organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl 4-bromo­benzene­sulfonate

aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: vembu57@yahoo.com

(Received 29 September 2009; accepted 1 October 2009; online 10 October 2009)

In the title mol­ecule, C12H8BrNO5S, the dihedral angle between the two benzene rings is 30.02 (7)°. The crystal structure is stabilized by weak C—H⋯O inter­actions.

Related literature

For a detailed account of the mol­ecular and supra­molecular architectures of aromatic sulfonates, see: Vembu et al. (2007[Vembu, N., Sparkes, H. A. & Howard, J. A. K. (2007). Acta Cryst. E63, o3543.]) and references cited therein. For the uses of aromatic sulfonates, see: Alford et al. (1991[Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611-619.]); Jiang et al. (1990[Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139-149.]); Narayanan & Krakow (1983[Narayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res. 11, 2701-2716.]); Spungin et al. (1992[Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett. 311, 155-160.]); Tharakan et al. (1992[Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J. Chromatogr. 595, 103-111.]); Yachi et al. (1989[Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1-7.]). For C—H⋯O inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8BrNO5S

  • Mr = 358.16

  • Monoclinic, P 21 /c

  • a = 13.150 (2) Å

  • b = 8.3387 (10) Å

  • c = 12.292 (2) Å

  • β = 105.932 (7)°

  • V = 1296.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.35 mm−1

  • T = 90 K

  • 0.20 × 0.15 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.554, Tmax = 0.799

  • 35540 measured reflections

  • 4458 independent reflections

  • 3518 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.04

  • 4458 reflections

  • 213 parameters

  • All H-atom parameters refined

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O8 0.92 (3) 2.55 (3) 2.930 (3) 105.0 (19)
C11—H11⋯O8i 0.96 (3) 2.42 (3) 3.288 (3) 150 (2)
C15—H15⋯O7ii 0.98 (3) 2.42 (3) 3.282 (3) 146 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al.,1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure of (I) is shown in Fig. 1. The S—C, S—O and S=O bond lengths are comparable with those found in related structures which have been previously reported by us (Vembu et al. 2007 and references cited therein).

The C4–S–O9–C10 torsion angle of -86.5 (2)° corresponds to -synclinal conformation; as expected the dihedral angle between the mean planes of the nitrophenyl and bromobenzene rings of 30.02 (7)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Vembu et al. 2007 and references cited therein)

The crystal structure of (I) is stabilized by weak intermolecular C—H···O interactions (Desiraju et al., 1999) (Table 1, Fig. 2). Two symmetry related C15–H15···O7ii interactions generate a binary motif of graph set, R22(12) (Bernstein et al., 1995).

Related literature top

For a detailed account of the molecular and supramolecular architectures of aromatic sulfonates, see: Vembu et al. (2007) and references cited therein. For the uses of aromatic sulfonates, see: Alford et al. (1991); Jiang et al. (1990); Narayanan & Krakow (1983); Spungin et al. (1992); Tharakan et al. (1992); Yachi et al. (1989). For C—H···O interactions, see: Desiraju & Steiner (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

4-Bromobenzenesulfonyl chloride (10 mmol), dissolved in acetone (10 ml), was added dropwise to 4-Nitrophenol (10 mmol) in aqueous NaOH (8 ml, 5%) with constant stirring. The precipitate (6.5 mmol, yield 65%) was filtered and recrystallized from aqueous ethanol.

Refinement top

All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined.

Structure description top

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al.,1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure of (I) is shown in Fig. 1. The S—C, S—O and S=O bond lengths are comparable with those found in related structures which have been previously reported by us (Vembu et al. 2007 and references cited therein).

The C4–S–O9–C10 torsion angle of -86.5 (2)° corresponds to -synclinal conformation; as expected the dihedral angle between the mean planes of the nitrophenyl and bromobenzene rings of 30.02 (7)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Vembu et al. 2007 and references cited therein)

The crystal structure of (I) is stabilized by weak intermolecular C—H···O interactions (Desiraju et al., 1999) (Table 1, Fig. 2). Two symmetry related C15–H15···O7ii interactions generate a binary motif of graph set, R22(12) (Bernstein et al., 1995).

For a detailed account of the molecular and supramolecular architectures of aromatic sulfonates, see: Vembu et al. (2007) and references cited therein. For the uses of aromatic sulfonates, see: Alford et al. (1991); Jiang et al. (1990); Narayanan & Krakow (1983); Spungin et al. (1992); Tharakan et al. (1992); Yachi et al. (1989). For C—H···O interactions, see: Desiraju & Steiner (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO & SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO & SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius
[Figure 2] Fig. 2. The molecular packing viewed down the b-axis. Dashed lines represent the weak C—H···O interactions within the lattice.
4-Nitrophenyl 4-bromobenzenesulfonate top
Crystal data top
C12H8BrNO5SF(000) = 712
Mr = 358.16Dx = 1.836 Mg m3
Monoclinic, P21/cMelting point: 376 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.150 (2) ÅCell parameters from 4455 reflections
b = 8.3387 (10) Åθ = 2.5–32.6°
c = 12.292 (2) ŵ = 3.35 mm1
β = 105.932 (7)°T = 90 K
V = 1296.1 (3) Å3Plate, colorless
Z = 40.20 × 0.15 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
4458 independent reflections
Radiation source: fine-focus sealed tube3518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scans with κ offsetsθmax = 32.6°, θmin = 2.9°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1919
Tmin = 0.554, Tmax = 0.799k = 1212
35540 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0315P)2 + 2.0753P]
where P = (Fo2 + 2Fc2)/3
4458 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
C12H8BrNO5SV = 1296.1 (3) Å3
Mr = 358.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.150 (2) ŵ = 3.35 mm1
b = 8.3387 (10) ÅT = 90 K
c = 12.292 (2) Å0.20 × 0.15 × 0.07 mm
β = 105.932 (7)°
Data collection top
Nonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
4458 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3518 reflections with I > 2σ(I)
Tmin = 0.554, Tmax = 0.799Rint = 0.024
35540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.085All H-atom parameters refined
S = 1.04Δρmax = 0.57 e Å3
4458 reflectionsΔρmin = 0.81 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.421887 (17)0.40490 (3)0.26901 (2)0.02131 (7)
S0.78218 (4)0.39271 (6)0.01144 (4)0.01524 (10)
C10.52731 (16)0.3985 (3)0.19030 (18)0.0161 (4)
C20.51138 (17)0.3089 (3)0.09190 (19)0.0190 (4)
C30.59099 (17)0.3057 (3)0.03702 (18)0.0182 (4)
C40.68192 (16)0.3964 (3)0.08048 (17)0.0150 (4)
C50.69638 (16)0.4885 (3)0.17766 (18)0.0162 (4)
C60.61882 (17)0.4870 (3)0.23466 (18)0.0172 (4)
O70.83334 (13)0.5453 (2)0.02325 (14)0.0205 (3)
O80.74442 (13)0.3181 (2)0.09633 (13)0.0219 (3)
O90.86612 (12)0.26386 (18)0.08300 (13)0.0166 (3)
C100.94553 (16)0.3146 (2)0.17970 (17)0.0150 (4)
C110.92572 (16)0.3055 (3)0.28444 (18)0.0169 (4)
C121.00721 (17)0.3432 (3)0.37986 (18)0.0170 (4)
C131.10505 (16)0.3843 (2)0.36629 (18)0.0156 (4)
C141.12437 (16)0.3955 (3)0.26150 (19)0.0180 (4)
C151.04210 (17)0.3612 (3)0.16568 (19)0.0178 (4)
N161.19300 (15)0.4124 (2)0.46863 (16)0.0184 (3)
O171.17261 (14)0.4151 (2)0.56006 (13)0.0234 (3)
O181.28217 (13)0.4302 (2)0.45684 (15)0.0256 (4)
H20.449 (2)0.245 (4)0.062 (2)0.024 (7)*
H30.582 (2)0.249 (3)0.029 (2)0.020 (7)*
H50.758 (2)0.552 (3)0.205 (2)0.019 (7)*
H60.627 (2)0.542 (3)0.302 (2)0.018 (7)*
H110.858 (2)0.274 (4)0.291 (2)0.028 (8)*
H120.994 (2)0.340 (3)0.452 (2)0.021 (7)*
H141.188 (2)0.425 (3)0.254 (2)0.022 (7)*
H151.053 (2)0.367 (4)0.090 (2)0.025 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.01653 (10)0.02210 (11)0.02718 (12)0.00233 (8)0.00914 (8)0.00332 (9)
S0.0167 (2)0.0152 (2)0.0142 (2)0.00039 (18)0.00489 (17)0.00036 (18)
C10.0145 (8)0.0160 (9)0.0190 (9)0.0025 (7)0.0067 (7)0.0034 (8)
C20.0158 (9)0.0182 (10)0.0211 (10)0.0028 (8)0.0017 (8)0.0007 (8)
C30.0194 (10)0.0171 (10)0.0162 (9)0.0019 (8)0.0019 (7)0.0031 (8)
C40.0148 (8)0.0161 (9)0.0145 (9)0.0012 (7)0.0045 (7)0.0014 (7)
C50.0154 (9)0.0139 (9)0.0190 (10)0.0005 (7)0.0042 (7)0.0018 (7)
C60.0180 (9)0.0164 (10)0.0163 (9)0.0005 (8)0.0034 (7)0.0015 (8)
O70.0228 (8)0.0173 (7)0.0239 (8)0.0018 (6)0.0106 (6)0.0024 (6)
O80.0229 (8)0.0266 (9)0.0164 (7)0.0016 (6)0.0056 (6)0.0027 (6)
O90.0157 (7)0.0138 (7)0.0191 (7)0.0006 (5)0.0029 (5)0.0023 (5)
C100.0156 (9)0.0127 (9)0.0164 (9)0.0004 (7)0.0037 (7)0.0001 (7)
C110.0150 (9)0.0167 (9)0.0204 (10)0.0005 (8)0.0070 (8)0.0037 (8)
C120.0183 (9)0.0163 (9)0.0169 (9)0.0016 (8)0.0055 (8)0.0035 (8)
C130.0150 (9)0.0137 (9)0.0172 (9)0.0014 (7)0.0028 (7)0.0005 (7)
C140.0142 (9)0.0175 (10)0.0231 (10)0.0008 (8)0.0065 (8)0.0008 (8)
C150.0183 (9)0.0180 (10)0.0187 (10)0.0013 (8)0.0076 (8)0.0009 (8)
N160.0188 (8)0.0149 (8)0.0198 (8)0.0007 (7)0.0026 (7)0.0008 (7)
O170.0268 (8)0.0254 (9)0.0168 (7)0.0015 (7)0.0039 (6)0.0015 (6)
O180.0157 (7)0.0318 (10)0.0279 (9)0.0007 (7)0.0034 (6)0.0010 (7)
Geometric parameters (Å, º) top
Br—C11.897 (2)O9—C101.414 (2)
S—O81.4239 (16)C10—C151.383 (3)
S—O71.4277 (17)C10—C111.384 (3)
S—O91.6167 (16)C11—C121.390 (3)
S—C41.753 (2)C11—H110.96 (3)
C1—C21.388 (3)C12—C131.385 (3)
C1—C61.389 (3)C12—H120.95 (3)
C2—C31.393 (3)C13—C141.383 (3)
C2—H20.96 (3)C13—N161.475 (3)
C3—C41.392 (3)C14—C151.393 (3)
C3—H30.92 (3)C14—H140.91 (3)
C4—C51.389 (3)C15—H150.98 (3)
C5—C61.387 (3)N16—O171.225 (2)
C5—H50.95 (3)N16—O181.229 (2)
C6—H60.93 (3)
O8—S—O7121.22 (10)C1—C6—H6119.2 (17)
O8—S—O9103.14 (9)C10—O9—S119.66 (13)
O7—S—O9107.73 (9)C15—C10—C11123.02 (19)
O8—S—C4109.96 (10)C15—C10—O9118.07 (18)
O7—S—C4109.35 (10)C11—C10—O9118.77 (18)
O9—S—C4103.88 (9)C10—C11—C12118.31 (19)
C2—C1—C6122.4 (2)C10—C11—H11120.7 (18)
C2—C1—Br120.21 (16)C12—C11—H11121.0 (18)
C6—C1—Br117.42 (16)C13—C12—C11118.7 (2)
C1—C2—C3118.6 (2)C13—C12—H12122.0 (17)
C1—C2—H2122.1 (17)C11—C12—H12119.2 (17)
C3—C2—H2119.2 (17)C14—C13—C12122.90 (19)
C4—C3—C2119.0 (2)C14—C13—N16118.82 (18)
C4—C3—H3120.2 (16)C12—C13—N16118.25 (19)
C2—C3—H3120.8 (16)C13—C14—C15118.37 (19)
C5—C4—C3122.1 (2)C13—C14—H14121.6 (18)
C5—C4—S118.84 (16)C15—C14—H14120.1 (18)
C3—C4—S119.07 (16)C10—C15—C14118.6 (2)
C6—C5—C4118.91 (19)C10—C15—H15120.4 (17)
C6—C5—H5120.2 (17)C14—C15—H15120.9 (17)
C4—C5—H5120.9 (17)O17—N16—O18124.18 (19)
C5—C6—C1119.0 (2)O17—N16—C13117.87 (18)
C5—C6—H6121.8 (17)O18—N16—C13117.95 (18)
C6—C1—C2—C31.2 (3)C4—S—O9—C1086.54 (16)
Br—C1—C2—C3179.34 (16)S—O9—C10—C1591.9 (2)
C1—C2—C3—C42.1 (3)S—O9—C10—C1192.2 (2)
C2—C3—C4—C50.8 (3)C15—C10—C11—C120.8 (3)
C2—C3—C4—S179.91 (17)O9—C10—C11—C12174.83 (19)
O8—S—C4—C5168.82 (17)C10—C11—C12—C131.5 (3)
O7—S—C4—C533.4 (2)C11—C12—C13—C142.5 (3)
O9—S—C4—C581.36 (18)C11—C12—C13—N16175.55 (19)
O8—S—C4—C311.9 (2)C12—C13—C14—C151.1 (3)
O7—S—C4—C3147.24 (17)N16—C13—C14—C15176.93 (19)
O9—S—C4—C397.96 (18)C11—C10—C15—C142.2 (3)
C3—C4—C5—C61.6 (3)O9—C10—C15—C14173.47 (19)
S—C4—C5—C6177.71 (16)C13—C14—C15—C101.2 (3)
C4—C5—C6—C12.5 (3)C14—C13—N16—O17174.0 (2)
C2—C1—C6—C51.2 (3)C12—C13—N16—O177.8 (3)
Br—C1—C6—C5178.29 (16)C14—C13—N16—O186.5 (3)
O8—S—O9—C10158.70 (15)C12—C13—N16—O18171.6 (2)
O7—S—O9—C1029.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O80.92 (3)2.55 (3)2.930 (3)105.0 (19)
C11—H11···O8i0.96 (3)2.42 (3)3.288 (3)150 (2)
C15—H15···O7ii0.98 (3)2.42 (3)3.282 (3)146 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H8BrNO5S
Mr358.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)13.150 (2), 8.3387 (10), 12.292 (2)
β (°) 105.932 (7)
V3)1296.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.35
Crystal size (mm)0.20 × 0.15 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer with an Oxford Cryosystems Cryostream cooler
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.554, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
35540, 4458, 3518
Rint0.024
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.04
No. of reflections4458
No. of parameters213
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.57, 0.81

Computer programs: COLLECT (Nonius, 2000), DENZO & SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O80.92 (3)2.55 (3)2.930 (3)105.0 (19)
C11—H11···O8i0.96 (3)2.42 (3)3.288 (3)150 (2)
C15—H15···O7ii0.98 (3)2.42 (3)3.282 (3)146 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z.
 

Acknowledgements

NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].

References

First citationAlford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611–619.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationJiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139–149.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNarayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res. 11, 2701–2716.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett. 311, 155–160.  CrossRef PubMed CAS Web of Science Google Scholar
First citationTharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J. Chromatogr. 595, 103–111.  CrossRef PubMed CAS Web of Science Google Scholar
First citationVembu, N., Sparkes, H. A. & Howard, J. A. K. (2007). Acta Cryst. E63, o3543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1–7.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds