metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-O-Ethyl N-(4-nitro­phen­yl)thio­carbamato-κS](tri­ethyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 October 2009; accepted 22 October 2009; online 28 October 2009)

In the title compound, [Au(C9H9N2O3S)(C6H15P)], two virtually identical mol­ecules comprise the asymmetric unit. These are connected by Au⋯Au [3.6796 (4) Å] and Au⋯S [3.6325 (18) and 3.5471 (18) Å] contacts, forming a dimeric aggregate. The presence of intra­molecular Au⋯O contacts [2.993 (5) and 2.957 (5) Å] is responsible for the slight deviations from the ideal linear coordination environments about the AuI ions. The conformation about the central C=N double bond is Z. Supra­molecular chains sustained by ππ [3.573 (4) Å] and C—H⋯π inter­actions are evident in the crystal structure. These are connected into layers via weak inter­molecular C—H⋯O inter­actions involving the nitro-group O atoms.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]). For the structure analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C9H9N2O3S)(C6H15P)]

  • Mr = 540.36

  • Triclinic, [P \overline 1]

  • a = 11.5340 (6) Å

  • b = 13.7656 (7) Å

  • c = 14.5177 (8) Å

  • α = 114.223 (2)°

  • β = 109.374 (2)°

  • γ = 95.197 (2)°

  • V = 1912.95 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.90 mm−1

  • T = 223 K

  • 0.16 × 0.13 × 0.05 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]) Tmin = 0.584, Tmax = 1

  • 13599 measured reflections

  • 8710 independent reflections

  • 6224 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.086

  • S = 0.95

  • 8710 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 1.64 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—P1 2.2590 (16)
Au1—S1 2.3151 (16)
Au2—P1A 2.2596 (16)
Au2—S1A 2.3150 (16)
P1—Au1—S1 176.10 (6)
P1A—Au2—S1A 174.04 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10a⋯Cg 0.98 2.90 3.585 (7) 128
C11a—H11d⋯O2ai 0.97 2.41 3.266 (10) 146
C13—H13c⋯O2ii 0.97 2.44 3.177 (12) 132
C13a—H13f⋯O3aiii 0.97 2.52 3.251 (11) 132
C14—H14b⋯O2ii 0.98 2.52 3.444 (9) 157
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z; (iii) -x, -y, -z+1. Cg is the centroid of the C2A–C7A ring.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of an on-going study of the structural systematics, including luminescence properties, of phosphinegold(I) carbonimidothioates (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), the title compound, (I), was investigated. Two independent molecules comprise the asymmetric unit, Fig. 1, and these are virtually identical as seen in the r.m.s. values: 0.0105 Å for distances and 1.076 ° for angles (Spek, 2009). The molecules are connected by Au1···Au2 interactions, 3.6796 (4) Å, as well as Au1···S1A and Au2···S1 contacts of 3.6325 (18) and 3.5471 (18) Å, respectively, Fig. 1. In accord with expectation, the Au—S bond distances (Au—S = 2.3151 (16) and 2.3150 (16) Å) are longer than the Au—P distances (Au—P = 2.2590 (16) and 2.2596 (16) Å). Deviations from the ideal linear geometry defined by the S and P donor atoms (S—Au—P = 176.10 (6) and 174.04 (6) °) are traced to the close approach of the O1/O1a atoms (2.993 (5) and 2.957 (5) Å). The conformation about the central C1-N1 bond is Z. Finally, the C1—S1 (1.745 (7) and 1.769 (7) Å) and C1-N1 (1.276 (7) and 1.272 (8) Å) bond distances indicate that the ligand is binding as a thiolate.

The structure of (I) is isomorphous with the methoxy analogue (Ho et al., 2006) and it is noted that there are no significant differences between comparable geometric parameters around the Au atoms.

Supramolecular chains aligned along the c direction are sustained by ππ [Cg1···Cg2 = 3.573 (4) Å and the dihedral angle between the rings is 3.7 (3) °, where Cg1 and Cg2 are the centroids of the C2—C7 and C2a—C7a rings, respectively; i: x, y, 1 + z] and C—H···π interactions, Table 1 and Fig. 2. Chains are linked into layers in the ac plane via C—H···O interactions, Table 1, where the O atoms are derived from the nitro groups; the O2 atom is bifurcated. Layers stack along the b direction, Fig. 3.

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see: Hall et al. (1993). For the structure analysis, see: Spek (2009). Cg is the centroid of the C2A–C7A ring.

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Et3PAuCl and EtOC(S)N(H)C6H4NO2-4 in the presence of base (Hall et al., 1993). Yellow crystals were obtained from the layering of ethanol on a dichloromethane solution of (I); m. pt. 378–379 K. Analysis for C15H24AuN2O3PS: found (calculated): C: 33.57 (33.34); H: 4.80 (4.48); N: 5.09 (5.18); S: 5.61 (5.93). IR (cm-1): ν(C—S) 1102 s, 849m; ν(C—N) 1574m; ν(C—O) 1152 s. 31P{1H} NMR: δ 36.4 p.p.m.

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.64 and 0.90 e Å-3, respectively, were located 0.93 Å and 1.47 Å from the Au2 and Au1 atoms, respectively.

Structure description top

As part of an on-going study of the structural systematics, including luminescence properties, of phosphinegold(I) carbonimidothioates (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), the title compound, (I), was investigated. Two independent molecules comprise the asymmetric unit, Fig. 1, and these are virtually identical as seen in the r.m.s. values: 0.0105 Å for distances and 1.076 ° for angles (Spek, 2009). The molecules are connected by Au1···Au2 interactions, 3.6796 (4) Å, as well as Au1···S1A and Au2···S1 contacts of 3.6325 (18) and 3.5471 (18) Å, respectively, Fig. 1. In accord with expectation, the Au—S bond distances (Au—S = 2.3151 (16) and 2.3150 (16) Å) are longer than the Au—P distances (Au—P = 2.2590 (16) and 2.2596 (16) Å). Deviations from the ideal linear geometry defined by the S and P donor atoms (S—Au—P = 176.10 (6) and 174.04 (6) °) are traced to the close approach of the O1/O1a atoms (2.993 (5) and 2.957 (5) Å). The conformation about the central C1-N1 bond is Z. Finally, the C1—S1 (1.745 (7) and 1.769 (7) Å) and C1-N1 (1.276 (7) and 1.272 (8) Å) bond distances indicate that the ligand is binding as a thiolate.

The structure of (I) is isomorphous with the methoxy analogue (Ho et al., 2006) and it is noted that there are no significant differences between comparable geometric parameters around the Au atoms.

Supramolecular chains aligned along the c direction are sustained by ππ [Cg1···Cg2 = 3.573 (4) Å and the dihedral angle between the rings is 3.7 (3) °, where Cg1 and Cg2 are the centroids of the C2—C7 and C2a—C7a rings, respectively; i: x, y, 1 + z] and C—H···π interactions, Table 1 and Fig. 2. Chains are linked into layers in the ac plane via C—H···O interactions, Table 1, where the O atoms are derived from the nitro groups; the O2 atom is bifurcated. Layers stack along the b direction, Fig. 3.

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see: Hall et al. (1993). For the structure analysis, see: Spek (2009). Cg is the centroid of the C2A–C7A ring.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structures of the two independent molecules comprising the asymmetric unit of (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The Au···Au and Au···S interactions are shown as orange and black dashed lines, respectively.
[Figure 2] Fig. 2. Supramolecular chain formation in (I) mediated by ππ and C—H···π contacts (purple and green dashed lines, respectively). The Au···Au and Au···S interactions are shown as orange and black dashed lines, respectively. Colour code: Au, orange; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. Unit-cell contents for (I) viewed in projection down the c axis. The supramolecular chains illustrated in Fig. 2 are linked by C—H···O interactions (orange dashed lines) to form layers that stack along the b axis. Colour code as for Fig. 2.
[(Z)-O-Ethyl N-(4-nitrophenyl)thiocarbamato- κS](triethylphosphine-κP)gold(I) top
Crystal data top
[Au(C9H9N2O3S)(C6H15P)]Z = 4
Mr = 540.36F(000) = 1048
Triclinic, P1Dx = 1.876 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 11.5340 (6) ÅCell parameters from 2986 reflections
b = 13.7656 (7) Åθ = 2.4–25.2°
c = 14.5177 (8) ŵ = 7.90 mm1
α = 114.223 (2)°T = 223 K
β = 109.374 (2)°Block, pale-yellow
γ = 95.197 (2)°0.16 × 0.13 × 0.05 mm
V = 1912.95 (17) Å3
Data collection top
Bruker SMART CCD
diffractometer
8710 independent reflections
Radiation source: fine-focus sealed tube6224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω' scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
h = 1414
Tmin = 0.584, Tmax = 1k = 1717
13599 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0239P)2]
where P = (Fo2 + 2Fc2)/3
8710 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 1.64 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Au(C9H9N2O3S)(C6H15P)]γ = 95.197 (2)°
Mr = 540.36V = 1912.95 (17) Å3
Triclinic, P1Z = 4
a = 11.5340 (6) ÅMo Kα radiation
b = 13.7656 (7) ŵ = 7.90 mm1
c = 14.5177 (8) ÅT = 223 K
α = 114.223 (2)°0.16 × 0.13 × 0.05 mm
β = 109.374 (2)°
Data collection top
Bruker SMART CCD
diffractometer
8710 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
6224 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 1Rint = 0.033
13599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 0.95Δρmax = 1.64 e Å3
8710 reflectionsΔρmin = 0.90 e Å3
415 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.21328 (2)0.09791 (2)0.25089 (2)0.03076 (8)
Au20.19099 (2)0.18507 (2)0.39905 (2)0.03003 (8)
S10.22021 (16)0.00121 (13)0.15604 (14)0.0331 (4)
S1A0.18420 (16)0.09210 (14)0.49949 (14)0.0351 (4)
P10.20592 (16)0.20492 (14)0.33338 (14)0.0307 (4)
P1A0.20508 (16)0.29223 (14)0.31779 (14)0.0305 (4)
O10.2526 (4)0.1897 (3)0.0409 (4)0.0329 (10)
O1A0.2993 (5)0.2989 (4)0.6434 (4)0.0411 (12)
O20.1567 (5)0.3470 (5)0.0866 (5)0.0705 (18)
O3A0.1677 (5)0.2800 (4)0.6929 (4)0.0549 (15)
O30.3592 (6)0.4014 (5)0.0034 (5)0.0708 (19)
O2A0.3722 (5)0.2475 (4)0.7657 (4)0.0536 (14)
N10.2607 (5)0.0715 (4)0.0314 (4)0.0326 (13)
N1A0.3305 (5)0.1841 (4)0.7206 (4)0.0371 (14)
N20.2585 (6)0.3328 (5)0.0391 (5)0.0425 (15)
N2A0.2761 (6)0.2217 (5)0.7277 (4)0.0374 (14)
C10.2458 (6)0.0905 (5)0.0435 (5)0.0282 (14)
C1A0.2794 (6)0.1971 (5)0.6356 (6)0.0374 (16)
C20.2575 (6)0.0314 (5)0.0288 (5)0.0306 (15)
C2A0.3127 (6)0.0805 (5)0.7168 (5)0.0331 (15)
C30.1428 (6)0.0564 (6)0.0681 (6)0.0362 (16)
H30.06530.00600.09220.043*
C3A0.4203 (6)0.0442 (6)0.7526 (5)0.0339 (15)
H3A0.50180.08780.77500.041*
C40.1422 (6)0.1551 (6)0.0718 (6)0.0382 (17)
H40.06490.17200.09880.046*
C4A0.4078 (6)0.0544 (5)0.7553 (5)0.0339 (15)
H4A0.48040.07850.77910.041*
C50.2567 (6)0.2285 (5)0.0353 (5)0.0302 (14)
C5A0.2892 (6)0.1177 (5)0.7234 (5)0.0310 (15)
C60.3712 (6)0.2065 (6)0.0051 (5)0.0377 (16)
H60.44830.25800.03040.045*
C6A0.1817 (6)0.0840 (6)0.6884 (5)0.0357 (16)
H6A0.10110.12840.66670.043*
C70.3713 (6)0.1074 (6)0.0080 (6)0.0363 (16)
H70.44910.09120.03510.044*
C7A0.1920 (6)0.0144 (6)0.6850 (5)0.0351 (16)
H7A0.11860.03770.66150.042*
C80.2844 (7)0.2662 (6)0.0443 (6)0.0442 (18)
H8A0.35850.22910.04740.053*
H8B0.21260.29680.11650.053*
C8A0.3857 (8)0.3883 (6)0.7495 (6)0.054 (2)
H8A10.46650.37040.77630.065*
H8A20.34850.40270.80400.065*
C90.3139 (10)0.3567 (7)0.0141 (8)0.077 (3)
H9A0.33520.41110.06970.115*
H9B0.24010.39200.01040.115*
H9C0.38550.32530.05720.115*
C9A0.4063 (10)0.4857 (6)0.7313 (7)0.081 (3)
H9A10.46420.54870.80040.121*
H9A20.32550.50220.70470.121*
H9A30.44270.46990.67700.121*
C100.3378 (6)0.1555 (6)0.4659 (5)0.0400 (17)
H10A0.33510.08280.51660.048*
H10B0.32660.20580.49620.048*
C10A0.3475 (6)0.3029 (6)0.2904 (6)0.0400 (17)
H10C0.33780.23430.22630.048*
H10D0.35620.36330.27170.048*
C110.4678 (7)0.1459 (7)0.4621 (7)0.058 (2)
H11A0.53300.11940.53580.087*
H11B0.48120.09450.43440.087*
H11C0.47240.21780.41350.087*
C11A0.4676 (7)0.3239 (8)0.3881 (7)0.060 (2)
H11D0.54050.32870.36950.091*
H11E0.46020.26370.40610.091*
H11F0.47880.39270.45130.091*
C120.2184 (7)0.3419 (6)0.2494 (6)0.0431 (18)
H12A0.29970.33430.24190.052*
H12B0.21880.38620.28780.052*
C12A0.2216 (6)0.4347 (5)0.4128 (6)0.0366 (16)
H12C0.30180.46110.47800.044*
H12D0.22680.48050.37670.044*
C130.1121 (8)0.4019 (6)0.1364 (6)0.057 (2)
H13A0.12450.47320.09550.086*
H13B0.11150.35890.09750.086*
H13C0.03150.41230.14300.086*
C13A0.1150 (7)0.4504 (6)0.4499 (7)0.054 (2)
H13D0.13050.52780.50020.081*
H13E0.11000.40680.48740.081*
H13F0.03530.42680.38620.081*
C140.0625 (6)0.2223 (6)0.3572 (6)0.0383 (17)
H14A0.06470.15120.41430.046*
H14B0.01070.24020.28910.046*
C14A0.0717 (6)0.2537 (6)0.1887 (5)0.0370 (16)
H14C0.07340.18430.13200.044*
H14D0.00740.24000.19810.044*
C150.0394 (8)0.3102 (7)0.3926 (7)0.061 (2)
H15A0.03970.31220.40250.091*
H15B0.10930.29230.46160.091*
H15C0.03410.38180.33600.091*
C15A0.0686 (7)0.3393 (7)0.1463 (6)0.054 (2)
H15D0.00560.31190.07730.080*
H15E0.14520.35210.13430.080*
H15F0.06420.40800.20060.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.03699 (15)0.03127 (15)0.02879 (15)0.00955 (12)0.01461 (12)0.01725 (13)
Au20.03449 (14)0.02922 (15)0.02933 (15)0.00682 (12)0.01326 (12)0.01643 (12)
S10.0474 (10)0.0267 (9)0.0347 (9)0.0131 (8)0.0225 (8)0.0176 (8)
S1A0.0467 (10)0.0258 (9)0.0294 (9)0.0025 (8)0.0103 (8)0.0154 (8)
P10.0411 (9)0.0286 (9)0.0275 (9)0.0132 (8)0.0156 (8)0.0155 (8)
P1A0.0381 (9)0.0249 (9)0.0307 (9)0.0055 (8)0.0158 (8)0.0142 (8)
O10.047 (3)0.023 (2)0.037 (3)0.016 (2)0.023 (2)0.016 (2)
O1A0.062 (3)0.023 (2)0.029 (3)0.005 (2)0.012 (2)0.011 (2)
O20.068 (4)0.049 (4)0.082 (4)0.022 (3)0.002 (3)0.040 (4)
O3A0.055 (3)0.039 (3)0.054 (3)0.006 (3)0.008 (3)0.022 (3)
O30.067 (4)0.040 (3)0.088 (5)0.003 (3)0.005 (4)0.038 (4)
O2A0.066 (3)0.055 (3)0.062 (4)0.028 (3)0.030 (3)0.041 (3)
N10.045 (3)0.028 (3)0.035 (3)0.010 (3)0.020 (3)0.020 (3)
N1A0.055 (4)0.024 (3)0.031 (3)0.010 (3)0.014 (3)0.015 (3)
N20.057 (4)0.032 (3)0.039 (4)0.015 (3)0.014 (3)0.021 (3)
N2A0.049 (4)0.034 (3)0.029 (3)0.007 (3)0.013 (3)0.017 (3)
C10.031 (3)0.027 (3)0.029 (3)0.008 (3)0.012 (3)0.015 (3)
C1A0.048 (4)0.026 (4)0.034 (4)0.006 (3)0.017 (3)0.011 (3)
C20.048 (4)0.031 (4)0.022 (3)0.018 (3)0.021 (3)0.014 (3)
C2A0.048 (4)0.026 (3)0.021 (3)0.005 (3)0.014 (3)0.008 (3)
C30.035 (4)0.033 (4)0.045 (4)0.006 (3)0.019 (3)0.021 (3)
C3A0.037 (4)0.036 (4)0.027 (3)0.002 (3)0.009 (3)0.016 (3)
C40.037 (4)0.041 (4)0.042 (4)0.015 (3)0.013 (3)0.026 (4)
C4A0.037 (4)0.038 (4)0.027 (3)0.014 (3)0.013 (3)0.015 (3)
C50.042 (4)0.026 (3)0.028 (3)0.011 (3)0.014 (3)0.017 (3)
C5A0.040 (4)0.025 (3)0.028 (3)0.007 (3)0.014 (3)0.014 (3)
C60.038 (4)0.034 (4)0.036 (4)0.006 (3)0.011 (3)0.015 (3)
C6A0.033 (3)0.043 (4)0.036 (4)0.001 (3)0.017 (3)0.022 (3)
C70.032 (3)0.035 (4)0.038 (4)0.006 (3)0.012 (3)0.017 (3)
C7A0.038 (4)0.039 (4)0.030 (4)0.013 (3)0.013 (3)0.016 (3)
C80.062 (5)0.031 (4)0.055 (5)0.024 (4)0.038 (4)0.021 (4)
C8A0.083 (6)0.033 (4)0.032 (4)0.001 (4)0.014 (4)0.013 (4)
C90.132 (8)0.046 (5)0.117 (8)0.054 (6)0.097 (7)0.054 (6)
C9A0.138 (9)0.028 (4)0.037 (5)0.018 (5)0.011 (5)0.007 (4)
C100.046 (4)0.049 (5)0.026 (4)0.018 (4)0.013 (3)0.020 (3)
C10A0.051 (4)0.033 (4)0.052 (5)0.010 (4)0.033 (4)0.024 (4)
C110.043 (4)0.076 (6)0.056 (5)0.017 (4)0.012 (4)0.037 (5)
C11A0.039 (4)0.079 (6)0.061 (6)0.013 (4)0.023 (4)0.030 (5)
C120.063 (5)0.033 (4)0.035 (4)0.015 (4)0.021 (4)0.016 (3)
C12A0.043 (4)0.024 (3)0.039 (4)0.006 (3)0.022 (3)0.008 (3)
C130.083 (6)0.039 (5)0.041 (5)0.022 (5)0.026 (5)0.010 (4)
C13A0.066 (5)0.031 (4)0.068 (6)0.018 (4)0.038 (5)0.017 (4)
C140.032 (3)0.044 (4)0.042 (4)0.007 (3)0.015 (3)0.023 (4)
C14A0.039 (4)0.036 (4)0.034 (4)0.003 (3)0.011 (3)0.019 (3)
C150.073 (6)0.056 (5)0.073 (6)0.011 (5)0.039 (5)0.042 (5)
C15A0.057 (5)0.061 (5)0.048 (5)0.015 (4)0.015 (4)0.035 (4)
Geometric parameters (Å, º) top
Au1—P12.2590 (16)C8—H8A0.9800
Au1—S12.3151 (16)C8—H8B0.9800
Au2—P1A2.2596 (16)C8A—C9A1.482 (10)
Au2—S1A2.3150 (16)C8A—H8A10.9800
S1—C11.745 (7)C8A—H8A20.9800
S1A—C1A1.769 (7)C9—H9A0.9700
P1—C101.810 (6)C9—H9B0.9700
P1—C141.814 (6)C9—H9C0.9700
P1—C121.828 (7)C9A—H9A10.9700
P1A—C14A1.813 (6)C9A—H9A20.9700
P1A—C10A1.821 (7)C9A—H9A30.9700
P1A—C12A1.823 (7)C10—C111.515 (10)
O1—C11.361 (7)C10—H10A0.9800
O1—C81.441 (8)C10—H10B0.9800
O1A—C1A1.350 (7)C10A—C11A1.518 (10)
O1A—C8A1.444 (8)C10A—H10C0.9800
O2—N21.228 (7)C10A—H10D0.9800
O3A—N2A1.237 (7)C11—H11A0.9700
O3—N21.212 (7)C11—H11B0.9700
O2A—N2A1.219 (7)C11—H11C0.9700
N1—C11.276 (7)C11A—H11D0.9700
N1—C21.406 (8)C11A—H11E0.9700
N1A—C1A1.272 (8)C11A—H11F0.9700
N1A—C2A1.399 (8)C12—C131.499 (9)
N2—C51.459 (8)C12—H12A0.9800
N2A—C5A1.455 (8)C12—H12B0.9800
C2—C71.389 (8)C12A—C13A1.497 (9)
C2—C31.392 (9)C12A—H12C0.9800
C2A—C3A1.399 (9)C12A—H12D0.9800
C2A—C7A1.406 (9)C13—H13A0.9700
C3—C41.382 (9)C13—H13B0.9700
C3—H30.9400C13—H13C0.9700
C3A—C4A1.369 (9)C13A—H13D0.9700
C3A—H3A0.9400C13A—H13E0.9700
C4—C51.378 (8)C13A—H13F0.9700
C4—H40.9400C14—C151.529 (9)
C4A—C5A1.370 (8)C14—H14A0.9800
C4A—H4A0.9400C14—H14B0.9800
C5—C61.372 (9)C14A—C15A1.534 (9)
C5A—C6A1.375 (9)C14A—H14C0.9800
C6—C71.382 (9)C14A—H14D0.9800
C6—H60.9400C15—H15A0.9700
C6A—C7A1.371 (9)C15—H15B0.9700
C6A—H6A0.9400C15—H15C0.9700
C7—H70.9400C15A—H15D0.9700
C7A—H7A0.9400C15A—H15E0.9700
C8—C91.513 (10)C15A—H15F0.9700
P1—Au1—S1176.10 (6)H9A—C9—H9B109.5
P1A—Au2—S1A174.04 (6)C8—C9—H9C109.5
C1—S1—Au1102.9 (2)H9A—C9—H9C109.5
C1A—S1A—Au2100.9 (2)H9B—C9—H9C109.5
C10—P1—C14106.0 (3)C8A—C9A—H9A1109.5
C10—P1—C12104.1 (3)C8A—C9A—H9A2109.5
C14—P1—C12108.0 (3)H9A1—C9A—H9A2109.5
C10—P1—Au1113.9 (2)C8A—C9A—H9A3109.5
C14—P1—Au1114.2 (2)H9A1—C9A—H9A3109.5
C12—P1—Au1109.9 (2)H9A2—C9A—H9A3109.5
C14A—P1A—C10A106.1 (3)C11—C10—P1114.5 (5)
C14A—P1A—C12A107.7 (3)C11—C10—H10A108.6
C10A—P1A—C12A102.7 (3)P1—C10—H10A108.6
C14A—P1A—Au2115.6 (2)C11—C10—H10B108.6
C10A—P1A—Au2114.5 (2)P1—C10—H10B108.6
C12A—P1A—Au2109.2 (2)H10A—C10—H10B107.6
C1—O1—C8117.1 (5)C11A—C10A—P1A112.6 (5)
C1A—O1A—C8A116.8 (5)C11A—C10A—H10C109.1
C1—N1—C2120.6 (6)P1A—C10A—H10C109.1
C1A—N1A—C2A122.3 (6)C11A—C10A—H10D109.1
O3—N2—O2122.6 (6)P1A—C10A—H10D109.1
O3—N2—C5119.4 (6)H10C—C10A—H10D107.8
O2—N2—C5118.0 (6)C10—C11—H11A109.5
O2A—N2A—O3A122.8 (6)C10—C11—H11B109.5
O2A—N2A—C5A118.7 (6)H11A—C11—H11B109.5
O3A—N2A—C5A118.5 (6)C10—C11—H11C109.5
N1—C1—O1119.6 (6)H11A—C11—H11C109.5
N1—C1—S1126.4 (5)H11B—C11—H11C109.5
O1—C1—S1114.0 (4)C10A—C11A—H11D109.5
N1A—C1A—O1A120.1 (6)C10A—C11A—H11E109.5
N1A—C1A—S1A126.7 (5)H11D—C11A—H11E109.5
O1A—C1A—S1A113.1 (5)C10A—C11A—H11F109.5
C7—C2—C3119.2 (6)H11D—C11A—H11F109.5
C7—C2—N1119.1 (6)H11E—C11A—H11F109.5
C3—C2—N1121.5 (6)C13—C12—P1113.3 (5)
N1A—C2A—C3A118.4 (6)C13—C12—H12A108.9
N1A—C2A—C7A122.7 (6)P1—C12—H12A108.9
C3A—C2A—C7A118.7 (6)C13—C12—H12B108.9
C4—C3—C2120.3 (6)P1—C12—H12B108.9
C4—C3—H3119.8H12A—C12—H12B107.7
C2—C3—H3119.8C13A—C12A—P1A114.2 (5)
C4A—C3A—C2A120.4 (6)C13A—C12A—H12C108.7
C4A—C3A—H3A119.8P1A—C12A—H12C108.7
C2A—C3A—H3A119.8C13A—C12A—H12D108.7
C5—C4—C3119.0 (6)P1A—C12A—H12D108.7
C5—C4—H4120.5H12C—C12A—H12D107.6
C3—C4—H4120.5C12—C13—H13A109.5
C3A—C4A—C5A119.9 (6)C12—C13—H13B109.5
C3A—C4A—H4A120.1H13A—C13—H13B109.5
C5A—C4A—H4A120.1C12—C13—H13C109.5
C6—C5—C4121.9 (6)H13A—C13—H13C109.5
C6—C5—N2118.1 (6)H13B—C13—H13C109.5
C4—C5—N2120.0 (6)C12A—C13A—H13D109.5
C4A—C5A—C6A121.0 (6)C12A—C13A—H13E109.5
C4A—C5A—N2A119.8 (6)H13D—C13A—H13E109.5
C6A—C5A—N2A119.1 (6)C12A—C13A—H13F109.5
C5—C6—C7118.9 (6)H13D—C13A—H13F109.5
C5—C6—H6120.5H13E—C13A—H13F109.5
C7—C6—H6120.5C15—C14—P1116.9 (5)
C7A—C6A—C5A120.1 (6)C15—C14—H14A108.1
C7A—C6A—H6A119.9P1—C14—H14A108.1
C5A—C6A—H6A119.9C15—C14—H14B108.1
C6—C7—C2120.6 (6)P1—C14—H14B108.1
C6—C7—H7119.7H14A—C14—H14B107.3
C2—C7—H7119.7C15A—C14A—P1A115.2 (4)
C6A—C7A—C2A119.8 (6)C15A—C14A—H14C108.5
C6A—C7A—H7A120.1P1A—C14A—H14C108.5
C2A—C7A—H7A120.1C15A—C14A—H14D108.5
O1—C8—C9106.3 (6)P1A—C14A—H14D108.5
O1—C8—H8A110.5H14C—C14A—H14D107.5
C9—C8—H8A110.5C14—C15—H15A109.5
O1—C8—H8B110.5C14—C15—H15B109.5
C9—C8—H8B110.5H15A—C15—H15B109.5
H8A—C8—H8B108.7C14—C15—H15C109.5
O1A—C8A—C9A105.9 (6)H15A—C15—H15C109.5
O1A—C8A—H8A1110.6H15B—C15—H15C109.5
C9A—C8A—H8A1110.6C14A—C15A—H15D109.5
O1A—C8A—H8A2110.6C14A—C15A—H15E109.5
C9A—C8A—H8A2110.6H15D—C15A—H15E109.5
H8A1—C8A—H8A2108.7C14A—C15A—H15F109.5
C8—C9—H9A109.5H15D—C15A—H15F109.5
C8—C9—H9B109.5H15E—C15A—H15F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10a···Cg0.982.903.585 (7)128
C11a—H11d···O2ai0.972.413.266 (10)146
C13—H13c···O2ii0.972.443.177 (12)132
C13a—H13f···O3aiii0.972.523.251 (11)132
C14—H14b···O2ii0.982.523.444 (9)157
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Au(C9H9N2O3S)(C6H15P)]
Mr540.36
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)11.5340 (6), 13.7656 (7), 14.5177 (8)
α, β, γ (°)114.223 (2), 109.374 (2), 95.197 (2)
V3)1912.95 (17)
Z4
Radiation typeMo Kα
µ (mm1)7.90
Crystal size (mm)0.16 × 0.13 × 0.05
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS, Bruker, 2000)
Tmin, Tmax0.584, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
13599, 8710, 6224
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.086, 0.95
No. of reflections8710
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 0.90

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Au1—P12.2590 (16)Au2—P1A2.2596 (16)
Au1—S12.3151 (16)Au2—S1A2.3150 (16)
P1—Au1—S1176.10 (6)P1A—Au2—S1A174.04 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10a···Cg0.982.903.585 (7)128
C11a—H11d···O2ai0.972.413.266 (10)146
C13—H13c···O2ii0.972.443.177 (12)132
C13a—H13f···O3aiii0.972.523.251 (11)132
C14—H14b···O2ii0.982.523.444 (9)157
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x, y, z+1.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds