organic compounds
6-Chloro-2-methyl-4-phenyl-3-[1-phenyl-5-(2-thienyl)-4,5-dihydro-1H-pyrazol-3-yl]quinoline
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my
In the title molecule, C29H22ClN3S, the quinoline ring system, thiophene ring and phenyl ring substituents are inclined at angles of 71.70 (7), 59.26 (9) and 81.61 (9)°, respectively, to the 4,5-dihydropyrazole ring. In the 4-phenylquinoline ring system, the phenyl ring makes a dihedral angle of 62.49 (7)° with mean plane of quinoline ring system. In the molecules are linked via weak intermolecular C—H⋯N hydrogen bonds, forming an extended one-dimensional chain along the b axis and are further consolidated by C—H⋯π and π–π stacking interactions [centroid–centroid distances = 3.7022 (10) Å].
Related literature
For general background to quinolines and their derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988). For applications of quinolines, see: Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880). For the synthesis of new quinoline derivatives, see: Katritzky & Arend (1998); Jiang & Si (2002). For related structures, see: Fun et al. (2009a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536809040239/lh2922sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809040239/lh2922Isup2.hkl
A mixture of 1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(thiophen-2-yl) prop-2-en-1-one (0.4 g 0.001 M) and phenyl hydrazine (0.756 g 0.007 M) in distilled ethanol was refluxed for about 8 h. The resulting mixture was concentrated to remove the ethanol and then poured onto ice and neutralized with dilute HCl. The resultant solid was filtered, dried and purified by
using 1:1 mixture of chloroform and petroleum ether. M.p. 463-465K.All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.
Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines. Due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).
The title molecule (Fig. 1) consists of a 4-phenylquinoline ring system (N1/C1–C15), a thiophene ring (S1/C19–C22) and a phenyl ring (C23–C28) attached to a 4,5-dihydropyrazole ring (N2/N3/C16–C18). The 4,5-dihydropyrazole ring is inclined at angles of 71.70 (7), 59.26 (9) and 81.61 (9)° with respect to the quinoline group, thiophene and phenyl rings substituted to 4,5-dihydropyrazole ring, respectively. In the 4-phenylquinoline ring system, the substituent phenyl ring (C10–C15) forms a dihedral angle of 62.49 (7)° with mean plane of quinoline ring system (N1/C1–C9). Bond lengths and angles are within normal ranges, and comparable to closely related structures (Fun et al., 2009a,b).
In the π (Table 1) and π–π stacking interactions between S1/C19–C22 (centroid Cg1) and N2/N3/C16–C18 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.7022 (10) Å.
(Fig. 2), the molecules are linked via weak intermolecular C—H···N hydrogen bonds to form an extended one-dimensional chain along the b-axis and are further consolidated by C–H···For general background to quinolines and their derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988). For applications of quinolines, see: Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880). For the synthesis of new quinoline derivatives, see: Katritzky & Arend (1998); Jiang & Si (2002). For a related structure, see: Fun et al. (2009a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. | |
Fig. 2. The crystal packing of title compound, viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines. |
C29H22ClN3S | F(000) = 1000 |
Mr = 480.01 | Dx = 1.375 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9914 reflections |
a = 14.0395 (4) Å | θ = 2.7–35.6° |
b = 9.4199 (3) Å | µ = 0.28 mm−1 |
c = 19.3020 (6) Å | T = 100 K |
β = 114.696 (2)° | Block, yellow |
V = 2319.22 (12) Å3 | 0.54 × 0.51 × 0.21 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 6723 independent reflections |
Radiation source: fine-focus sealed tube | 5814 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
φ and ω scans | θmax = 30.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −19→19 |
Tmin = 0.863, Tmax = 0.943 | k = −13→13 |
32081 measured reflections | l = −27→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0722P)2 + 1.7861P] where P = (Fo2 + 2Fc2)/3 |
6723 reflections | (Δ/σ)max = 0.001 |
308 parameters | Δρmax = 1.19 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C29H22ClN3S | V = 2319.22 (12) Å3 |
Mr = 480.01 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.0395 (4) Å | µ = 0.28 mm−1 |
b = 9.4199 (3) Å | T = 100 K |
c = 19.3020 (6) Å | 0.54 × 0.51 × 0.21 mm |
β = 114.696 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 6723 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 5814 reflections with I > 2σ(I) |
Tmin = 0.863, Tmax = 0.943 | Rint = 0.051 |
32081 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.19 e Å−3 |
6723 reflections | Δρmin = −0.39 e Å−3 |
308 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.52535 (3) | 0.15347 (5) | 0.55993 (3) | 0.02753 (12) | |
S1 | 0.13358 (3) | 0.98946 (4) | 0.82776 (2) | 0.01644 (10) | |
N1 | 0.46753 (10) | 0.73714 (15) | 0.64499 (8) | 0.0179 (3) | |
N2 | 0.16075 (10) | 0.79726 (15) | 0.65110 (8) | 0.0152 (3) | |
N3 | 0.09408 (10) | 0.81949 (15) | 0.68774 (7) | 0.0142 (3) | |
C1 | 0.47887 (12) | 0.59890 (18) | 0.62770 (9) | 0.0161 (3) | |
C2 | 0.56285 (12) | 0.5667 (2) | 0.60768 (10) | 0.0199 (3) | |
H2A | 0.6082 | 0.6385 | 0.6075 | 0.024* | |
C3 | 0.57797 (12) | 0.4312 (2) | 0.58854 (10) | 0.0211 (3) | |
H3A | 0.6338 | 0.4105 | 0.5762 | 0.025* | |
C4 | 0.50776 (12) | 0.32362 (19) | 0.58782 (10) | 0.0190 (3) | |
C5 | 0.42605 (12) | 0.34935 (18) | 0.60750 (9) | 0.0167 (3) | |
H5A | 0.3812 | 0.2762 | 0.6069 | 0.020* | |
C6 | 0.41072 (11) | 0.48866 (17) | 0.62882 (9) | 0.0143 (3) | |
C7 | 0.32784 (11) | 0.52504 (17) | 0.65019 (8) | 0.0131 (3) | |
C8 | 0.31640 (11) | 0.66558 (17) | 0.66620 (9) | 0.0142 (3) | |
C9 | 0.38941 (12) | 0.76979 (17) | 0.66316 (9) | 0.0163 (3) | |
C10 | 0.25384 (11) | 0.41394 (16) | 0.65240 (9) | 0.0130 (3) | |
C11 | 0.14714 (12) | 0.42336 (17) | 0.60459 (9) | 0.0155 (3) | |
H11A | 0.1223 | 0.4986 | 0.5705 | 0.019* | |
C12 | 0.07765 (12) | 0.32076 (18) | 0.60763 (10) | 0.0189 (3) | |
H12A | 0.0067 | 0.3276 | 0.5755 | 0.023* | |
C13 | 0.11390 (13) | 0.20823 (18) | 0.65841 (10) | 0.0200 (3) | |
H13A | 0.0674 | 0.1396 | 0.6603 | 0.024* | |
C14 | 0.22015 (13) | 0.19852 (18) | 0.70645 (10) | 0.0198 (3) | |
H14A | 0.2446 | 0.1234 | 0.7407 | 0.024* | |
C15 | 0.28996 (12) | 0.30060 (18) | 0.70350 (9) | 0.0175 (3) | |
H15A | 0.3609 | 0.2934 | 0.7357 | 0.021* | |
C16 | 0.23190 (12) | 0.70685 (17) | 0.68943 (9) | 0.0148 (3) | |
C17 | 0.22254 (14) | 0.65035 (19) | 0.75936 (10) | 0.0215 (3) | |
H17A | 0.2833 | 0.6753 | 0.8055 | 0.026* | |
H17B | 0.2139 | 0.5480 | 0.7569 | 0.026* | |
C18 | 0.12318 (12) | 0.72575 (17) | 0.75567 (9) | 0.0146 (3) | |
H18A | 0.0676 | 0.6558 | 0.7467 | 0.018* | |
C19 | 0.14343 (11) | 0.80776 (16) | 0.82741 (9) | 0.0131 (3) | |
C20 | 0.17644 (12) | 0.75300 (18) | 0.89937 (9) | 0.0165 (3) | |
H20A | 0.1862 | 0.6566 | 0.9105 | 0.020* | |
C21 | 0.19417 (13) | 0.86128 (18) | 0.95550 (9) | 0.0176 (3) | |
H21A | 0.2174 | 0.8429 | 1.0073 | 0.021* | |
C22 | 0.17337 (13) | 0.99422 (18) | 0.92477 (9) | 0.0172 (3) | |
H22A | 0.1799 | 1.0768 | 0.9528 | 0.021* | |
C23 | −0.01218 (11) | 0.84260 (16) | 0.63906 (9) | 0.0136 (3) | |
C24 | −0.08776 (12) | 0.83902 (17) | 0.66885 (9) | 0.0156 (3) | |
H24A | −0.0676 | 0.8222 | 0.7205 | 0.019* | |
C25 | −0.19302 (12) | 0.86073 (17) | 0.62083 (10) | 0.0186 (3) | |
H25A | −0.2429 | 0.8563 | 0.6407 | 0.022* | |
C26 | −0.22460 (12) | 0.88873 (19) | 0.54400 (10) | 0.0203 (3) | |
H26A | −0.2950 | 0.9032 | 0.5124 | 0.024* | |
C27 | −0.14923 (13) | 0.89488 (19) | 0.51478 (10) | 0.0205 (3) | |
H27A | −0.1697 | 0.9144 | 0.4633 | 0.025* | |
C28 | −0.04358 (12) | 0.87221 (18) | 0.56158 (9) | 0.0174 (3) | |
H28A | 0.0060 | 0.8768 | 0.5414 | 0.021* | |
C29 | 0.38103 (13) | 0.92253 (18) | 0.68234 (11) | 0.0221 (3) | |
H29A | 0.4414 | 0.9737 | 0.6847 | 0.033* | |
H29B | 0.3774 | 0.9280 | 0.7308 | 0.033* | |
H29C | 0.3189 | 0.9635 | 0.6438 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01621 (19) | 0.0284 (2) | 0.0367 (3) | 0.00178 (15) | 0.00981 (17) | −0.01431 (19) |
S1 | 0.02017 (19) | 0.01186 (18) | 0.01700 (19) | 0.00090 (13) | 0.00746 (15) | 0.00049 (14) |
N1 | 0.0130 (6) | 0.0176 (7) | 0.0196 (7) | −0.0012 (5) | 0.0033 (5) | 0.0006 (5) |
N2 | 0.0131 (6) | 0.0157 (6) | 0.0170 (6) | −0.0001 (5) | 0.0065 (5) | 0.0000 (5) |
N3 | 0.0127 (6) | 0.0169 (6) | 0.0120 (6) | 0.0025 (5) | 0.0042 (5) | 0.0021 (5) |
C1 | 0.0114 (6) | 0.0185 (7) | 0.0154 (7) | −0.0003 (5) | 0.0026 (5) | 0.0007 (6) |
C2 | 0.0119 (6) | 0.0259 (8) | 0.0208 (8) | −0.0020 (6) | 0.0058 (6) | 0.0007 (7) |
C3 | 0.0112 (6) | 0.0297 (9) | 0.0219 (8) | 0.0007 (6) | 0.0066 (6) | −0.0023 (7) |
C4 | 0.0125 (7) | 0.0225 (8) | 0.0202 (8) | 0.0029 (6) | 0.0049 (6) | −0.0045 (6) |
C5 | 0.0122 (6) | 0.0178 (7) | 0.0190 (7) | 0.0003 (5) | 0.0054 (6) | −0.0032 (6) |
C6 | 0.0101 (6) | 0.0163 (7) | 0.0150 (7) | 0.0003 (5) | 0.0035 (5) | −0.0002 (5) |
C7 | 0.0099 (6) | 0.0149 (7) | 0.0121 (6) | 0.0004 (5) | 0.0022 (5) | 0.0002 (5) |
C8 | 0.0117 (6) | 0.0149 (7) | 0.0131 (7) | 0.0019 (5) | 0.0023 (5) | 0.0003 (5) |
C9 | 0.0143 (6) | 0.0153 (7) | 0.0150 (7) | −0.0001 (5) | 0.0018 (5) | 0.0003 (6) |
C10 | 0.0121 (6) | 0.0133 (7) | 0.0143 (6) | 0.0005 (5) | 0.0062 (5) | −0.0013 (5) |
C11 | 0.0126 (6) | 0.0168 (7) | 0.0169 (7) | 0.0012 (5) | 0.0061 (5) | 0.0016 (6) |
C12 | 0.0137 (7) | 0.0212 (8) | 0.0222 (8) | −0.0030 (6) | 0.0079 (6) | −0.0025 (6) |
C13 | 0.0216 (7) | 0.0173 (8) | 0.0261 (8) | −0.0039 (6) | 0.0147 (7) | −0.0030 (7) |
C14 | 0.0238 (8) | 0.0153 (7) | 0.0240 (8) | 0.0038 (6) | 0.0136 (7) | 0.0046 (6) |
C15 | 0.0153 (7) | 0.0169 (7) | 0.0202 (8) | 0.0044 (5) | 0.0074 (6) | 0.0027 (6) |
C16 | 0.0148 (6) | 0.0132 (7) | 0.0140 (7) | 0.0007 (5) | 0.0036 (5) | −0.0018 (5) |
C17 | 0.0269 (8) | 0.0224 (8) | 0.0159 (7) | 0.0127 (7) | 0.0097 (6) | 0.0028 (6) |
C18 | 0.0165 (7) | 0.0123 (7) | 0.0143 (7) | 0.0011 (5) | 0.0057 (5) | 0.0006 (5) |
C19 | 0.0119 (6) | 0.0123 (6) | 0.0149 (7) | 0.0008 (5) | 0.0052 (5) | −0.0010 (5) |
C20 | 0.0168 (7) | 0.0151 (7) | 0.0185 (7) | 0.0014 (5) | 0.0083 (6) | 0.0016 (6) |
C21 | 0.0176 (7) | 0.0216 (8) | 0.0133 (7) | 0.0016 (6) | 0.0061 (6) | 0.0000 (6) |
C22 | 0.0186 (7) | 0.0171 (7) | 0.0161 (7) | −0.0010 (6) | 0.0075 (6) | −0.0038 (6) |
C23 | 0.0123 (6) | 0.0113 (6) | 0.0157 (7) | −0.0001 (5) | 0.0043 (5) | −0.0018 (5) |
C24 | 0.0159 (7) | 0.0138 (7) | 0.0174 (7) | −0.0010 (5) | 0.0072 (6) | −0.0013 (6) |
C25 | 0.0153 (7) | 0.0144 (7) | 0.0275 (8) | −0.0020 (5) | 0.0102 (6) | −0.0054 (6) |
C26 | 0.0131 (7) | 0.0176 (8) | 0.0247 (8) | 0.0008 (5) | 0.0026 (6) | −0.0057 (6) |
C27 | 0.0179 (7) | 0.0218 (8) | 0.0166 (7) | 0.0044 (6) | 0.0022 (6) | −0.0007 (6) |
C28 | 0.0151 (7) | 0.0203 (8) | 0.0155 (7) | 0.0027 (6) | 0.0051 (6) | 0.0004 (6) |
C29 | 0.0189 (7) | 0.0149 (7) | 0.0289 (9) | −0.0015 (6) | 0.0065 (6) | −0.0021 (7) |
Cl1—C4 | 1.7410 (18) | C13—H13A | 0.9300 |
S1—C22 | 1.7163 (17) | C14—C15 | 1.391 (2) |
S1—C19 | 1.7175 (16) | C14—H14A | 0.9300 |
N1—C9 | 1.320 (2) | C15—H15A | 0.9300 |
N1—C1 | 1.370 (2) | C16—C17 | 1.507 (2) |
N2—C16 | 1.286 (2) | C17—C18 | 1.540 (2) |
N2—N3 | 1.4048 (18) | C17—H17A | 0.9700 |
N3—C23 | 1.4087 (19) | C17—H17B | 0.9700 |
N3—C18 | 1.489 (2) | C18—C19 | 1.505 (2) |
C1—C6 | 1.418 (2) | C18—H18A | 0.9800 |
C1—C2 | 1.418 (2) | C19—C20 | 1.368 (2) |
C2—C3 | 1.370 (3) | C20—C21 | 1.432 (2) |
C2—H2A | 0.9300 | C20—H20A | 0.9300 |
C3—C4 | 1.410 (2) | C21—C22 | 1.364 (2) |
C3—H3A | 0.9300 | C21—H21A | 0.9300 |
C4—C5 | 1.372 (2) | C22—H22A | 0.9300 |
C5—C6 | 1.418 (2) | C23—C28 | 1.399 (2) |
C5—H5A | 0.9300 | C23—C24 | 1.403 (2) |
C6—C7 | 1.429 (2) | C24—C25 | 1.393 (2) |
C7—C8 | 1.384 (2) | C24—H24A | 0.9300 |
C7—C10 | 1.488 (2) | C25—C26 | 1.384 (3) |
C8—C9 | 1.438 (2) | C25—H25A | 0.9300 |
C8—C16 | 1.485 (2) | C26—C27 | 1.393 (2) |
C9—C29 | 1.502 (2) | C26—H26A | 0.9300 |
C10—C11 | 1.396 (2) | C27—C28 | 1.394 (2) |
C10—C15 | 1.397 (2) | C27—H27A | 0.9300 |
C11—C12 | 1.392 (2) | C28—H28A | 0.9300 |
C11—H11A | 0.9300 | C29—H29A | 0.9600 |
C12—C13 | 1.388 (2) | C29—H29B | 0.9600 |
C12—H12A | 0.9300 | C29—H29C | 0.9600 |
C13—C14 | 1.392 (2) | ||
C22—S1—C19 | 92.31 (8) | N2—C16—C8 | 121.76 (14) |
C9—N1—C1 | 118.71 (14) | N2—C16—C17 | 114.33 (14) |
C16—N2—N3 | 109.26 (13) | C8—C16—C17 | 123.90 (13) |
N2—N3—C23 | 115.46 (12) | C16—C17—C18 | 102.24 (13) |
N2—N3—C18 | 111.06 (12) | C16—C17—H17A | 111.3 |
C23—N3—C18 | 120.22 (12) | C18—C17—H17A | 111.3 |
N1—C1—C6 | 122.98 (14) | C16—C17—H17B | 111.3 |
N1—C1—C2 | 117.65 (15) | C18—C17—H17B | 111.3 |
C6—C1—C2 | 119.37 (15) | H17A—C17—H17B | 109.2 |
C3—C2—C1 | 120.84 (16) | N3—C18—C19 | 112.48 (13) |
C3—C2—H2A | 119.6 | N3—C18—C17 | 102.95 (12) |
C1—C2—H2A | 119.6 | C19—C18—C17 | 112.01 (13) |
C2—C3—C4 | 119.08 (15) | N3—C18—H18A | 109.7 |
C2—C3—H3A | 120.5 | C19—C18—H18A | 109.7 |
C4—C3—H3A | 120.5 | C17—C18—H18A | 109.7 |
C5—C4—C3 | 122.16 (16) | C20—C19—C18 | 126.44 (14) |
C5—C4—Cl1 | 119.42 (13) | C20—C19—S1 | 111.43 (12) |
C3—C4—Cl1 | 118.41 (12) | C18—C19—S1 | 122.04 (11) |
C4—C5—C6 | 119.31 (15) | C19—C20—C21 | 112.18 (15) |
C4—C5—H5A | 120.3 | C19—C20—H20A | 123.9 |
C6—C5—H5A | 120.3 | C21—C20—H20A | 123.9 |
C1—C6—C5 | 119.20 (14) | C22—C21—C20 | 112.77 (14) |
C1—C6—C7 | 117.69 (14) | C22—C21—H21A | 123.6 |
C5—C6—C7 | 123.10 (14) | C20—C21—H21A | 123.6 |
C8—C7—C6 | 118.57 (14) | C21—C22—S1 | 111.31 (12) |
C8—C7—C10 | 121.26 (13) | C21—C22—H22A | 124.3 |
C6—C7—C10 | 120.14 (14) | S1—C22—H22A | 124.3 |
C7—C8—C9 | 119.51 (14) | C28—C23—C24 | 119.24 (14) |
C7—C8—C16 | 119.99 (14) | C28—C23—N3 | 121.11 (13) |
C9—C8—C16 | 120.44 (14) | C24—C23—N3 | 119.64 (14) |
N1—C9—C8 | 122.51 (15) | C25—C24—C23 | 119.85 (15) |
N1—C9—C29 | 116.62 (15) | C25—C24—H24A | 120.1 |
C8—C9—C29 | 120.87 (14) | C23—C24—H24A | 120.1 |
C11—C10—C15 | 119.21 (14) | C26—C25—C24 | 121.11 (15) |
C11—C10—C7 | 120.38 (14) | C26—C25—H25A | 119.4 |
C15—C10—C7 | 120.40 (13) | C24—C25—H25A | 119.4 |
C12—C11—C10 | 120.37 (15) | C25—C26—C27 | 118.97 (15) |
C12—C11—H11A | 119.8 | C25—C26—H26A | 120.5 |
C10—C11—H11A | 119.8 | C27—C26—H26A | 120.5 |
C13—C12—C11 | 120.23 (15) | C26—C27—C28 | 120.94 (16) |
C13—C12—H12A | 119.9 | C26—C27—H27A | 119.5 |
C11—C12—H12A | 119.9 | C28—C27—H27A | 119.5 |
C12—C13—C14 | 119.69 (15) | C27—C28—C23 | 119.87 (15) |
C12—C13—H13A | 120.2 | C27—C28—H28A | 120.1 |
C14—C13—H13A | 120.2 | C23—C28—H28A | 120.1 |
C15—C14—C13 | 120.31 (15) | C9—C29—H29A | 109.5 |
C15—C14—H14A | 119.8 | C9—C29—H29B | 109.5 |
C13—C14—H14A | 119.8 | H29A—C29—H29B | 109.5 |
C14—C15—C10 | 120.20 (15) | C9—C29—H29C | 109.5 |
C14—C15—H15A | 119.9 | H29A—C29—H29C | 109.5 |
C10—C15—H15A | 119.9 | H29B—C29—H29C | 109.5 |
C16—N2—N3—C23 | −144.75 (14) | C13—C14—C15—C10 | 0.2 (2) |
C16—N2—N3—C18 | −3.41 (17) | C11—C10—C15—C14 | 0.1 (2) |
C9—N1—C1—C6 | −0.4 (2) | C7—C10—C15—C14 | 178.69 (15) |
C9—N1—C1—C2 | 179.44 (14) | N3—N2—C16—C8 | −177.80 (13) |
N1—C1—C2—C3 | −178.97 (15) | N3—N2—C16—C17 | 1.13 (19) |
C6—C1—C2—C3 | 0.9 (2) | C7—C8—C16—N2 | −120.77 (17) |
C1—C2—C3—C4 | 0.9 (3) | C9—C8—C16—N2 | 61.8 (2) |
C2—C3—C4—C5 | −1.6 (3) | C7—C8—C16—C17 | 60.4 (2) |
C2—C3—C4—Cl1 | 177.65 (13) | C9—C8—C16—C17 | −117.06 (18) |
C3—C4—C5—C6 | 0.4 (3) | N2—C16—C17—C18 | 1.44 (19) |
Cl1—C4—C5—C6 | −178.82 (12) | C8—C16—C17—C18 | −179.66 (14) |
N1—C1—C6—C5 | 177.80 (15) | N2—N3—C18—C19 | 124.85 (13) |
C2—C1—C6—C5 | −2.0 (2) | C23—N3—C18—C19 | −95.91 (16) |
N1—C1—C6—C7 | −1.0 (2) | N2—N3—C18—C17 | 4.09 (16) |
C2—C1—C6—C7 | 179.24 (14) | C23—N3—C18—C17 | 143.34 (14) |
C4—C5—C6—C1 | 1.4 (2) | C16—C17—C18—N3 | −3.15 (16) |
C4—C5—C6—C7 | −179.95 (15) | C16—C17—C18—C19 | −124.23 (14) |
C1—C6—C7—C8 | 2.0 (2) | N3—C18—C19—C20 | −176.58 (14) |
C5—C6—C7—C8 | −176.68 (15) | C17—C18—C19—C20 | −61.2 (2) |
C1—C6—C7—C10 | 179.99 (14) | N3—C18—C19—S1 | −0.30 (18) |
C5—C6—C7—C10 | 1.3 (2) | C17—C18—C19—S1 | 115.10 (14) |
C6—C7—C8—C9 | −1.8 (2) | C22—S1—C19—C20 | −0.18 (12) |
C10—C7—C8—C9 | −179.77 (14) | C22—S1—C19—C18 | −176.97 (13) |
C6—C7—C8—C16 | −179.31 (14) | C18—C19—C20—C21 | 176.45 (14) |
C10—C7—C8—C16 | 2.7 (2) | S1—C19—C20—C21 | −0.17 (17) |
C1—N1—C9—C8 | 0.6 (2) | C19—C20—C21—C22 | 0.6 (2) |
C1—N1—C9—C29 | 179.45 (14) | C20—C21—C22—S1 | −0.68 (18) |
C7—C8—C9—N1 | 0.5 (2) | C19—S1—C22—C21 | 0.50 (13) |
C16—C8—C9—N1 | 177.97 (14) | N2—N3—C23—C28 | −13.4 (2) |
C7—C8—C9—C29 | −178.28 (15) | C18—N3—C23—C28 | −151.01 (15) |
C16—C8—C9—C29 | −0.8 (2) | N2—N3—C23—C24 | 167.96 (14) |
C8—C7—C10—C11 | 60.0 (2) | C18—N3—C23—C24 | 30.4 (2) |
C6—C7—C10—C11 | −117.87 (16) | C28—C23—C24—C25 | 1.9 (2) |
C8—C7—C10—C15 | −118.56 (17) | N3—C23—C24—C25 | −179.51 (14) |
C6—C7—C10—C15 | 63.5 (2) | C23—C24—C25—C26 | −1.3 (2) |
C15—C10—C11—C12 | −0.2 (2) | C24—C25—C26—C27 | 0.1 (3) |
C7—C10—C11—C12 | −178.85 (14) | C25—C26—C27—C28 | 0.5 (3) |
C10—C11—C12—C13 | 0.1 (2) | C26—C27—C28—C23 | 0.1 (3) |
C11—C12—C13—C14 | 0.1 (3) | C24—C23—C28—C27 | −1.3 (2) |
C12—C13—C14—C15 | −0.3 (3) | N3—C23—C28—C27 | −179.88 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···N1i | 0.93 | 2.60 | 3.490 (2) | 161 |
C3—H3A···Cg1ii | 0.93 | 2.63 | 3.481 (2) | 152 |
C12—H12A···Cg1iii | 0.93 | 2.83 | 3.487 (2) | 129 |
C17—H17B···Cg2 | 0.97 | 2.88 | 3.6916 (19) | 142 |
C20—H20A···Cg3iii | 0.93 | 2.89 | 3.7523 (18) | 155 |
C21—H21A···Cg4iv | 0.93 | 2.84 | 3.6084 (18) | 141 |
C22—H22A···Cg3v | 0.93 | 2.88 | 3.5750 (18) | 132 |
C29—H29B···Cg5vi | 0.96 | 2.89 | 3.694 (2) | 142 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y−1/2, −z−1/2; (iii) −x, y−1/2, −z−1/2; (iv) x, −y−3/2, z−1/2; (v) −x, y+1/2, −z−1/2; (vi) −x+1, y+1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C29H22ClN3S |
Mr | 480.01 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 14.0395 (4), 9.4199 (3), 19.3020 (6) |
β (°) | 114.696 (2) |
V (Å3) | 2319.22 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.54 × 0.51 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.863, 0.943 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32081, 6723, 5814 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.139, 1.07 |
No. of reflections | 6723 |
No. of parameters | 308 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.19, −0.39 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···N1i | 0.9300 | 2.6000 | 3.490 (2) | 161.00 |
C3—H3A···Cg1ii | 0.9300 | 2.63 | 3.481 (2) | 152 |
C12—H12A···Cg1iii | 0.9300 | 2.83 | 3.487 (2) | 129 |
C17—H17B···Cg2 | 0.9700 | 2.88 | 3.6916 (19) | 142 |
C20—H20A···Cg3iii | 0.9300 | 2.89 | 3.7523 (18) | 155 |
C21—H21A···Cg4iv | 0.9300 | 2.84 | 3.6084 (18) | 141 |
C22—H22A···Cg3v | 0.9300 | 2.88 | 3.5750 (18) | 132 |
C29—H29B···Cg5vi | 0.9600 | 2.89 | 3.694 (2) | 142 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y−1/2, −z−1/2; (iii) −x, y−1/2, −z−1/2; (iv) x, −y−3/2, z−1/2; (v) −x, y+1/2, −z−1/2; (vi) −x+1, y+1/2, −z−1/2. |
Acknowledgements
HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CKQ thanks USM for a Research Fellowship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).
References
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035. CrossRef CAS PubMed Web of Science Google Scholar
Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377. Web of Science CrossRef PubMed CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009b). Acta Cryst. E65, 2688–2689. CrossRef Google Scholar
Fun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009a). Acta Cryst. E65, o2665–o2666. Web of Science CrossRef IUCr Journals Google Scholar
Jiang, B. & Si, Y.-G. (2002). J. Org. Chem. 67, 9449–9451. Web of Science CrossRef PubMed CAS Google Scholar
Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404. Web of Science CrossRef CAS PubMed Google Scholar
Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989–9991. Web of Science CrossRef CAS Google Scholar
Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137. CrossRef CAS PubMed Web of Science Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–608. CrossRef CAS Web of Science Google Scholar
Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203. CrossRef Google Scholar
Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skraup, H. (1880). Ber. Dtsch Chem. Ges. 13, 2086–2088. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines. Due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).
The title molecule (Fig. 1) consists of a 4-phenylquinoline ring system (N1/C1–C15), a thiophene ring (S1/C19–C22) and a phenyl ring (C23–C28) attached to a 4,5-dihydropyrazole ring (N2/N3/C16–C18). The 4,5-dihydropyrazole ring is inclined at angles of 71.70 (7), 59.26 (9) and 81.61 (9)° with respect to the quinoline group, thiophene and phenyl rings substituted to 4,5-dihydropyrazole ring, respectively. In the 4-phenylquinoline ring system, the substituent phenyl ring (C10–C15) forms a dihedral angle of 62.49 (7)° with mean plane of quinoline ring system (N1/C1–C9). Bond lengths and angles are within normal ranges, and comparable to closely related structures (Fun et al., 2009a,b).
In the crystal structure (Fig. 2), the molecules are linked via weak intermolecular C—H···N hydrogen bonds to form an extended one-dimensional chain along the b-axis and are further consolidated by C–H···π (Table 1) and π–π stacking interactions between S1/C19–C22 (centroid Cg1) and N2/N3/C16–C18 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.7022 (10) Å.