organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-7-meth­­oxy-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexa­hydro-1H-pyrrolo[3,4-b]quinoline

aDepartment of Physics, Anna University Chennai, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: kali@annauniv.edu

(Received 26 October 2009; accepted 28 October 2009; online 31 October 2009)

In the title compound, C32H32N2O3S, the pyrrolidine ring adopts an envelope conformation with the methine C atom nearest to the phenyl ring as the flap atom. The tetra­hydro­pyridine ring has a half-chair conformation. The two rings are trans-fused. The phenyl ring bound to the tetra­hydro­pyridine is oriented almost perpendicular [dihedral angle = 86.35 (10)°] to the fused benzene ring. The dihedral angle between the benzyl­phenyl ring and the sulfonyl-bound phenyl ring is 69.43 (10)°. A very weak N—H⋯π inter­action is observed in the mol­ecular structure. In the crystal, mol­ecules translated one unit along the b axis are linked into C(10) chains by C—H⋯O hydrogen bonds; adjacent chains are linked via C—H⋯π inter­actions, forming a two-dimensional network parallel to the bc plane.

Related literature

For biological activity of pyrroloquinoline derivatives, see: Ryu et al. (2009[Ryu, C. K., Lee, J. Y., Jeong, S. H. & Nho, J. H. (2009). Bioorg. Med. Chem. Lett. 19, 146-148.]); Tsuji et al. (1995[Tsuji, K., Tsubouchi, H. & Ishikawa, H. (1995). Chem. Pharm. Bull. (Tokyo), 43, 1678-1682.]); Ferlin et al. (2001[Ferlin, M. G., Gatto, B., Chiarelotto, G. & Palumbo, M. (2001). Bioorg. Med. Chem. 9, 1843-1848.]). For related structures, see: Sudha et al. (2007[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914-o4915.], 2008a[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008a). Acta Cryst. E64, o134.],b[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008b). Acta Cryst. E64, o425.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C32H32N2O3S

  • Mr = 524.66

  • Monoclinic, P 21 /c

  • a = 21.5063 (9) Å

  • b = 11.6188 (5) Å

  • c = 10.7616 (4) Å

  • β = 98.219 (2)°

  • V = 2661.46 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.32 × 0.30 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.636, Tmax = 0.987

  • 28181 measured reflections

  • 6088 independent reflections

  • 4661 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.155

  • S = 1.02

  • 6088 reflections

  • 349 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C30—H30⋯O3i 0.93 2.53 3.196 (3) 128
C24—H24⋯Cg1ii 0.93 2.56 3.476 (2) 169
N2—H1N2⋯Cg2 0.88 (2) 3.06 3.837 (2) 147
Symmetry codes: (i) x, y+1, z; (ii) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C4–C9 and C26–C31 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrroloquinoline compounds exhibit antifungal (Ryu et al., 2009), antibacterial (Tsuji et al., 1995) and antiproliferative (Ferlin et al., 2001) activities. We report here the crystal structure of the title compound, a pyrrolo[3,4-b]quinoline derivative.

The pyrrolidine ring adopts an envelope conformation with C2 as the flap atom. Atom C2 deviates by 0.663 (3) Å from the plane passing through the other four atoms of the ring (r.m.s. deviation 0.020 Å). The asymmetry parameter (Duax et al., 1976) ΔCs[C2] = 5.4 (2)° and the puckering parameters (Cremer & Pople, 1975) q2 = 0.439 (2) Å and φ = 78.2 (3)°. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The tetrahydropyridine ring adopts a half-chair conformation with an asymmetry parameter ΔC2[C2—C10] of 7.6 (2)°. The phenyl group attached to the tetrahydropyridine ring is also in a biaxial position. The dihedral angle between the C4—C9 and C19—C24 rings is 86.35 (10)° and that between the C12—C17 and C26—C31 rings is 69.43 (10)°. A very weak N—H···π interaction (Table 1) is observed in the molecular structure. Bond lengths and angles are comparable with those observed in related structures (Sudha et al., 2007,2008a,b).

In the crystal structure, molecules translated one unit along the b axis are linked into C(10) chains by C—H···O hydrogen bonds. Glide-related molecules in adjacent chains are linked via C—H···π interactions involving the C4—C9 ring, forming a two-dimensional network parallel to the bc plane (Fig. 2).

Related literature top

For biological activity of pyrroloquinoline derivatives, see: Ryu et al. (2009); Tsuji et al. (1995); Ferlin et al. (2001). For related structures, see: Sudha et al. (2007, 2008a,b). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). Cg1 and Cg2 are the centroids of the C4–C9 and C26–C31 rings, respectively.

Experimental top

InCl3 (20 mol%) was added to a mixture of 2-(N-cinnamyl-N-tosylamino)-3-phenyl propanal (1 mmol) and p-methoxy aniline (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 1 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the crude product was chromatographed on silica gel using a hexane-ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

The N-bound H atom was located in a difference map and refined freely [N—H = 0.88 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for methyl groups. Reflection 100 was partially obscured by the beam stop and was omitted.

Structure description top

Pyrroloquinoline compounds exhibit antifungal (Ryu et al., 2009), antibacterial (Tsuji et al., 1995) and antiproliferative (Ferlin et al., 2001) activities. We report here the crystal structure of the title compound, a pyrrolo[3,4-b]quinoline derivative.

The pyrrolidine ring adopts an envelope conformation with C2 as the flap atom. Atom C2 deviates by 0.663 (3) Å from the plane passing through the other four atoms of the ring (r.m.s. deviation 0.020 Å). The asymmetry parameter (Duax et al., 1976) ΔCs[C2] = 5.4 (2)° and the puckering parameters (Cremer & Pople, 1975) q2 = 0.439 (2) Å and φ = 78.2 (3)°. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The tetrahydropyridine ring adopts a half-chair conformation with an asymmetry parameter ΔC2[C2—C10] of 7.6 (2)°. The phenyl group attached to the tetrahydropyridine ring is also in a biaxial position. The dihedral angle between the C4—C9 and C19—C24 rings is 86.35 (10)° and that between the C12—C17 and C26—C31 rings is 69.43 (10)°. A very weak N—H···π interaction (Table 1) is observed in the molecular structure. Bond lengths and angles are comparable with those observed in related structures (Sudha et al., 2007,2008a,b).

In the crystal structure, molecules translated one unit along the b axis are linked into C(10) chains by C—H···O hydrogen bonds. Glide-related molecules in adjacent chains are linked via C—H···π interactions involving the C4—C9 ring, forming a two-dimensional network parallel to the bc plane (Fig. 2).

For biological activity of pyrroloquinoline derivatives, see: Ryu et al. (2009); Tsuji et al. (1995); Ferlin et al. (2001). For related structures, see: Sudha et al. (2007, 2008a,b). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). Cg1 and Cg2 are the centroids of the C4–C9 and C26–C31 rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dotted line indicates an N—H···π interaction.
[Figure 2] Fig. 2. Crystal packing of the title compound. C—H···O hydrogen bonds and C—H···π interactions are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
3-Benzyl-7-methoxy-9-phenyl-2-tosyl-2,3,3a,4,9,9a-hexahydro-1H- pyrrolo[3,4-b]quinoline top
Crystal data top
C32H32N2O3SF(000) = 1112
Mr = 524.66Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6305 reflections
a = 21.5063 (9) Åθ = 2.6–28.5°
b = 11.6188 (5) ŵ = 0.16 mm1
c = 10.7616 (4) ÅT = 100 K
β = 98.219 (2)°Plate, colourless
V = 2661.46 (19) Å30.32 × 0.30 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6088 independent reflections
Radiation source: fine-focus sealed tube4661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2327
Tmin = 0.636, Tmax = 0.987k = 1514
28181 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0891P)2 + 0.9992P]
where P = (Fo2 + 2Fc2)/3
6088 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C32H32N2O3SV = 2661.46 (19) Å3
Mr = 524.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.5063 (9) ŵ = 0.16 mm1
b = 11.6188 (5) ÅT = 100 K
c = 10.7616 (4) Å0.32 × 0.30 × 0.08 mm
β = 98.219 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6088 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4661 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.987Rint = 0.057
28181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.46 e Å3
6088 reflectionsΔρmin = 0.54 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36811 (2)0.64135 (4)0.09053 (5)0.02080 (15)
O10.39510 (7)0.60291 (13)0.19725 (13)0.0264 (3)
O20.36734 (7)0.76149 (12)0.06064 (14)0.0266 (3)
O30.07988 (7)0.14332 (12)0.25445 (14)0.0235 (3)
N10.29441 (8)0.59952 (14)0.11262 (15)0.0197 (4)
N20.18416 (8)0.55576 (14)0.11176 (16)0.0202 (4)
H1N20.1626 (11)0.619 (2)0.122 (2)0.024 (6)*
C10.28306 (10)0.47333 (16)0.12239 (18)0.0195 (4)
H1A0.32220.43120.11940.023*
H1B0.25570.45390.19910.023*
C20.25163 (9)0.44865 (15)0.00752 (17)0.0172 (4)
H20.28340.45300.06730.021*
C30.21612 (9)0.33569 (15)0.00428 (17)0.0169 (4)
H30.18990.32680.08600.020*
C40.17183 (9)0.34490 (16)0.09480 (17)0.0176 (4)
C50.14457 (9)0.24516 (16)0.13452 (18)0.0182 (4)
H50.15460.17470.10160.022*
C60.10267 (9)0.24795 (16)0.22227 (18)0.0194 (4)
C70.08772 (10)0.35345 (17)0.27171 (19)0.0213 (4)
H70.06020.35690.33080.026*
C80.11424 (10)0.45329 (17)0.23202 (19)0.0213 (4)
H80.10370.52360.26480.026*
C90.15627 (9)0.45154 (16)0.14423 (18)0.0181 (4)
C100.20811 (9)0.55138 (16)0.00791 (18)0.0179 (4)
H100.17310.54350.07640.022*
C110.24967 (10)0.65334 (16)0.03459 (18)0.0192 (4)
H110.27270.68280.04410.023*
C120.40517 (9)0.56541 (17)0.04217 (18)0.0206 (4)
C130.40440 (10)0.60984 (18)0.16170 (19)0.0231 (4)
H130.38780.68250.17230.028*
C140.42880 (10)0.54439 (18)0.2653 (2)0.0249 (5)
H140.42880.57440.34540.030*
C150.45327 (10)0.43488 (19)0.2518 (2)0.0251 (5)
C160.45382 (10)0.39268 (18)0.1305 (2)0.0238 (4)
H160.47020.31990.11970.029*
C170.43044 (10)0.45702 (17)0.0261 (2)0.0233 (4)
H170.43160.42810.05410.028*
C180.47876 (12)0.3636 (2)0.3642 (2)0.0334 (5)
H18A0.46560.39630.43820.050*
H18B0.52380.36270.37320.050*
H18C0.46310.28640.35310.050*
C190.26098 (9)0.23397 (16)0.01226 (18)0.0177 (4)
C200.30745 (10)0.22449 (17)0.11657 (19)0.0220 (4)
H200.31050.28030.17910.026*
C210.34910 (10)0.13259 (18)0.1278 (2)0.0254 (5)
H210.38000.12770.19740.030*
C220.34495 (11)0.04784 (17)0.0358 (2)0.0268 (5)
H220.37250.01430.04410.032*
C230.29953 (11)0.05698 (17)0.0680 (2)0.0269 (5)
H230.29680.00130.13060.032*
C240.25761 (10)0.14916 (17)0.0797 (2)0.0223 (4)
H240.22700.15400.14990.027*
C250.21481 (10)0.75164 (17)0.10939 (19)0.0227 (4)
H25A0.24470.81120.12300.027*
H25B0.19620.72290.19090.027*
C260.16400 (10)0.80340 (16)0.04408 (18)0.0202 (4)
C270.10099 (10)0.77711 (17)0.0814 (2)0.0249 (5)
H270.09000.72460.14610.030*
C280.05413 (11)0.82820 (19)0.0235 (2)0.0276 (5)
H280.01220.81080.05030.033*
C290.07005 (11)0.90497 (18)0.0741 (2)0.0275 (5)
H290.03880.94000.11240.033*
C300.13279 (10)0.92955 (17)0.1147 (2)0.0237 (4)
H300.14370.97970.18170.028*
C310.17939 (10)0.87961 (16)0.05583 (19)0.0213 (4)
H310.22130.89710.08320.026*
C320.03712 (10)0.14275 (18)0.3447 (2)0.0255 (5)
H32A0.02360.06530.35680.038*
H32B0.00140.18970.31500.038*
H32C0.05770.17280.42300.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0206 (3)0.0180 (3)0.0242 (3)0.00236 (19)0.0046 (2)0.00132 (18)
O10.0265 (9)0.0282 (8)0.0259 (8)0.0026 (6)0.0091 (6)0.0015 (6)
O20.0252 (9)0.0192 (7)0.0353 (8)0.0044 (6)0.0042 (7)0.0022 (6)
O30.0211 (8)0.0197 (7)0.0313 (8)0.0037 (6)0.0089 (6)0.0016 (6)
N10.0190 (9)0.0161 (8)0.0245 (9)0.0001 (7)0.0044 (7)0.0006 (6)
N20.0250 (10)0.0124 (8)0.0243 (9)0.0029 (7)0.0075 (7)0.0008 (6)
C10.0199 (11)0.0162 (9)0.0222 (10)0.0009 (7)0.0029 (8)0.0006 (7)
C20.0164 (10)0.0145 (9)0.0204 (9)0.0006 (7)0.0014 (8)0.0007 (7)
C30.0156 (10)0.0159 (9)0.0189 (9)0.0004 (7)0.0015 (7)0.0002 (7)
C40.0150 (10)0.0182 (9)0.0188 (9)0.0020 (7)0.0007 (7)0.0015 (7)
C50.0161 (10)0.0155 (9)0.0223 (10)0.0012 (7)0.0008 (8)0.0015 (7)
C60.0154 (10)0.0179 (9)0.0242 (10)0.0018 (7)0.0007 (8)0.0005 (7)
C70.0158 (10)0.0246 (10)0.0245 (10)0.0012 (8)0.0056 (8)0.0012 (8)
C80.0189 (11)0.0180 (10)0.0270 (10)0.0039 (8)0.0030 (8)0.0035 (8)
C90.0144 (10)0.0169 (9)0.0222 (10)0.0002 (7)0.0009 (8)0.0010 (7)
C100.0182 (10)0.0163 (9)0.0190 (9)0.0006 (7)0.0017 (8)0.0003 (7)
C110.0196 (11)0.0159 (9)0.0224 (10)0.0010 (7)0.0038 (8)0.0009 (7)
C120.0152 (10)0.0221 (10)0.0248 (10)0.0020 (8)0.0038 (8)0.0008 (8)
C130.0208 (11)0.0205 (10)0.0282 (11)0.0011 (8)0.0045 (8)0.0022 (8)
C140.0212 (11)0.0296 (11)0.0239 (10)0.0007 (9)0.0035 (8)0.0036 (8)
C150.0151 (11)0.0296 (11)0.0301 (11)0.0011 (8)0.0022 (8)0.0031 (9)
C160.0151 (10)0.0226 (10)0.0336 (11)0.0003 (8)0.0035 (8)0.0014 (8)
C170.0205 (11)0.0236 (10)0.0266 (11)0.0016 (8)0.0058 (8)0.0043 (8)
C180.0320 (14)0.0355 (13)0.0325 (12)0.0057 (10)0.0036 (10)0.0063 (10)
C190.0160 (10)0.0147 (9)0.0235 (10)0.0002 (7)0.0068 (8)0.0028 (7)
C200.0225 (11)0.0212 (10)0.0228 (10)0.0027 (8)0.0046 (8)0.0006 (8)
C210.0212 (11)0.0280 (11)0.0277 (11)0.0056 (9)0.0058 (9)0.0086 (8)
C220.0267 (12)0.0169 (10)0.0399 (12)0.0061 (8)0.0152 (10)0.0061 (8)
C230.0274 (12)0.0169 (10)0.0386 (12)0.0010 (8)0.0127 (10)0.0058 (9)
C240.0199 (11)0.0197 (10)0.0277 (11)0.0021 (8)0.0047 (8)0.0026 (8)
C250.0269 (12)0.0178 (10)0.0237 (10)0.0034 (8)0.0044 (9)0.0038 (8)
C260.0241 (11)0.0126 (9)0.0238 (10)0.0023 (7)0.0032 (8)0.0059 (7)
C270.0287 (12)0.0176 (9)0.0271 (11)0.0024 (8)0.0006 (9)0.0027 (8)
C280.0189 (11)0.0301 (11)0.0331 (12)0.0022 (9)0.0011 (9)0.0079 (9)
C290.0248 (12)0.0253 (11)0.0342 (12)0.0049 (9)0.0099 (9)0.0075 (9)
C300.0280 (12)0.0173 (9)0.0264 (10)0.0005 (8)0.0057 (9)0.0021 (8)
C310.0193 (11)0.0158 (9)0.0282 (11)0.0005 (8)0.0015 (8)0.0038 (8)
C320.0210 (11)0.0261 (11)0.0307 (11)0.0041 (8)0.0080 (9)0.0006 (9)
Geometric parameters (Å, º) top
S1—O11.4303 (15)C14—H140.93
S1—O21.4332 (15)C15—C161.396 (3)
S1—N11.6424 (18)C15—C181.504 (3)
S1—C121.768 (2)C16—C171.383 (3)
O3—C61.374 (2)C16—H160.93
O3—C321.430 (2)C17—H170.93
N1—C11.488 (2)C18—H18A0.96
N1—C111.501 (2)C18—H18B0.96
N2—C91.417 (2)C18—H18C0.96
N2—C101.455 (2)C19—C241.391 (3)
N2—H1N20.88 (2)C19—C201.396 (3)
C1—C21.519 (3)C20—C211.388 (3)
C1—H1A0.97C20—H200.93
C1—H1B0.97C21—C221.390 (3)
C2—C101.516 (3)C21—H210.93
C2—C31.521 (3)C22—C231.379 (3)
C2—H20.98C22—H220.93
C3—C191.520 (3)C23—C241.394 (3)
C3—C41.532 (3)C23—H230.93
C3—H30.98C24—H240.93
C4—C51.393 (3)C25—C261.506 (3)
C4—C91.407 (3)C25—H25A0.97
C5—C61.396 (3)C25—H25B0.97
C5—H50.93C26—C271.391 (3)
C6—C71.392 (3)C26—C311.396 (3)
C7—C81.387 (3)C27—C281.392 (3)
C7—H70.93C27—H270.93
C8—C91.398 (3)C28—C291.383 (3)
C8—H80.93C28—H280.93
C10—C111.536 (3)C29—C301.387 (3)
C10—H100.98C29—H290.93
C11—C251.530 (3)C30—C311.387 (3)
C11—H110.98C30—H300.93
C12—C131.388 (3)C31—H310.93
C12—C171.392 (3)C32—H32A0.96
C13—C141.389 (3)C32—H32B0.96
C13—H130.93C32—H32C0.96
C14—C151.392 (3)
O1—S1—O2120.22 (9)C13—C14—C15121.46 (19)
O1—S1—N1106.58 (9)C13—C14—H14119.3
O2—S1—N1106.18 (9)C15—C14—H14119.3
O1—S1—C12107.76 (9)C14—C15—C16118.19 (19)
O2—S1—C12108.85 (9)C14—C15—C18121.25 (19)
N1—S1—C12106.47 (9)C16—C15—C18120.6 (2)
C6—O3—C32117.56 (15)C17—C16—C15121.27 (19)
C1—N1—C11109.76 (15)C17—C16—H16119.4
C1—N1—S1116.56 (13)C15—C16—H16119.4
C11—N1—S1118.58 (13)C16—C17—C12119.42 (19)
C9—N2—C10113.85 (15)C16—C17—H17120.3
C9—N2—H1N2115.6 (15)C12—C17—H17120.3
C10—N2—H1N2113.5 (15)C15—C18—H18A109.5
N1—C1—C2102.50 (15)C15—C18—H18B109.5
N1—C1—H1A111.3H18A—C18—H18B109.5
C2—C1—H1A111.3C15—C18—H18C109.5
N1—C1—H1B111.3H18A—C18—H18C109.5
C2—C1—H1B111.3H18B—C18—H18C109.5
H1A—C1—H1B109.2C24—C19—C20118.32 (18)
C10—C2—C1101.27 (15)C24—C19—C3120.00 (18)
C10—C2—C3111.56 (16)C20—C19—C3121.65 (17)
C1—C2—C3117.70 (15)C21—C20—C19120.63 (19)
C10—C2—H2108.6C21—C20—H20119.7
C1—C2—H2108.6C19—C20—H20119.7
C3—C2—H2108.6C20—C21—C22120.5 (2)
C19—C3—C2111.18 (16)C20—C21—H21119.7
C19—C3—C4114.85 (15)C22—C21—H21119.7
C2—C3—C4108.65 (15)C23—C22—C21119.24 (19)
C19—C3—H3107.3C23—C22—H22120.4
C2—C3—H3107.3C21—C22—H22120.4
C4—C3—H3107.3C22—C23—C24120.41 (19)
C5—C4—C9118.88 (18)C22—C23—H23119.8
C5—C4—C3119.10 (16)C24—C23—H23119.8
C9—C4—C3121.99 (17)C19—C24—C23120.9 (2)
C4—C5—C6121.94 (17)C19—C24—H24119.6
C4—C5—H5119.0C23—C24—H24119.6
C6—C5—H5119.0C26—C25—C11112.71 (16)
O3—C6—C7124.94 (18)C26—C25—H25A109.1
O3—C6—C5115.99 (17)C11—C25—H25A109.1
C7—C6—C5119.07 (18)C26—C25—H25B109.1
C8—C7—C6119.42 (18)C11—C25—H25B109.1
C8—C7—H7120.3H25A—C25—H25B107.8
C6—C7—H7120.3C27—C26—C31118.40 (19)
C7—C8—C9122.02 (18)C27—C26—C25121.28 (19)
C7—C8—H8119.0C31—C26—C25120.32 (19)
C9—C8—H8119.0C26—C27—C28121.0 (2)
C8—C9—C4118.68 (17)C26—C27—H27119.5
C8—C9—N2119.44 (17)C28—C27—H27119.5
C4—C9—N2121.81 (17)C29—C28—C27119.9 (2)
N2—C10—C2108.76 (15)C29—C28—H28120.0
N2—C10—C11115.32 (16)C27—C28—H28120.0
C2—C10—C11103.43 (16)C28—C29—C30119.7 (2)
N2—C10—H10109.7C28—C29—H29120.1
C2—C10—H10109.7C30—C29—H29120.1
C11—C10—H10109.7C31—C30—C29120.2 (2)
N1—C11—C25108.76 (15)C31—C30—H30119.9
N1—C11—C10102.71 (14)C29—C30—H30119.9
C25—C11—C10114.82 (17)C30—C31—C26120.7 (2)
N1—C11—H11110.1C30—C31—H31119.7
C25—C11—H11110.1C26—C31—H31119.7
C10—C11—H11110.1O3—C32—H32A109.5
C13—C12—C17120.53 (19)O3—C32—H32B109.5
C13—C12—S1119.93 (16)H32A—C32—H32B109.5
C17—C12—S1119.33 (15)O3—C32—H32C109.5
C12—C13—C14119.12 (19)H32A—C32—H32C109.5
C12—C13—H13120.4H32B—C32—H32C109.5
C14—C13—H13120.4
O1—S1—N1—C161.38 (15)N2—C10—C11—N1148.55 (16)
O2—S1—N1—C1169.33 (13)C2—C10—C11—N129.94 (19)
C12—S1—N1—C153.44 (16)N2—C10—C11—C2593.6 (2)
O1—S1—N1—C11163.96 (13)C2—C10—C11—C25147.81 (16)
O2—S1—N1—C1134.67 (16)O1—S1—C12—C13158.49 (16)
C12—S1—N1—C1181.22 (15)O2—S1—C12—C1326.59 (19)
C11—N1—C1—C223.1 (2)N1—S1—C12—C1387.49 (18)
S1—N1—C1—C2115.35 (15)O1—S1—C12—C1726.68 (19)
N1—C1—C2—C1040.98 (18)O2—S1—C12—C17158.58 (16)
N1—C1—C2—C3162.85 (16)N1—S1—C12—C1787.34 (18)
C10—C2—C3—C19173.02 (15)C17—C12—C13—C140.4 (3)
C1—C2—C3—C1970.6 (2)S1—C12—C13—C14174.34 (16)
C10—C2—C3—C445.7 (2)C12—C13—C14—C150.8 (3)
C1—C2—C3—C4162.10 (16)C13—C14—C15—C161.2 (3)
C19—C3—C4—C540.9 (2)C13—C14—C15—C18179.1 (2)
C2—C3—C4—C5166.12 (17)C14—C15—C16—C170.4 (3)
C19—C3—C4—C9141.09 (18)C18—C15—C16—C17179.9 (2)
C2—C3—C4—C915.9 (2)C15—C16—C17—C120.8 (3)
C9—C4—C5—C60.4 (3)C13—C12—C17—C161.2 (3)
C3—C4—C5—C6178.46 (18)S1—C12—C17—C16173.61 (16)
C32—O3—C6—C70.6 (3)C2—C3—C19—C24118.83 (19)
C32—O3—C6—C5179.61 (18)C4—C3—C19—C24117.29 (19)
C4—C5—C6—O3179.17 (17)C2—C3—C19—C2059.2 (2)
C4—C5—C6—C70.1 (3)C4—C3—C19—C2064.7 (2)
O3—C6—C7—C8179.58 (19)C24—C19—C20—C210.0 (3)
C5—C6—C7—C80.6 (3)C3—C19—C20—C21178.04 (18)
C6—C7—C8—C90.6 (3)C19—C20—C21—C220.5 (3)
C7—C8—C9—C40.1 (3)C20—C21—C22—C231.0 (3)
C7—C8—C9—N2177.01 (19)C21—C22—C23—C241.0 (3)
C5—C4—C9—C80.4 (3)C20—C19—C24—C230.0 (3)
C3—C4—C9—C8178.37 (17)C3—C19—C24—C23178.09 (18)
C5—C4—C9—N2177.43 (18)C22—C23—C24—C190.5 (3)
C3—C4—C9—N24.6 (3)N1—C11—C25—C26174.16 (16)
C10—N2—C9—C8159.30 (18)C10—C11—C25—C2659.8 (2)
C10—N2—C9—C423.6 (3)C11—C25—C26—C27102.6 (2)
C9—N2—C10—C253.1 (2)C11—C25—C26—C3177.6 (2)
C9—N2—C10—C11168.66 (16)C31—C26—C27—C282.0 (3)
C1—C2—C10—N2167.42 (15)C25—C26—C27—C28177.81 (18)
C3—C2—C10—N266.5 (2)C26—C27—C28—C291.1 (3)
C1—C2—C10—C1144.36 (18)C27—C28—C29—C300.8 (3)
C3—C2—C10—C11170.41 (15)C28—C29—C30—C311.6 (3)
C1—N1—C11—C25126.22 (17)C29—C30—C31—C260.5 (3)
S1—N1—C11—C2596.32 (18)C27—C26—C31—C301.2 (3)
C1—N1—C11—C104.1 (2)C25—C26—C31—C30178.62 (18)
S1—N1—C11—C10141.61 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30···O3i0.932.533.196 (3)128
C24—H24···Cg1ii0.932.563.476 (2)169
N2—H1N2···Cg20.88 (2)3.063.837 (2)147
Symmetry codes: (i) x, y+1, z; (ii) x, y3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC32H32N2O3S
Mr524.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)21.5063 (9), 11.6188 (5), 10.7616 (4)
β (°) 98.219 (2)
V3)2661.46 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.32 × 0.30 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.636, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
28181, 6088, 4661
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.155, 1.02
No. of reflections6088
No. of parameters349
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.54

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30···O3i0.932.533.196 (3)128
C24—H24···Cg1ii0.932.563.476 (2)169
N2—H1N2···Cg20.88 (2)3.063.837 (2)147
Symmetry codes: (i) x, y+1, z; (ii) x, y3/2, z1/2.
 

Footnotes

Working at: Department of Physics, R. M. K. Engineering Collge, R. S. M. Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

§Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationFerlin, M. G., Gatto, B., Chiarelotto, G. & Palumbo, M. (2001). Bioorg. Med. Chem. 9, 1843–1848.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRyu, C. K., Lee, J. Y., Jeong, S. H. & Nho, J. H. (2009). Bioorg. Med. Chem. Lett. 19, 146–148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914–o4915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008a). Acta Cryst. E64, o134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2008b). Acta Cryst. E64, o425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsuji, K., Tsubouchi, H. & Ishikawa, H. (1995). Chem. Pharm. Bull. (Tokyo), 43, 1678–1682.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds