SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O8 | 0.92 (3) | 2.55 (3) | 2.930 (3) | 105.0 (19) |
C11—H11···O8i | 0.96 (3) | 2.42 (3) | 3.288 (3) | 150 (2) |
C15—H15···O7ii | 0.98 (3) | 2.42 (3) | 3.282 (3) | 146 (2) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+2, −y+1, −z. |
Acknowledgements
NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].
References
Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611–619. CrossRef PubMed CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press. Google Scholar
Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139–149. CrossRef CAS PubMed Web of Science Google Scholar
Narayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res. 11, 2701–2716. CrossRef CAS PubMed Web of Science Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett. 311, 155–160. CrossRef PubMed CAS Web of Science Google Scholar
Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J. Chromatogr. 595, 103–111. CrossRef PubMed CAS Web of Science Google Scholar
Vembu, N., Sparkes, H. A. & Howard, J. A. K. (2007). Acta Cryst. E63, o3543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1–7. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al.,1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure of (I) is shown in Fig. 1. The S—C, S—O and S=O bond lengths are comparable with those found in related structures which have been previously reported by us (Vembu et al. 2007 and references cited therein).
The C4–S–O9–C10 torsion angle of -86.5 (2)° corresponds to -synclinal conformation; as expected the dihedral angle between the mean planes of the nitrophenyl and bromobenzene rings of 30.02 (7)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Vembu et al. 2007 and references cited therein)
The crystal structure of (I) is stabilized by weak intermolecular C—H···O interactions (Desiraju et al., 1999) (Table 1, Fig. 2). Two symmetry related C15–H15···O7ii interactions generate a binary motif of graph set, R22(12) (Bernstein et al., 1995).