organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-Chloro-6-(4-chloro-6-meth­oxy­pyrimidin-2-ylsulfan­yl)benz­yl]-3,4-di­methyl­aniline

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: wjfu@lynu.edu.cn

(Received 30 September 2009; accepted 8 October 2009; online 17 October 2009)

In the title mol­ecule, C20H19Cl2N3OS, the dihedral angle between the two benzene rings is 79.3 (7)°. The 4-chloro-6-methoxy­pyrimidine group is rotationally disordered over two sites by approximately 180°, the ratio of the refined occupancies being 0.6772 (15):0.3228 (15). Both disorder components of disorder are involved in intra­molecular N—H⋯N hydrogen bonds.

Related literature

For the biological functions of pyrimidine derivatives, see: Joffe et al. (1989[Joffe, A. M., Farley, J. D., Linden, D. & Goldsand, G. (1989). Am. J. Med. 87, 332-338.]); Petersen & Schmidt (2003[Petersen, E. & Schmidt, D. R. (2003). Expert Rev. Anti Infect. Ther. 1, 175-182.]); Blum (2001[Blum, J. L. (2001). Oncologist, 6, 56-64.]); Gompper et al. (2004[Gompper, R., Mair, H.-J. & Polborn, K. (2004). Synthesis, pp. 696-708.]); Michael (2005[Michael, J. P. (2005). Nat. Prod. Rep. 22, 627-646.]); Nadal & Olavarria (2004[Nadal, E. & Olavarria, E. (2004). Int. J. Clin. Pract. 58, 511-516.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19Cl2N3OS

  • Mr = 420.34

  • Monoclinic, P 21 /c

  • a = 12.3653 (12) Å

  • b = 14.1332 (14) Å

  • c = 11.8276 (11) Å

  • β = 97.340 (1)°

  • V = 2050.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.37 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.856, Tmax = 0.899

  • 15364 measured reflections

  • 3804 independent reflections

  • 2727 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.04

  • 3804 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3′ 0.87 2.31 3.089 (3) 150
N1—H1⋯N2 0.87 2.45 3.203 (4) 145

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrimidine derivatives are widespread in medicinal and natural product chemistry. A number of natural products, pharmaceuticals, and functional materials incorporate this heterocycle (Michael, 2005). Several examples of pharmaceutically important compounds include trimethoprim (Joffe et al., 1989), sulfadiazine (Petersen & Schmidt, 2003),Gleevec (imatinib mesilate) (Nadal & Olavarria, 2004), and Xeloda (capecitabine) (Blum, 2001). Natural and unnatural polymers also contain pyrimidine derivatives (Gompper et al., 2004). The potent physiological properties of these pyrimidine derivatives has led to their vast use as medicines in the field of pharmaceutical chemistry. In this context, we report the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths and angles are as expected. The the dihedral angle between the two benzene rings is 79.3 (7)°. The 4-chloro-6-methoxypyrimidine group is rotationlly disordered over two sites by approximately 180° with the ratio of the refined occupancies being 0.6772 (15):0.3228 (15). Both the major and minor components of disorder are involved in intramolecular N-H···N hydrogen bonds.

Related literature top

For the biological functions of pyrimidine derivatives, see: Joffe et al. (1989); Petersen & Schmidt (2003); Blum (2001); Gompper et al. (2004); Michael (2005); Nadal & Olavarria (2004). [Additional citations have been added; please check and ammend text if needed]

Experimental top

To a solution of 2,4-dichloro-6-methoxypyrimidine (0.5 mmol) and 2-((3,4-dimethylphenylamino)methyl)-3-chlorobenzenethiol (0.5 mmol) in dry methylbenzene NaH (0.6 mmol) was added. The mixture was stirred for 12 h at room temperature. After evaporation of the solvent, the residue was purified by column chromatography on silica gel to afford the title compound as a colorless solid (yield 90%). The title compound was recrystallized from CH2Cl2 at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH); 0.97 Å (methylene CH2); 0.96 Å (methyl), and with Uĩso~(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Pyrimidine derivatives are widespread in medicinal and natural product chemistry. A number of natural products, pharmaceuticals, and functional materials incorporate this heterocycle (Michael, 2005). Several examples of pharmaceutically important compounds include trimethoprim (Joffe et al., 1989), sulfadiazine (Petersen & Schmidt, 2003),Gleevec (imatinib mesilate) (Nadal & Olavarria, 2004), and Xeloda (capecitabine) (Blum, 2001). Natural and unnatural polymers also contain pyrimidine derivatives (Gompper et al., 2004). The potent physiological properties of these pyrimidine derivatives has led to their vast use as medicines in the field of pharmaceutical chemistry. In this context, we report the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths and angles are as expected. The the dihedral angle between the two benzene rings is 79.3 (7)°. The 4-chloro-6-methoxypyrimidine group is rotationlly disordered over two sites by approximately 180° with the ratio of the refined occupancies being 0.6772 (15):0.3228 (15). Both the major and minor components of disorder are involved in intramolecular N-H···N hydrogen bonds.

For the biological functions of pyrimidine derivatives, see: Joffe et al. (1989); Petersen & Schmidt (2003); Blum (2001); Gompper et al. (2004); Michael (2005); Nadal & Olavarria (2004). [Additional citations have been added; please check and ammend text if needed]

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme and 30% probability displacement ellipsoids. The disorder is not shown.
[Figure 2] Fig. 2. The molecular structure of the title compound with the atom numbering scheme and 30% probability displacement ellipsoids. The minor component of disorder is shown with open bonds and the dashed line represents a hydrogen bond.
N-[2-Chloro-6-(4-chloro-6-methoxypyrimidin-2-ylsulfanyl)benzyl]-3,4- dimethylaniline top
Crystal data top
C20H19Cl2N3OSF(000) = 872
Mr = 420.34Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3665 reflections
a = 12.3653 (12) Åθ = 2.7–21.7°
b = 14.1332 (14) ŵ = 0.43 mm1
c = 11.8276 (11) ÅT = 296 K
β = 97.340 (1)°Block, colourless
V = 2050.1 (3) Å30.37 × 0.28 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3804 independent reflections
Radiation source: fine-focus sealed tube2727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.856, Tmax = 0.899k = 1717
15364 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0558P)2 + 1.1287P]
where P = (Fo2 + 2Fc2)/3
3804 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C20H19Cl2N3OSV = 2050.1 (3) Å3
Mr = 420.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3653 (12) ŵ = 0.43 mm1
b = 14.1332 (14) ÅT = 296 K
c = 11.8276 (11) Å0.37 × 0.28 × 0.25 mm
β = 97.340 (1)°
Data collection top
Bruker APEXII
diffractometer
3804 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2727 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.899Rint = 0.026
15364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
3804 reflectionsΔρmin = 0.48 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C160.15712 (12)0.08616 (19)0.48299 (12)0.0579 (7)0.6772 (15)
C170.06084 (10)0.14779 (8)0.61811 (10)0.0540 (9)0.6772 (15)
C180.03179 (7)0.15182 (8)0.54001 (8)0.0582 (11)0.6772 (15)
H180.09850.17040.56120.070*0.6772 (15)
C190.02176 (7)0.12790 (7)0.43258 (8)0.0573 (10)0.6772 (15)
C200.15013 (16)0.16340 (13)0.81220 (15)0.0654 (12)0.6772 (15)
H20A0.17490.09910.81130.098*0.6772 (15)
H20B0.12990.17790.88600.098*0.6772 (15)
H20C0.20760.20510.79620.098*0.6772 (15)
Cl20.13131 (8)0.13451 (9)0.32716 (10)0.0852 (4)0.6772 (15)
O10.05547 (12)0.17589 (12)0.72538 (12)0.0680 (7)0.6772 (15)
C16'0.16085 (11)0.10476 (18)0.49634 (11)0.0579 (7)0.3228 (15)
C19'0.08829 (11)0.14785 (9)0.66157 (11)0.0573 (10)0.3228 (15)
C18'0.01246 (9)0.15594 (9)0.60104 (9)0.0582 (11)0.3228 (15)
H18'0.07060.18000.63480.070*0.3228 (15)
C17'0.02647 (7)0.12816 (7)0.49021 (8)0.0540 (9)0.3228 (15)
C20'0.11725 (8)0.11835 (10)0.30480 (11)0.0654 (12)0.3228 (15)
H20D0.06990.16270.27410.098*0.3228 (15)
H20E0.18880.12210.26260.098*0.3228 (15)
H20F0.08910.05550.29910.098*0.3228 (15)
Cl2'0.11223 (15)0.18012 (14)0.80264 (15)0.0852 (4)0.3228 (15)
N3'0.17432 (13)0.11642 (15)0.61125 (12)0.0625 (9)0.3228 (15)
N2'0.05936 (9)0.09825 (12)0.43865 (9)0.0551 (8)0.3228 (15)
O1'0.12330 (7)0.14091 (10)0.42454 (9)0.0680 (7)0.3228 (15)
C10.3169 (2)0.35870 (18)0.5611 (2)0.0509 (6)
C20.2300 (2)0.39912 (19)0.6075 (2)0.0554 (6)
H20.19370.36340.65690.067*
C30.1958 (2)0.4909 (2)0.5823 (2)0.0605 (7)
C40.2502 (3)0.5451 (2)0.5075 (2)0.0667 (8)
C50.3344 (3)0.5040 (2)0.4610 (2)0.0682 (8)
H50.37020.53920.41060.082*
C60.3687 (2)0.4123 (2)0.4860 (2)0.0606 (7)
H60.42620.38670.45250.073*
C70.1032 (3)0.5315 (3)0.6380 (3)0.0932 (11)
H7A0.07220.48280.68060.140*
H7B0.04830.55560.58050.140*
H7C0.12990.58180.68850.140*
C80.2164 (4)0.6463 (2)0.4800 (3)0.1028 (13)
H8A0.25950.67140.42500.154*
H8B0.22760.68370.54820.154*
H8C0.14070.64790.44920.154*
C90.4226 (2)0.2140 (2)0.5326 (2)0.0664 (8)
H9A0.49220.24590.53390.080*
H9B0.39010.20790.45380.080*
C100.3725 (2)0.0407 (2)0.5510 (2)0.0580 (7)
C110.4391 (2)0.11761 (19)0.5862 (2)0.0560 (7)
C120.5198 (2)0.1017 (2)0.6773 (2)0.0591 (7)
C130.5361 (2)0.0153 (2)0.7298 (2)0.0649 (8)
H130.59090.00770.79060.078*
C140.4713 (2)0.0591 (2)0.6921 (3)0.0668 (8)
H140.48210.11790.72680.080*
C150.3897 (2)0.0469 (2)0.6025 (3)0.0655 (8)
H150.34590.09790.57640.079*
Cl10.60797 (8)0.19268 (7)0.72836 (9)0.1024 (4)
N10.35165 (18)0.26822 (15)0.59613 (19)0.0620 (6)
H10.30290.23570.62610.093*
N20.1576 (3)0.1175 (2)0.5905 (3)0.0551 (8)0.6772 (15)
N30.0724 (3)0.0956 (3)0.3984 (3)0.0625 (9)0.6772 (15)
S10.27000 (6)0.04895 (7)0.43144 (7)0.0834 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C160.0475 (15)0.0469 (17)0.079 (2)0.0063 (13)0.0058 (14)0.0074 (15)
C170.049 (2)0.054 (2)0.059 (2)0.0051 (17)0.0072 (18)0.0076 (17)
C180.0427 (19)0.065 (2)0.064 (3)0.0067 (16)0.004 (2)0.000 (2)
C190.0444 (19)0.059 (2)0.069 (3)0.0032 (16)0.0065 (17)0.0124 (18)
C200.049 (2)0.096 (3)0.050 (2)0.019 (2)0.0033 (17)0.007 (2)
Cl20.0551 (6)0.1185 (10)0.0778 (8)0.0104 (6)0.0073 (5)0.0032 (7)
O10.0512 (14)0.098 (2)0.0554 (15)0.0186 (14)0.0076 (11)0.0065 (14)
C16'0.0475 (15)0.0469 (17)0.079 (2)0.0063 (13)0.0058 (14)0.0074 (15)
C19'0.0444 (19)0.059 (2)0.069 (3)0.0032 (16)0.0065 (17)0.0124 (18)
C18'0.0427 (19)0.065 (2)0.064 (3)0.0067 (16)0.004 (2)0.000 (2)
C17'0.049 (2)0.054 (2)0.059 (2)0.0051 (17)0.0072 (18)0.0076 (17)
C20'0.049 (2)0.096 (3)0.050 (2)0.019 (2)0.0033 (17)0.007 (2)
Cl2'0.0551 (6)0.1185 (10)0.0778 (8)0.0104 (6)0.0073 (5)0.0032 (7)
N3'0.0452 (18)0.076 (2)0.067 (2)0.0063 (17)0.0107 (15)0.0018 (17)
N2'0.0462 (17)0.056 (2)0.0644 (19)0.0078 (15)0.0129 (14)0.0073 (15)
O1'0.0512 (14)0.098 (2)0.0554 (15)0.0186 (14)0.0076 (11)0.0065 (14)
C10.0480 (13)0.0527 (14)0.0502 (14)0.0020 (12)0.0013 (11)0.0005 (11)
C20.0524 (15)0.0616 (16)0.0518 (14)0.0043 (12)0.0048 (12)0.0005 (12)
C30.0595 (16)0.0671 (18)0.0523 (15)0.0159 (14)0.0028 (13)0.0078 (13)
C40.084 (2)0.0598 (17)0.0520 (15)0.0133 (15)0.0067 (15)0.0033 (13)
C50.081 (2)0.0665 (19)0.0563 (16)0.0022 (16)0.0069 (15)0.0107 (14)
C60.0588 (16)0.0663 (17)0.0569 (16)0.0037 (14)0.0081 (13)0.0029 (13)
C70.096 (3)0.099 (3)0.087 (2)0.039 (2)0.019 (2)0.005 (2)
C80.153 (4)0.068 (2)0.082 (2)0.030 (2)0.004 (2)0.0116 (18)
C90.0664 (17)0.0695 (18)0.0647 (17)0.0221 (14)0.0140 (14)0.0099 (14)
C100.0439 (14)0.0737 (19)0.0578 (15)0.0164 (13)0.0118 (12)0.0061 (14)
C110.0530 (15)0.0644 (17)0.0522 (15)0.0182 (13)0.0124 (12)0.0033 (12)
C120.0542 (15)0.0612 (17)0.0615 (16)0.0092 (13)0.0058 (12)0.0004 (13)
C130.0612 (17)0.077 (2)0.0569 (16)0.0209 (15)0.0070 (13)0.0076 (15)
C140.0713 (19)0.0633 (18)0.0693 (18)0.0155 (15)0.0227 (15)0.0130 (15)
C150.0545 (16)0.0673 (19)0.079 (2)0.0039 (14)0.0258 (15)0.0090 (15)
Cl10.0947 (7)0.0804 (6)0.1220 (8)0.0042 (5)0.0248 (6)0.0057 (5)
N10.0617 (14)0.0545 (13)0.0732 (15)0.0142 (11)0.0217 (12)0.0084 (11)
N20.0462 (17)0.056 (2)0.0644 (19)0.0078 (15)0.0129 (14)0.0073 (15)
N30.0452 (18)0.076 (2)0.067 (2)0.0063 (17)0.0107 (15)0.0018 (17)
S10.0551 (4)0.1282 (8)0.0650 (5)0.0243 (5)0.0012 (4)0.0217 (5)
Geometric parameters (Å, º) top
C16—N21.345 (4)C2—C31.385 (4)
C16—N31.360 (4)C2—H20.9300
C16—S11.6775 (16)C3—C41.405 (4)
C17—O11.3392C3—C71.505 (4)
C17—N21.350 (3)C4—C51.368 (4)
C17—C181.3777C4—C81.513 (4)
C18—C191.3358C5—C61.385 (4)
C18—H180.9300C5—H50.9300
C19—N31.360 (3)C6—H60.9300
C19—Cl21.7224C7—H7A0.9600
C20—O11.4659C7—H7B0.9600
C20—H20A0.9600C7—H7C0.9600
C20—H20B0.9600C8—H8A0.9600
C20—H20C0.9600C8—H8B0.9600
C16'—N2'1.3529C8—H8C0.9600
C16'—N3'1.3581C9—N11.446 (3)
C16'—S11.8159 (16)C9—C111.505 (4)
C19'—N3'1.3582C9—H9A0.9700
C19'—C18'1.3601C9—H9B0.9700
C19'—Cl2'1.7185C10—C151.384 (4)
C18'—C17'1.3581C10—C111.395 (4)
C18'—H18'0.9300C10—S11.778 (3)
C17'—O1'1.3535C11—C121.390 (4)
C17'—N2'1.3573C12—C131.373 (4)
C20'—O1'1.4629C12—Cl11.743 (3)
C20'—H20D0.9600C13—C141.362 (4)
C20'—H20E0.9600C13—H130.9300
C20'—H20F0.9600C14—C151.377 (4)
C1—C61.384 (4)C14—H140.9300
C1—C21.390 (3)C15—H150.9300
C1—N11.395 (3)N1—H10.8684
N2—C16—N3125.0 (2)C6—C5—H5118.6
N2—C16—S1122.89 (17)C1—C6—C5119.7 (3)
N3—C16—S1111.19 (16)C1—C6—H6120.2
O1—C17—N2118.44 (16)C5—C6—H6120.2
O1—C17—C18119.0C3—C7—H7A109.5
N2—C17—C18122.52 (16)C3—C7—H7B109.5
C19—C18—C17117.2H7A—C7—H7B109.5
C19—C18—H18121.4C3—C7—H7C109.5
C17—C18—H18121.4H7A—C7—H7C109.5
C18—C19—N3123.72 (16)H7B—C7—H7C109.5
C18—C19—Cl2121.0C4—C8—H8A109.5
N3—C19—Cl2115.28 (16)C4—C8—H8B109.5
C17—O1—C20119.8H8A—C8—H8B109.5
N2'—C16'—N3'120.0C4—C8—H8C109.5
N2'—C16'—S1116.68 (7)H8A—C8—H8C109.5
N3'—C16'—S1118.23 (6)H8B—C8—H8C109.5
N3'—C19'—C18'120.9N1—C9—C11108.6 (2)
N3'—C19'—Cl2'117.7N1—C9—H9A110.0
C18'—C19'—Cl2'121.4C11—C9—H9A110.0
C17'—C18'—C19'118.6N1—C9—H9B110.0
C17'—C18'—H18'120.7C11—C9—H9B110.0
C19'—C18'—H18'120.7H9A—C9—H9B108.3
O1'—C17'—N2'118.0C15—C10—C11121.0 (3)
O1'—C17'—C18'120.6C15—C10—S1117.5 (2)
N2'—C17'—C18'120.9C11—C10—S1121.3 (2)
O1'—C20'—H20D109.5C12—C11—C10116.3 (2)
O1'—C20'—H20E109.5C12—C11—C9121.2 (3)
H20D—C20'—H20E109.5C10—C11—C9122.5 (2)
O1'—C20'—H20F109.5C13—C12—C11122.9 (3)
H20D—C20'—H20F109.5C13—C12—Cl1116.8 (2)
H20E—C20'—H20F109.5C11—C12—Cl1120.3 (2)
C16'—N3'—C19'118.4C14—C13—C12119.5 (3)
C16'—N2'—C17'118.7C14—C13—H13120.2
C17'—O1'—C20'112.1C12—C13—H13120.2
C6—C1—C2118.2 (2)C13—C14—C15119.9 (3)
C6—C1—N1122.8 (2)C13—C14—H14120.1
C2—C1—N1118.9 (2)C15—C14—H14120.1
C3—C2—C1122.0 (3)C14—C15—C10120.4 (3)
C3—C2—H2119.0C14—C15—H15119.8
C1—C2—H2119.0C10—C15—H15119.8
C2—C3—C4119.2 (3)C1—N1—C9121.0 (2)
C2—C3—C7119.4 (3)C1—N1—H1113.8
C4—C3—C7121.3 (3)C9—N1—H1115.5
C5—C4—C3118.1 (3)C16—N2—C17115.8 (3)
C5—C4—C8121.2 (3)C16—N3—C19115.0 (3)
C3—C4—C8120.6 (3)C16—S1—C10105.87 (10)
C4—C5—C6122.7 (3)C16—S1—C16'9.0
C4—C5—H5118.6C10—S1—C16'100.69 (9)
O1—C17—C18—C19176.6S1—C10—C11—C95.4 (3)
N2—C17—C18—C192.7 (2)N1—C9—C11—C1285.8 (3)
C17—C18—C19—N33.5 (2)N1—C9—C11—C1091.6 (3)
C17—C18—C19—Cl2177.7C10—C11—C12—C131.2 (4)
N2—C17—O1—C206.7 (2)C9—C11—C12—C13178.7 (3)
C18—C17—O1—C20174.0C10—C11—C12—Cl1179.91 (19)
N3'—C19'—C18'—C17'2.7C9—C11—C12—Cl12.5 (3)
Cl2'—C19'—C18'—C17'179.2C11—C12—C13—C140.2 (4)
C19'—C18'—C17'—O1'175.4Cl1—C12—C13—C14178.6 (2)
C19'—C18'—C17'—N2'3.9C12—C13—C14—C150.5 (4)
N2'—C16'—N3'—C19'18.4C13—C14—C15—C100.5 (4)
S1—C16'—N3'—C19'172.43 (17)C11—C10—C15—C141.9 (4)
C18'—C19'—N3'—C16'8.3S1—C10—C15—C14177.0 (2)
Cl2'—C19'—N3'—C16'169.9C6—C1—N1—C918.3 (4)
N3'—C16'—N2'—C17'17.4C2—C1—N1—C9165.0 (3)
S1—C16'—N2'—C17'171.73 (17)C11—C9—N1—C1176.0 (2)
O1'—C17'—N2'—C16'165.7N3—C16—N2—C1710.0 (6)
C18'—C17'—N2'—C16'6.0S1—C16—N2—C17177.98 (17)
N2'—C17'—O1'—C20'0.4O1—C17—N2—C16177.1 (2)
C18'—C17'—O1'—C20'172.2C18—C17—N2—C163.6 (4)
C6—C1—C2—C31.2 (4)N2—C16—N3—C199.2 (6)
N1—C1—C2—C3175.7 (2)S1—C16—N3—C19178.4 (2)
C1—C2—C3—C40.1 (4)C18—C19—N3—C162.0 (4)
C1—C2—C3—C7178.3 (3)Cl2—C19—N3—C16176.9 (2)
C2—C3—C4—C50.9 (4)N2—C16—S1—C1010.2 (3)
C7—C3—C4—C5179.2 (3)N3—C16—S1—C10179.7 (3)
C2—C3—C4—C8178.8 (3)N2—C16—S1—C16'45.6 (3)
C7—C3—C4—C80.4 (4)N3—C16—S1—C16'123.9 (3)
C3—C4—C5—C60.9 (4)C15—C10—S1—C1695.5 (2)
C8—C4—C5—C6178.8 (3)C11—C10—S1—C1689.4 (2)
C2—C1—C6—C51.2 (4)C15—C10—S1—C16'103.1 (2)
N1—C1—C6—C5175.5 (3)C11—C10—S1—C16'81.9 (2)
C4—C5—C6—C10.2 (4)N2'—C16'—S1—C1635.93 (14)
C15—C10—C11—C122.2 (4)N3'—C16'—S1—C16118.9
S1—C10—C11—C12177.06 (19)N2'—C16'—S1—C10161.89 (12)
C15—C10—C11—C9179.7 (2)N3'—C16'—S1—C107.04 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.872.313.089 (3)150
N1—H1···N20.872.453.203 (4)145

Experimental details

Crystal data
Chemical formulaC20H19Cl2N3OS
Mr420.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.3653 (12), 14.1332 (14), 11.8276 (11)
β (°) 97.340 (1)
V3)2050.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.37 × 0.28 × 0.25
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.856, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
15364, 3804, 2727
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.04
No. of reflections3804
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.48

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3'0.872.313.089 (3)149.5
N1—H1···N20.872.453.203 (4)145.3
 

Acknowledgements

This work was supported by the Doctoral Foundation of Luoyang Normal University.

References

First citationBlum, J. L. (2001). Oncologist, 6, 56–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGompper, R., Mair, H.-J. & Polborn, K. (2004). Synthesis, pp. 696–708.  Google Scholar
First citationJoffe, A. M., Farley, J. D., Linden, D. & Goldsand, G. (1989). Am. J. Med. 87, 332–338.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (2005). Nat. Prod. Rep. 22, 627–646.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNadal, E. & Olavarria, E. (2004). Int. J. Clin. Pract. 58, 511–516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPetersen, E. & Schmidt, D. R. (2003). Expert Rev. Anti Infect. Ther. 1, 175–182.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds