organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

anti-9,10-Di(1-naphth­yl)anthracene pyridine disolvate

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bSFC Co Ltd, Ochang TechnoVillage 641-5, Gak-ri, Cheongwon, Chungbuk 363-883, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 13 October 2009; accepted 17 October 2009; online 23 October 2009)

In the title compound, C34H22·2C5H5N, there is a crystallographic inversion center in the middle of the anthracene ring system. The dihedral angle between the mean planes of the anthracene and naphthalene ring systems is 83.96 (4)°. The crystal structure is stabilized by weak inter­molecular C—H⋯N and C—H⋯π inter­actions.

Related literature

For general background to blue-light-emitting materials, see: Zhang et al. (2003[Zhang, X. H., Liu, M. W., Wong, O. Y., Lee, C. S., Kwong, H. L., Lee, S. T. & Wu, S. K. (2003). Chem. Phys. Lett. 369, 478-482.]); Raghunath et al. (2006[Raghunath, P., Reddy, M. A., Gouri, C., Bhanuprakash, K. & Rao, V. J. (2006). J. Phys. Chem. A, 110, 1152-1162.]). For synthetic procedures, see: Kwon et al. (2002[Kwon, S.-K., Kim, Y.-H., Park, S.-Y. & An, B. K. (2002). Mol. Cryst. Liq. Cryst. 377, 19-23.]); Lee et al. (2008[Lee, W., Kang, Y. & Lee, P. H. (2008). J. Org. Chem. 73, 4326-4329.]).

[Scheme 1]

Experimental

Crystal data
  • C34H22·2C5H5N

  • Mr = 588.72

  • Monoclinic, P 21 /c

  • a = 8.9810 (18) Å

  • b = 24.166 (5) Å

  • c = 7.2740 (15) Å

  • β = 93.34 (3)°

  • V = 1576.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 174 K

  • 0.16 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 16543 measured reflections

  • 3897 independent reflections

  • 3121 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.03

  • 3897 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N18i 0.93 2.62 3.4887 (19) 156
C4—H4⋯Cg1ii 0.93 2.86 3.6026 (15) 138
C16—H16⋯Cg2iii 0.93 2.85 3.6177 (18) 141
Symmetry codes: (i) x-1, y, z-1; (ii) x+1, y, z; (iii) -x, -y+1, -z. Cg1 and Cg2 are the centroids of the C9–C14 and C1–C6 rings, respectively.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

9,10-Dinaphthylanthracene has been widely used as a blue light emitting material in organic light emitting diodes (OLED) (Zhang et al., 2003; Raghunath et al., 2006). There are two stereoisomers for 9,10-di(1'-naphthyl)anthracene because the single bond rotation about the σ-bond between naphthyl and anthracene moiety is so hindered. Since the two stereoisomers of 9,10-di(1'-naphthyl)anthracene, syn and anti, could have different physical properties such as electronic states, it is considered important to carry out studies on the isolation and characterization of the isomers. Herein we report the single crystal structure of the anti form of 9,10-di(1'-naphthyl)anthracene. The molecular structure is shown in Fig. 1.

In the title compound, (C34H22).2(C5H5N), the dihedral angle between anthracene and naphtyl mean planes is 83.96 (4)°. There is a crystallographic inversion center located in the middle of anthracene ring. The crystal structure is stabilized by weak intermolecular C—H···N and C-H···π interactions (Table 1, Fig. 2).

Related literature top

For general background to blue-light-emitting materials, see: Zhang et al. (2003); Raghunath et al. (2006). For synthetic procedures, see: Kwon et al. (2002); Lee et al. (2008). Cg1 and Cg2 are the centroids of the C9–C14 and C1–C6 rings, respectively.

Experimental top

9,10-Di(1'-naphthyl)anthracene was prepared by a literature procedure (Kwon et al., 2002; Lee et al., 2008). Bromonaphthalene and anthraquinone were commercially available from Aldrich and used as received. n-Buthyllithium (18 ml, 1.6 M in hexane) was slowly added at 195K to a THF (50 ml) solution of bromonaphthalene (4.9 g, 0.024 mol). Anthraquinone (2 g, 0.0096 mol) was added to the mixture and the solution was stirred for 3 h at room temperature. Aqueous 2 N HCl solution was added and the organic phase was separated. The organic phase was dried and potassium iodide (0.028 mol), sodium hypophosphite monohydrate (0.0576 mol), and acetic acid (100 ml) were added. The mixture was heated for 4 h under reflux. After cooling, the precipitate was collected, washed with plenty of water, and dried (yield 80%). The separation of two isomers, syn and anti, was successfully performed after several recrystallizations from toluene and xylene. The single crystal of anti form was grown in pyridine and hexane solution.

1H NMR (400 MHz, CDCl3) δ = 8.09 (d, 2H, J = 8.0), 8.03 (d, 2H, J = 8.0), 7.74 (t, 2H, J = 6.8, J = 7.2), 7.66 (d, 2H, J = 7.2), 7.49 (m, 6H), 7.21(m, 8H).

13C NMR (100 MHz, CDCl3) δ = 136.8, 135.4, 133.7, 133.7, 130.7, 129.3, 128.3, 128.2, 127.1, 126.8, 126.3, 126.0, 125.6, 125.2.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C)

Structure description top

9,10-Dinaphthylanthracene has been widely used as a blue light emitting material in organic light emitting diodes (OLED) (Zhang et al., 2003; Raghunath et al., 2006). There are two stereoisomers for 9,10-di(1'-naphthyl)anthracene because the single bond rotation about the σ-bond between naphthyl and anthracene moiety is so hindered. Since the two stereoisomers of 9,10-di(1'-naphthyl)anthracene, syn and anti, could have different physical properties such as electronic states, it is considered important to carry out studies on the isolation and characterization of the isomers. Herein we report the single crystal structure of the anti form of 9,10-di(1'-naphthyl)anthracene. The molecular structure is shown in Fig. 1.

In the title compound, (C34H22).2(C5H5N), the dihedral angle between anthracene and naphtyl mean planes is 83.96 (4)°. There is a crystallographic inversion center located in the middle of anthracene ring. The crystal structure is stabilized by weak intermolecular C—H···N and C-H···π interactions (Table 1, Fig. 2).

For general background to blue-light-emitting materials, see: Zhang et al. (2003); Raghunath et al. (2006). For synthetic procedures, see: Kwon et al. (2002); Lee et al. (2008). Cg1 and Cg2 are the centroids of the C9–C14 and C1–C6 rings, respectively.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-numbering scheme and 30% probability ellipsoids. Unlabeled atoms are related by the symmetry operator (-x, -y+1, -z+1).
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. Only H atoms involved in weak C-H···N hydrogen bonds or C-H···π interactions are shown.
anti-9,10-Di(1-naphthyl)anthracene pyridine disolvate top
Crystal data top
C34H22·2C5H5NF(000) = 620
Mr = 588.72Dx = 1.241 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5150 reflections
a = 8.9810 (18) Åθ = 2.3–28.1°
b = 24.166 (5) ŵ = 0.07 mm1
c = 7.2740 (15) ÅT = 174 K
β = 93.34 (3)°Block, colourless
V = 1576.0 (6) Å30.16 × 0.16 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.026
φ and ω scansθmax = 28.3°, θmin = 1.7°
16543 measured reflectionsh = 1111
3897 independent reflectionsk = 3132
3121 reflections with I > 2σ(I)l = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.4153P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.27 e Å3
3897 reflectionsΔρmin = 0.22 e Å3
208 parameters
Crystal data top
C34H22·2C5H5NV = 1576.0 (6) Å3
Mr = 588.72Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9810 (18) ŵ = 0.07 mm1
b = 24.166 (5) ÅT = 174 K
c = 7.2740 (15) Å0.16 × 0.16 × 0.15 mm
β = 93.34 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3121 reflections with I > 2σ(I)
16543 measured reflectionsRint = 0.026
3897 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
3897 reflectionsΔρmin = 0.22 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05625 (11)0.54185 (4)0.38731 (15)0.0273 (2)
C20.11828 (13)0.58393 (5)0.27710 (17)0.0338 (3)
H20.05740.60180.1880.041*
C30.26455 (14)0.59831 (5)0.29986 (19)0.0396 (3)
H30.30270.62560.22560.048*
C40.35912 (13)0.57214 (5)0.43571 (19)0.0389 (3)
H40.45910.58220.44960.047*
C50.30516 (12)0.53240 (5)0.54615 (17)0.0324 (3)
H50.36870.51580.63530.039*
C60.15163 (11)0.51567 (4)0.52738 (15)0.0268 (2)
C70.09396 (11)0.52557 (4)0.36048 (15)0.0268 (2)
C80.19254 (12)0.55196 (5)0.21282 (15)0.0294 (2)
C90.26471 (11)0.60328 (5)0.24560 (15)0.0278 (2)
C100.24646 (12)0.63180 (5)0.41558 (17)0.0326 (3)
H100.18440.61710.510.039*
C110.31893 (14)0.68071 (5)0.4428 (2)0.0424 (3)
H110.30590.69890.55530.051*
C120.41311 (14)0.70367 (5)0.3013 (2)0.0459 (3)
H120.46150.7370.32050.055*
C130.43357 (13)0.67737 (5)0.1369 (2)0.0419 (3)
H130.49660.69290.04490.05*
C140.36078 (12)0.62677 (5)0.10307 (17)0.0333 (3)
C150.38159 (15)0.59853 (6)0.06721 (18)0.0446 (3)
H150.44410.61360.16070.054*
C160.31118 (16)0.54967 (7)0.09547 (18)0.0491 (4)
H160.32570.53160.20790.059*
C170.21627 (14)0.52640 (6)0.04517 (18)0.0409 (3)
H170.16870.4930.02390.049*
N180.26262 (13)0.69991 (6)0.82489 (18)0.0519 (3)
C190.19358 (17)0.74566 (6)0.8706 (2)0.0503 (3)
H190.250.77780.88410.06*
C200.04512 (18)0.74902 (8)0.8994 (2)0.0598 (4)
H200.00260.78260.93020.072*
C210.03967 (18)0.70250 (9)0.8825 (2)0.0664 (5)
H210.14090.70360.90290.08*
C220.0270 (2)0.65402 (8)0.8348 (2)0.0649 (5)
H220.02790.62150.82120.078*
C230.1781 (2)0.65463 (7)0.8073 (2)0.0588 (4)
H230.22320.62170.77480.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (5)0.0259 (5)0.0313 (5)0.0001 (4)0.0047 (4)0.0023 (4)
C20.0320 (6)0.0325 (6)0.0373 (6)0.0009 (4)0.0052 (5)0.0035 (5)
C30.0358 (6)0.0362 (6)0.0479 (7)0.0078 (5)0.0111 (5)0.0043 (5)
C40.0252 (5)0.0408 (7)0.0512 (7)0.0072 (5)0.0066 (5)0.0028 (6)
C50.0238 (5)0.0333 (6)0.0402 (6)0.0009 (4)0.0015 (4)0.0037 (5)
C60.0238 (5)0.0255 (5)0.0315 (5)0.0007 (4)0.0038 (4)0.0040 (4)
C70.0252 (5)0.0254 (5)0.0298 (5)0.0015 (4)0.0019 (4)0.0029 (4)
C80.0255 (5)0.0329 (6)0.0298 (5)0.0010 (4)0.0019 (4)0.0001 (4)
C90.0215 (5)0.0301 (5)0.0319 (5)0.0034 (4)0.0015 (4)0.0034 (4)
C100.0269 (5)0.0322 (6)0.0383 (6)0.0001 (4)0.0007 (4)0.0020 (5)
C110.0362 (6)0.0365 (7)0.0546 (8)0.0003 (5)0.0033 (6)0.0098 (6)
C120.0325 (6)0.0305 (6)0.0748 (10)0.0043 (5)0.0053 (6)0.0014 (6)
C130.0273 (6)0.0391 (7)0.0590 (8)0.0016 (5)0.0010 (5)0.0169 (6)
C140.0242 (5)0.0377 (6)0.0379 (6)0.0032 (4)0.0001 (4)0.0094 (5)
C150.0379 (7)0.0612 (9)0.0338 (6)0.0026 (6)0.0071 (5)0.0092 (6)
C160.0494 (8)0.0666 (10)0.0303 (6)0.0016 (7)0.0047 (6)0.0088 (6)
C170.0407 (7)0.0451 (7)0.0366 (7)0.0031 (5)0.0006 (5)0.0087 (5)
N180.0425 (6)0.0580 (8)0.0549 (7)0.0085 (5)0.0004 (5)0.0005 (6)
C190.0489 (8)0.0498 (8)0.0515 (8)0.0012 (6)0.0031 (6)0.0031 (7)
C200.0540 (9)0.0713 (11)0.0545 (9)0.0175 (8)0.0065 (7)0.0048 (8)
C210.0395 (8)0.1033 (15)0.0563 (10)0.0012 (9)0.0011 (7)0.0171 (10)
C220.0730 (11)0.0685 (11)0.0503 (9)0.0279 (9)0.0201 (8)0.0170 (8)
C230.0767 (11)0.0469 (9)0.0515 (9)0.0112 (8)0.0073 (8)0.0021 (7)
Geometric parameters (Å, º) top
C1—C71.4079 (15)C12—C131.357 (2)
C1—C21.4281 (16)C12—H120.93
C1—C61.4388 (16)C13—C141.4149 (18)
C2—C31.3596 (17)C13—H130.93
C2—H20.93C14—C151.4170 (19)
C3—C41.4143 (19)C15—C161.361 (2)
C3—H30.93C15—H150.93
C4—C51.3593 (17)C16—C171.4099 (19)
C4—H40.93C16—H160.93
C5—C61.4358 (15)C17—H170.93
C5—H50.93N18—C191.3197 (19)
C6—C7i1.4057 (15)N18—C231.333 (2)
C7—C6i1.4057 (15)C19—C201.364 (2)
C7—C81.4944 (16)C19—H190.93
C8—C171.3725 (17)C20—C211.359 (3)
C8—C91.4260 (15)C20—H200.93
C9—C101.4166 (16)C21—C221.370 (3)
C9—C141.4273 (16)C21—H210.93
C10—C111.3693 (17)C22—C231.383 (3)
C10—H100.93C22—H220.93
C11—C121.408 (2)C23—H230.93
C11—H110.93
C7—C1—C2121.55 (10)C13—C12—H12119.9
C7—C1—C6120.10 (10)C11—C12—H12119.9
C2—C1—C6118.35 (10)C12—C13—C14121.19 (12)
C3—C2—C1121.30 (11)C12—C13—H13119.4
C3—C2—H2119.4C14—C13—H13119.4
C1—C2—H2119.4C13—C14—C15121.98 (12)
C2—C3—C4120.49 (11)C13—C14—C9118.89 (12)
C2—C3—H3119.8C15—C14—C9119.13 (12)
C4—C3—H3119.8C16—C15—C14120.74 (12)
C5—C4—C3120.57 (11)C16—C15—H15119.6
C5—C4—H4119.7C14—C15—H15119.6
C3—C4—H4119.7C15—C16—C17120.21 (12)
C4—C5—C6121.07 (11)C15—C16—H16119.9
C4—C5—H5119.5C17—C16—H16119.9
C6—C5—H5119.5C8—C17—C16121.42 (13)
C7i—C6—C5121.91 (10)C8—C17—H17119.3
C7i—C6—C1119.89 (9)C16—C17—H17119.3
C5—C6—C1118.19 (10)C19—N18—C23116.01 (14)
C6i—C7—C1120.01 (10)N18—C19—C20124.50 (15)
C6i—C7—C8119.79 (9)N18—C19—H19117.8
C1—C7—C8120.20 (10)C20—C19—H19117.8
C17—C8—C9119.43 (11)C21—C20—C19118.96 (16)
C17—C8—C7120.09 (11)C21—C20—H20120.5
C9—C8—C7120.47 (10)C19—C20—H20120.5
C10—C9—C8122.58 (10)C20—C21—C22118.66 (15)
C10—C9—C14118.34 (11)C20—C21—H21120.7
C8—C9—C14119.07 (10)C22—C21—H21120.7
C11—C10—C9120.96 (11)C21—C22—C23118.33 (16)
C11—C10—H10119.5C21—C22—H22120.8
C9—C10—H10119.5C23—C22—H22120.8
C10—C11—C12120.33 (13)N18—C23—C22123.54 (16)
C10—C11—H11119.8N18—C23—H23118.2
C12—C11—H11119.8C22—C23—H23118.2
C13—C12—C11120.29 (12)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N18ii0.932.623.4887 (19)156
C4—H4···Cg1iii0.932.863.6026 (15)138
C16—H16···Cg2iv0.932.853.6177 (18)141
Symmetry codes: (ii) x1, y, z1; (iii) x+1, y, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC34H22·2C5H5N
Mr588.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)174
a, b, c (Å)8.9810 (18), 24.166 (5), 7.2740 (15)
β (°) 93.34 (3)
V3)1576.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.16 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16543, 3897, 3121
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.03
No. of reflections3897
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N18i0.932.623.4887 (19)156
C4—H4···Cg1ii0.932.863.6026 (15)138
C16—H16···Cg2iii0.932.853.6177 (18)141
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by the Ministry of Knowledge Economy, Republic of Korea. CHL is the recipient of a BK21 fellowship (2009).

References

First citationBruker (2002). SADABS, SAINT and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKwon, S.-K., Kim, Y.-H., Park, S.-Y. & An, B. K. (2002). Mol. Cryst. Liq. Cryst. 377, 19–23.  CrossRef CAS Google Scholar
First citationLee, W., Kang, Y. & Lee, P. H. (2008). J. Org. Chem. 73, 4326–4329.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaghunath, P., Reddy, M. A., Gouri, C., Bhanuprakash, K. & Rao, V. J. (2006). J. Phys. Chem. A, 110, 1152–1162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. H., Liu, M. W., Wong, O. Y., Lee, C. S., Kwong, H. L., Lee, S. T. & Wu, S. K. (2003). Chem. Phys. Lett. 369, 478–482.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds