organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Chloro-2-pyrid­yl)-3-methyl-1H-pyrazole-5-carboxylic acid

aCollege of Science, Civil Aviation University of China, Tianjin 300300, People's Republic of China
*Correspondence e-mail: caihua-1109@163.com

(Received 18 October 2009; accepted 23 October 2009; online 28 October 2009)

In the title mol­ecule, C10H8ClN3O2, the dihedral angle between the pyridine and pyrazole rings is 64.01 (8)°. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds link mol­ecules, forming extended chains along [001]. These chains are, in turn, linked by weak inter­molecular C—H⋯O inter­actions, forming a two-dimensional network perpendicular to the b axis.

Related literature

The title compound was prepared adventitiously as part of our research program related to metal-organic frameworks. See: Lehn (1995[Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. New York: Wiley-VCH.]) for background information. For the topologies of metal-organic frameworks, see: Kitakawa et al. (2004[Kitakawa, S., Kitaura, T. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Rosi et al. (2005[Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504-1518.]); Subramanian & Zaworotko (1994[Subramanian, S. & Zaworotko, M. J. (1994). Coord. Chem. Rev. 137, 357-401.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClN3O2

  • Mr = 237.64

  • Orthorhombic, P c a 21

  • a = 8.250 (6) Å

  • b = 11.232 (8) Å

  • c = 11.942 (8) Å

  • V = 1106.6 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.582, Tmax = 1.000

  • 5084 measured reflections

  • 1943 independent reflections

  • 1754 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.075

  • S = 1.04

  • 1943 reflections

  • 147 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) 912 Friedel pairs

  • Flack parameter: 0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1i 0.82 1.93 2.755 (3) 180
C2—H2A⋯O1ii 0.93 2.36 3.258 (4) 161
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y, z].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, metal-organic frameworks (MOFs) have attracted great attention (Lehn et al., 1995) because of their intriguing topologies (Subramanian et al., 1994; Kitakawa et al., 2004; Rosi et al., 2005). During our efforts to investigate the assembly of metal-organic coordination frameworks, a new compound, (I), was accidentally generated under hydrothermal conditions and the crystal structure of the title compound (I) is described in this paper. The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the pyridine and pyrazole rings is 64.01 (8)°. The dihedral angle between the mean plane of the pyrazole ring and the plane formed by the atoms C10/O1/O2 is 7.47 (18)°. In the crystal structure, O—H···N hydrogen bonds involving the carboxylic acid O atoms and the 3-chloropyridin-2-yl group N atoms, form one-dimensional chains along [001] (Fig. 2). These chains, are in turn, linked by weak intermolecular C—H···O interactions forming a two-dimensional network perpendicular to the b-axis (Fig. 3).

Related literature top

The title compound was prepared adventitiously as part of our research program related to metal-organic frameworks. See: Lehn et al. (1995) for background information. For the topologies of metal-organic frameworks, see: Kitakawa et al. (2004); Rosi et al. (2005); Subramanian & Zaworotko (1994).

Experimental top

A mixture of Zn(OAc)2.4H2O (21.8 mg, 0.1 mmol), 1-(3-chloropyridin-2-yl)-3- methyl-pyrazole-5-carboxylic acid (23.8 mg, 0.1 mmol) in water (10 ml) was heated at 433 K for 3 d in a sealed Teflon-lined stainless steel vessel (20 ml) under autogenous pressure. After the reaction mixture was slowly cooled to room temperature at a rate of 5 K h-1, pale-yellow lamellar single crystals suitable for X-ray diffraction were produced.

Refinement top

Although all H atoms were visible in difference Fourier maps, they were placed in calculated positions, with C-H distances in the range 0.93-0.96Å and an O-H distance of 0.82Å, and included in the final refinement in a riding-model approximation, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O,Cmethyl)

Structure description top

Recently, metal-organic frameworks (MOFs) have attracted great attention (Lehn et al., 1995) because of their intriguing topologies (Subramanian et al., 1994; Kitakawa et al., 2004; Rosi et al., 2005). During our efforts to investigate the assembly of metal-organic coordination frameworks, a new compound, (I), was accidentally generated under hydrothermal conditions and the crystal structure of the title compound (I) is described in this paper. The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the pyridine and pyrazole rings is 64.01 (8)°. The dihedral angle between the mean plane of the pyrazole ring and the plane formed by the atoms C10/O1/O2 is 7.47 (18)°. In the crystal structure, O—H···N hydrogen bonds involving the carboxylic acid O atoms and the 3-chloropyridin-2-yl group N atoms, form one-dimensional chains along [001] (Fig. 2). These chains, are in turn, linked by weak intermolecular C—H···O interactions forming a two-dimensional network perpendicular to the b-axis (Fig. 3).

The title compound was prepared adventitiously as part of our research program related to metal-organic frameworks. See: Lehn et al. (1995) for background information. For the topologies of metal-organic frameworks, see: Kitakawa et al. (2004); Rosi et al. (2005); Subramanian & Zaworotko (1994).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability ellipsoids.
[Figure 2] Fig. 2. The one-dimensional chain structure of (I), showing O—H···N hydrogen bonds as red dashed lines.
[Figure 3] Fig. 3. Part of the crystal structure with hydrogen bonds shown as dashed lines.
1-(3-Chloro-2-pyridyl)-3-methyl-1H-pyrazole-5-carboxylic acid top
Crystal data top
C10H8ClN3O2F(000) = 488
Mr = 237.64Dx = 1.426 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2602 reflections
a = 8.250 (6) Åθ = 3.1–27.5°
b = 11.232 (8) ŵ = 0.33 mm1
c = 11.942 (8) ÅT = 296 K
V = 1106.6 (13) Å3Block, colourless
Z = 40.24 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1943 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.582, Tmax = 1.000k = 1113
5084 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0254P)2 + 0.1923P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1943 reflectionsΔρmax = 0.14 e Å3
147 parametersΔρmin = 0.13 e Å3
1 restraintAbsolute structure: Flack (1983) 912 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C10H8ClN3O2V = 1106.6 (13) Å3
Mr = 237.64Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 8.250 (6) ŵ = 0.33 mm1
b = 11.232 (8) ÅT = 296 K
c = 11.942 (8) Å0.24 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1943 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1754 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 1.000Rint = 0.032
5084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.14 e Å3
S = 1.04Δρmin = 0.13 e Å3
1943 reflectionsAbsolute structure: Flack (1983) 912 Friedel pairs
147 parametersAbsolute structure parameter: 0.03 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.19679 (9)0.18938 (6)0.13597 (6)0.0748 (2)
O10.7978 (2)0.17726 (13)0.1372 (2)0.0622 (5)
O20.6983 (2)0.34151 (14)0.05851 (17)0.0664 (5)
H20.65040.29360.01860.100*
N10.9622 (2)0.18043 (16)0.42451 (15)0.0446 (5)
N20.9738 (2)0.33015 (15)0.29058 (16)0.0414 (4)
N31.0231 (2)0.42331 (17)0.35467 (17)0.0490 (5)
C11.1171 (3)0.1403 (2)0.26170 (19)0.0484 (6)
C21.1532 (3)0.0288 (2)0.3012 (2)0.0606 (7)
H2A1.21780.02240.25940.073*
C31.0928 (3)0.0067 (2)0.4034 (3)0.0625 (7)
H31.11450.08230.43140.075*
C40.9994 (3)0.0727 (2)0.4629 (2)0.0544 (6)
H40.96070.05010.53290.065*
C51.0179 (2)0.21361 (19)0.32469 (18)0.0396 (5)
C60.9573 (3)0.5193 (2)0.3074 (2)0.0502 (6)
C70.8657 (3)0.4882 (2)0.2137 (2)0.0508 (6)
H70.80920.53950.16680.061*
C80.8758 (3)0.36675 (19)0.20469 (19)0.0421 (5)
C90.9834 (4)0.6389 (2)0.3575 (3)0.0786 (9)
H9A1.07550.63630.40660.118*
H9B0.88890.66170.39920.118*
H9C1.00260.69580.29910.118*
C100.7890 (3)0.28386 (18)0.1310 (2)0.0435 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0825 (5)0.0840 (5)0.0578 (4)0.0041 (4)0.0284 (4)0.0126 (4)
O10.0816 (12)0.0439 (10)0.0612 (10)0.0104 (8)0.0217 (10)0.0019 (10)
O20.0833 (13)0.0539 (10)0.0618 (12)0.0028 (9)0.0294 (11)0.0010 (9)
N10.0460 (11)0.0480 (11)0.0399 (11)0.0015 (8)0.0012 (9)0.0004 (8)
N20.0477 (11)0.0391 (10)0.0376 (10)0.0016 (8)0.0009 (9)0.0041 (8)
N30.0497 (11)0.0477 (11)0.0496 (11)0.0037 (9)0.0004 (10)0.0108 (9)
C10.0471 (13)0.0541 (14)0.0441 (13)0.0011 (11)0.0002 (10)0.0101 (11)
C20.0564 (14)0.0555 (15)0.0701 (17)0.0155 (12)0.0069 (14)0.0158 (13)
C30.0659 (17)0.0482 (13)0.0734 (18)0.0074 (14)0.0155 (15)0.0052 (13)
C40.0598 (15)0.0549 (16)0.0484 (13)0.0030 (13)0.0059 (11)0.0096 (11)
C50.0368 (11)0.0429 (12)0.0391 (12)0.0007 (9)0.0034 (9)0.0053 (9)
C60.0511 (13)0.0416 (13)0.0578 (15)0.0040 (11)0.0021 (12)0.0096 (11)
C70.0562 (14)0.0425 (13)0.0539 (13)0.0012 (11)0.0029 (12)0.0017 (11)
C80.0451 (12)0.0438 (13)0.0373 (11)0.0019 (10)0.0012 (9)0.0007 (10)
C90.088 (2)0.0546 (16)0.093 (2)0.0004 (16)0.0138 (19)0.0207 (16)
C100.0493 (12)0.0425 (12)0.0386 (11)0.0034 (10)0.0030 (11)0.0035 (12)
Geometric parameters (Å, º) top
Cl1—C11.729 (3)C2—H2A0.9300
O1—C101.202 (2)C3—C41.376 (4)
O2—C101.314 (3)C3—H30.9300
O2—H20.8200C4—H40.9300
N1—C41.330 (3)C6—C71.394 (4)
N1—C51.331 (3)C6—C91.486 (4)
N2—N31.359 (2)C7—C81.371 (3)
N2—C81.369 (3)C7—H70.9300
N2—C51.418 (3)C8—C101.468 (3)
N3—C61.333 (3)C9—H9A0.9600
C1—C21.371 (4)C9—H9B0.9600
C1—C51.383 (3)C9—H9C0.9600
C2—C31.377 (4)
C10—O2—H2109.5C1—C5—N2123.0 (2)
C4—N1—C5118.9 (2)N3—C6—C7111.0 (2)
N3—N2—C8111.56 (16)N3—C6—C9120.1 (2)
N3—N2—C5118.17 (18)C7—C6—C9128.9 (2)
C8—N2—C5130.08 (18)C8—C7—C6106.2 (2)
C6—N3—N2105.21 (18)C8—C7—H7126.9
C2—C1—C5119.0 (2)C6—C7—H7126.9
C2—C1—Cl1120.47 (19)N2—C8—C7106.01 (19)
C5—C1—Cl1120.49 (18)N2—C8—C10123.1 (2)
C1—C2—C3119.4 (2)C7—C8—C10130.4 (2)
C1—C2—H2A120.3C6—C9—H9A109.5
C3—C2—H2A120.3C6—C9—H9B109.5
C4—C3—C2118.2 (2)H9A—C9—H9B109.5
C4—C3—H3120.9C6—C9—H9C109.5
C2—C3—H3120.9H9A—C9—H9C109.5
N1—C4—C3122.7 (3)H9B—C9—H9C109.5
N1—C4—H4118.6O1—C10—O2124.5 (2)
C3—C4—H4118.6O1—C10—C8124.4 (3)
N1—C5—C1121.6 (2)O2—C10—C8111.10 (19)
N1—C5—N2115.29 (19)
C8—N2—N3—C60.9 (2)C8—N2—C5—C169.0 (3)
C5—N2—N3—C6176.4 (2)N2—N3—C6—C70.2 (3)
C5—C1—C2—C31.3 (3)N2—N3—C6—C9178.8 (2)
Cl1—C1—C2—C3177.8 (2)N3—C6—C7—C80.6 (3)
C1—C2—C3—C40.8 (4)C9—C6—C7—C8177.9 (3)
C5—N1—C4—C30.4 (4)N3—N2—C8—C71.3 (2)
C2—C3—C4—N11.7 (4)C5—N2—C8—C7176.0 (2)
C4—N1—C5—C11.9 (3)N3—N2—C8—C10172.2 (2)
C4—N1—C5—N2179.44 (19)C5—N2—C8—C102.6 (4)
C2—C1—C5—N12.8 (3)C6—C7—C8—N21.1 (2)
Cl1—C1—C5—N1176.29 (17)C6—C7—C8—C10171.7 (2)
C2—C1—C5—N2179.9 (2)N2—C8—C10—O11.5 (4)
Cl1—C1—C5—N21.0 (3)C7—C8—C10—O1173.2 (3)
N3—N2—C5—N160.9 (3)N2—C8—C10—O2177.4 (2)
C8—N2—C5—N1113.5 (3)C7—C8—C10—O25.7 (4)
N3—N2—C5—C1116.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.932.755 (3)180
C2—H2A···O1ii0.932.363.258 (4)161
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1/2, y, z.

Experimental details

Crystal data
Chemical formulaC10H8ClN3O2
Mr237.64
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)8.250 (6), 11.232 (8), 11.942 (8)
V3)1106.6 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.582, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5084, 1943, 1754
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 1.04
No. of reflections1943
No. of parameters147
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13
Absolute structureFlack (1983) 912 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.932.755 (3)179.9
C2—H2A···O1ii0.932.363.258 (4)161.2
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1/2, y, z.
 

Acknowledgements

We acknowledge financial support by the Scientific Research Foundation of the Civil Aviation University of China (No. 08CAUC-S01) and the Natural Science Foundation of Tianjin (09JCYBJC04200).

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKitakawa, S., Kitaura, T. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Google Scholar
First citationLehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. New York: Wiley-VCH.  Google Scholar
First citationRosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1518.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanian, S. & Zaworotko, M. J. (1994). Coord. Chem. Rev. 137, 357–401.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds