organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-Amino-1,2,5-oxa­diazole-3-carboxamide oxime

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroScale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 30 September 2009; accepted 26 October 2009; online 31 October 2009)

The asymmetric unit of the title compound, C3H5N5O2, contains three crystallograpically independent mol­ecules. In the crystal structure, inter­molecular N—H⋯N, N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For background to the biological activity of 1,2,5-oxadiazo­les, see: Renaud & Sebastian (2003[Renaud, B. & Sebastian, W. (2003). Heterocycles, 60, 2417-2424.]).

[Scheme 1]

Experimental

Crystal data
  • C3H5N5O2

  • Mr = 143.12

  • Monoclinic, P 21 /c

  • a = 7.6514 (15) Å

  • b = 11.712 (2) Å

  • c = 19.218 (4) Å

  • β = 96.53 (3)°

  • V = 1710.9 (6) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 16421 measured reflections

  • 3891 independent reflections

  • 2954 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.131

  • S = 0.88

  • 3891 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2C—H2CA⋯O2A 0.82 2.01 2.8222 (14) 169
O2A—H2⋯N4B 0.82 2.14 2.9208 (14) 160
N5C—H5CA⋯N3Ci 0.86 2.24 3.0610 (17) 160
N5C—H5CB⋯N2Cii 0.86 2.33 3.1508 (17) 160
N1C—H1CA⋯O2Ciii 0.86 2.58 3.3239 (15) 145
N1C—H1CB⋯N1Aiii 0.86 2.49 3.1504 (17) 135
N1C—H1CB⋯N4C 0.86 2.39 2.9600 (16) 124
N5A—H5AA⋯N3Aiii 0.86 2.22 3.0486 (17) 162
N5A—H5AB⋯N2Biv 0.86 2.31 3.1409 (17) 162
N1A—H1AA⋯N1Bi 0.86 2.60 3.2156 (17) 130
N1A—H1AB⋯O2B 0.86 2.56 3.3430 (17) 153
N1A—H1AB⋯N4A 0.86 2.29 2.8563 (15) 123
O2B—H2BA⋯N1Cv 0.82 2.07 2.8849 (15) 171
N1B—H1BB⋯N4B 0.86 2.34 2.8992 (15) 123
N1B—H1BB⋯N4Cv 0.86 2.54 3.1510 (17) 129
N5B—H5BA⋯N3Bi 0.86 2.23 3.0470 (16) 159
N5B—H5BB⋯N2Avi 0.86 2.35 3.1779 (17) 162
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z; (iii) x+1, y, z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Furazanes (1,2,5-oxadiazoles )have been reported to exhibit a wide spectrum of biological properties (Renaud & Sebastian, 2003). In particular, agrochemical applications of furazanes and their derivatives such as, herbicides, plant-growth regulators and pesticides have been described. As part of our search for new non-linear optically active compounds we synthesized the title compound (I), and report its crystal structure herein. The asymmetric unit of (I) contains three crystallograpically independent molecules (see Fig. 1). In the crystal structure intermolecular N-H···N, N-H···O, O-H···N and O-H···O hydrogen bonds link molecules into a three-dimensional network.

Related literature top

For background to the biological activity of 1,2,5-oxadiazoles, see: Renaud & Sebastian (2003).

Experimental top

A mixture of propanedinitrile (0.1mol) hydroxylamine hydrochloride (0.22 mol) and 40% NaOH (10ml PH=10) was stirred in water (200mL) for 10h [diazo-reaction] to afford the title compound (yield 43%). Single crystals suitable for X-ray measurements were obtained by recrystallization from water and ethanol at room temperature.

Refinement top

The H atoms were placed in calculated positions (N-H = 0.86; O-H = 0.82Å) and refined in a riding-motion approximation with Uiso(H) = 1.2Ueq(N,O).

Structure description top

Furazanes (1,2,5-oxadiazoles )have been reported to exhibit a wide spectrum of biological properties (Renaud & Sebastian, 2003). In particular, agrochemical applications of furazanes and their derivatives such as, herbicides, plant-growth regulators and pesticides have been described. As part of our search for new non-linear optically active compounds we synthesized the title compound (I), and report its crystal structure herein. The asymmetric unit of (I) contains three crystallograpically independent molecules (see Fig. 1). In the crystal structure intermolecular N-H···N, N-H···O, O-H···N and O-H···O hydrogen bonds link molecules into a three-dimensional network.

For background to the biological activity of 1,2,5-oxadiazoles, see: Renaud & Sebastian (2003).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
(Z)-4-Amino-1,2,5-oxadiazole-3-carboxamide oxime top
Crystal data top
C3H5N5O2F(000) = 888
Mr = 143.12Dx = 1.667 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3891 reflections
a = 7.6514 (15) Åθ = 3.2–27.5°
b = 11.712 (2) ŵ = 0.14 mm1
c = 19.218 (4) ÅT = 293 K
β = 96.53 (3)°Bar, yellow
V = 1710.9 (6) Å30.20 × 0.15 × 0.10 mm
Z = 12
Data collection top
Bruker SMART CCD
diffractometer
2954 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
φ and ω scansh = 89
16421 measured reflectionsk = 1515
3891 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.2809P]
where P = (Fo2 + 2Fc2)/3
3891 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C3H5N5O2V = 1710.9 (6) Å3
Mr = 143.12Z = 12
Monoclinic, P21/cMo Kα radiation
a = 7.6514 (15) ŵ = 0.14 mm1
b = 11.712 (2) ÅT = 293 K
c = 19.218 (4) Å0.20 × 0.15 × 0.10 mm
β = 96.53 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2954 reflections with I > 2σ(I)
16421 measured reflectionsRint = 0.018
3891 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.88Δρmax = 0.41 e Å3
3891 reflectionsΔρmin = 0.27 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O2C0.33315 (11)0.21704 (8)0.19898 (5)0.0347 (2)
H2CA0.34660.26710.22890.042*
N4C0.50875 (13)0.20169 (9)0.18228 (5)0.0286 (2)
O1C0.87029 (12)0.05568 (9)0.03919 (5)0.0401 (3)
N2C0.69431 (13)0.05829 (9)0.04686 (6)0.0329 (3)
C3C0.50579 (14)0.14024 (9)0.12631 (6)0.0246 (3)
C2C0.67858 (15)0.11797 (9)0.10272 (6)0.0245 (3)
N5C0.36404 (14)0.09580 (10)0.08818 (6)0.0388 (3)
H5CA0.26080.10730.10040.047*
H5CB0.37650.05580.05150.047*
N1C0.89742 (14)0.21284 (9)0.19346 (5)0.0333 (3)
H1CA0.99800.24640.19750.040*
H1CB0.81220.25340.20560.040*
C1C0.85080 (14)0.15425 (10)0.13211 (6)0.0261 (3)
N3C0.96673 (14)0.11600 (10)0.09296 (6)0.0355 (3)
O2A0.32799 (11)0.39453 (7)0.29805 (4)0.0308 (2)
H20.30730.43900.26520.037*
N4A0.15351 (12)0.37447 (9)0.31574 (5)0.0275 (2)
C3A0.15895 (14)0.31171 (9)0.37121 (6)0.0230 (2)
O1A0.21344 (12)0.22039 (9)0.45154 (5)0.0401 (3)
N5A0.30087 (14)0.26718 (10)0.40878 (6)0.0380 (3)
H5AA0.40390.27950.39660.046*
H5AB0.28890.22630.44510.046*
N2A0.03621 (13)0.22429 (9)0.44691 (6)0.0318 (3)
N1A0.22143 (14)0.38907 (10)0.30266 (6)0.0376 (3)
H1AA0.32870.40430.28700.045*
H1AB0.13700.41400.28090.045*
C2A0.01584 (14)0.28737 (10)0.39297 (6)0.0249 (3)
C1A0.18545 (15)0.32568 (10)0.36160 (6)0.0279 (3)
N3A0.30561 (14)0.28438 (10)0.39787 (6)0.0377 (3)
O2B0.00634 (11)0.55083 (8)0.19706 (5)0.0322 (2)
H2BA0.01380.59630.22940.039*
O1B0.52696 (12)0.37960 (9)0.03821 (5)0.0398 (3)
N4B0.16666 (12)0.52895 (9)0.17977 (5)0.0268 (2)
C3B0.16061 (14)0.47025 (9)0.12245 (6)0.0235 (2)
C2B0.33383 (14)0.44556 (9)0.09947 (6)0.0236 (2)
C1B0.50497 (14)0.48252 (10)0.12947 (6)0.0260 (3)
N1B0.54677 (14)0.54437 (10)0.18905 (6)0.0346 (3)
H1BA0.65510.55850.20350.042*
H1BB0.46480.56930.21220.042*
N5B0.01713 (13)0.43080 (10)0.08336 (6)0.0363 (3)
H5BA0.08560.44390.09570.044*
H5BB0.02770.39240.04590.044*
N2B0.35054 (13)0.38407 (9)0.04455 (6)0.0328 (3)
N3B0.62218 (14)0.44196 (10)0.09165 (6)0.0353 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O2C0.0275 (5)0.0428 (5)0.0354 (5)0.0058 (4)0.0103 (4)0.0068 (4)
N4C0.0221 (5)0.0355 (5)0.0290 (5)0.0019 (4)0.0066 (4)0.0024 (4)
O1C0.0256 (5)0.0562 (6)0.0402 (5)0.0016 (4)0.0112 (4)0.0122 (4)
N2C0.0227 (5)0.0427 (6)0.0341 (6)0.0002 (4)0.0074 (4)0.0072 (5)
C3C0.0202 (5)0.0271 (5)0.0272 (6)0.0008 (4)0.0053 (4)0.0021 (4)
C2C0.0209 (6)0.0276 (5)0.0253 (6)0.0005 (4)0.0036 (4)0.0020 (4)
N5C0.0209 (5)0.0532 (7)0.0430 (7)0.0033 (5)0.0069 (5)0.0193 (5)
N1C0.0265 (5)0.0407 (6)0.0323 (6)0.0065 (4)0.0016 (4)0.0011 (4)
C1C0.0203 (6)0.0308 (6)0.0275 (6)0.0001 (4)0.0039 (4)0.0056 (4)
N3C0.0244 (5)0.0470 (6)0.0358 (6)0.0007 (4)0.0064 (4)0.0026 (5)
O2A0.0260 (4)0.0395 (5)0.0282 (5)0.0026 (3)0.0086 (3)0.0051 (4)
N4A0.0202 (5)0.0359 (5)0.0270 (5)0.0001 (4)0.0048 (4)0.0034 (4)
C3A0.0192 (5)0.0264 (5)0.0237 (6)0.0007 (4)0.0039 (4)0.0013 (4)
O1A0.0249 (5)0.0514 (6)0.0460 (6)0.0017 (4)0.0132 (4)0.0107 (4)
N5A0.0189 (5)0.0557 (7)0.0397 (6)0.0051 (5)0.0049 (4)0.0211 (5)
N2A0.0225 (5)0.0391 (6)0.0349 (6)0.0005 (4)0.0083 (4)0.0059 (4)
N1A0.0246 (5)0.0492 (7)0.0382 (6)0.0073 (5)0.0004 (4)0.0059 (5)
C2A0.0198 (6)0.0286 (5)0.0263 (6)0.0009 (4)0.0037 (4)0.0019 (4)
C1A0.0193 (6)0.0321 (6)0.0321 (6)0.0009 (4)0.0026 (5)0.0054 (5)
N3A0.0216 (5)0.0469 (6)0.0451 (7)0.0012 (5)0.0066 (5)0.0017 (5)
O2B0.0227 (4)0.0439 (5)0.0307 (5)0.0038 (4)0.0067 (3)0.0051 (4)
O1B0.0241 (5)0.0566 (6)0.0404 (5)0.0014 (4)0.0108 (4)0.0122 (4)
N4B0.0195 (5)0.0359 (5)0.0254 (5)0.0014 (4)0.0050 (4)0.0011 (4)
C3B0.0192 (5)0.0274 (5)0.0241 (6)0.0001 (4)0.0033 (4)0.0034 (4)
C2B0.0204 (6)0.0274 (5)0.0233 (5)0.0003 (4)0.0032 (4)0.0021 (4)
C1B0.0187 (5)0.0305 (6)0.0287 (6)0.0013 (4)0.0028 (4)0.0050 (4)
N1B0.0258 (5)0.0437 (6)0.0332 (6)0.0051 (4)0.0012 (4)0.0059 (5)
N5B0.0189 (5)0.0530 (7)0.0371 (6)0.0025 (5)0.0036 (4)0.0158 (5)
N2B0.0218 (5)0.0444 (6)0.0331 (6)0.0007 (4)0.0072 (4)0.0072 (5)
N3B0.0231 (5)0.0469 (6)0.0362 (6)0.0013 (4)0.0053 (4)0.0031 (5)
Geometric parameters (Å, º) top
O2C—N4C1.4278 (12)N5A—H5AB0.8600
O2C—H2CA0.8200N2A—C2A1.2966 (15)
N4C—C3C1.2922 (15)N1A—C1A1.3560 (16)
O1C—N2C1.3715 (13)N1A—H1AA0.8600
O1C—N3C1.3921 (15)N1A—H1AB0.8600
N2C—C2C1.2979 (16)C2A—C1A1.4391 (16)
C3C—N5C1.3429 (15)C1A—N3A1.3080 (16)
C3C—C2C1.4690 (16)O2B—N4B1.4242 (12)
C2C—C1C1.4375 (16)O2B—H2BA0.8199
N5C—H5CA0.8600O1B—N2B1.3701 (13)
N5C—H5CB0.8600O1B—N3B1.3959 (15)
N1C—C1C1.3757 (16)N4B—C3B1.2949 (15)
N1C—H1CA0.8600C3B—N5B1.3399 (15)
N1C—H1CB0.8600C3B—C2B1.4725 (15)
C1C—N3C1.3059 (16)C2B—N2B1.2959 (15)
O2A—N4A1.4339 (12)C2B—C1B1.4361 (15)
O2A—H20.8199C1B—N3B1.3063 (15)
N4A—C3A1.2916 (15)C1B—N1B1.3620 (16)
C3A—N5A1.3394 (15)N1B—H1BA0.8600
C3A—C2A1.4738 (15)N1B—H1BB0.8600
O1A—N2A1.3698 (13)N5B—H5BA0.8600
O1A—N3A1.3990 (15)N5B—H5BB0.8600
N5A—H5AA0.8600
N4C—O2C—H2CA101.7C1A—N1A—H1AA120.0
C3C—N4C—O2C109.23 (10)C1A—N1A—H1AB120.0
N2C—O1C—N3C110.66 (9)H1AA—N1A—H1AB120.0
C2C—N2C—O1C106.59 (10)N2A—C2A—C1A109.14 (10)
N4C—C3C—N5C127.35 (11)N2A—C2A—C3A122.18 (10)
N4C—C3C—C2C115.13 (10)C1A—C2A—C3A128.68 (11)
N5C—C3C—C2C117.52 (11)N3A—C1A—N1A124.01 (11)
N2C—C2C—C1C108.48 (10)N3A—C1A—C2A108.45 (11)
N2C—C2C—C3C121.49 (11)N1A—C1A—C2A127.47 (11)
C1C—C2C—C3C130.03 (11)C1A—N3A—O1A105.37 (10)
C3C—N5C—H5CA120.0N4B—O2B—H2BA101.2
C3C—N5C—H5CB120.0N2B—O1B—N3B110.58 (9)
H5CA—N5C—H5CB120.0C3B—N4B—O2B110.48 (9)
C1C—N1C—H1CA116.6N4B—C3B—N5B127.43 (11)
C1C—N1C—H1CB112.2N4B—C3B—C2B114.40 (10)
H1CA—N1C—H1CB114.9N5B—C3B—C2B118.18 (10)
N3C—C1C—N1C122.54 (11)N2B—C2B—C1B108.93 (10)
N3C—C1C—C2C108.95 (11)N2B—C2B—C3B121.93 (10)
N1C—C1C—C2C128.38 (11)C1B—C2B—C3B129.13 (11)
C1C—N3C—O1C105.32 (10)N3B—C1B—N1B123.41 (11)
N4A—O2A—H2100.6N3B—C1B—C2B108.63 (11)
C3A—N4A—O2A110.21 (9)N1B—C1B—C2B127.88 (11)
N4A—C3A—N5A127.92 (11)C1B—N1B—H1BA120.0
N4A—C3A—C2A113.53 (10)C1B—N1B—H1BB120.0
N5A—C3A—C2A118.55 (10)H1BA—N1B—H1BB120.0
N2A—O1A—N3A110.73 (9)C3B—N5B—H5BA120.0
C3A—N5A—H5AA120.0C3B—N5B—H5BB120.0
C3A—N5A—H5AB120.0H5BA—N5B—H5BB120.0
H5AA—N5A—H5AB120.0C2B—N2B—O1B106.45 (10)
C2A—N2A—O1A106.31 (10)C1B—N3B—O1B105.40 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2CA···O2A0.822.012.8222 (14)169
O2A—H2···N4B0.822.142.9208 (14)160
N5C—H5CA···N3Ci0.862.243.0610 (17)160
N5C—H5CB···N2Cii0.862.333.1508 (17)160
N1C—H1CA···O2Ciii0.862.583.3239 (15)145
N1C—H1CB···N1Aiii0.862.493.1504 (17)135
N1C—H1CB···N4C0.862.392.9600 (16)124
N5A—H5AA···N3Aiii0.862.223.0486 (17)162
N5A—H5AB···N2Biv0.862.313.1409 (17)162
N1A—H1AA···N1Bi0.862.603.2156 (17)130
N1A—H1AB···O2B0.862.563.3430 (17)153
N1A—H1AB···N4A0.862.292.8563 (15)123
O2B—H2BA···N1Cv0.822.072.8849 (15)171
N1B—H1BB···N4B0.862.342.8992 (15)123
N1B—H1BB···N4Cv0.862.543.1510 (17)129
N5B—H5BA···N3Bi0.862.233.0470 (16)159
N5B—H5BB···N2Avi0.862.353.1779 (17)162
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC3H5N5O2
Mr143.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6514 (15), 11.712 (2), 19.218 (4)
β (°) 96.53 (3)
V3)1710.9 (6)
Z12
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16421, 3891, 2954
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.131, 0.88
No. of reflections3891
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2CA···O2A0.822.012.8222 (14)169
O2A—H2···N4B0.822.142.9208 (14)160
N5C—H5CA···N3Ci0.862.243.0610 (17)160
N5C—H5CB···N2Cii0.862.333.1508 (17)160
N1C—H1CA···O2Ciii0.862.583.3239 (15)145
N1C—H1CB···N1Aiii0.862.493.1504 (17)135
N1C—H1CB···N4C0.862.392.9600 (16)124
N5A—H5AA···N3Aiii0.862.223.0486 (17)162
N5A—H5AB···N2Biv0.862.313.1409 (17)162
N1A—H1AA···N1Bi0.862.603.2156 (17)130
N1A—H1AB···O2B0.862.563.3430 (17)153
N1A—H1AB···N4A0.862.292.8563 (15)123
O2B—H2BA···N1Cv0.822.072.8849 (15)171
N1B—H1BB···N4B0.862.342.8992 (15)123
N1B—H1BB···N4Cv0.862.543.1510 (17)129
N5B—H5BA···N3Bi0.862.233.0470 (16)159
N5B—H5BB···N2Avi0.862.353.1779 (17)162
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRenaud, B. & Sebastian, W. (2003). Heterocycles, 60, 2417–2424.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds