organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-1,3-bis­­(4-chloro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 15 June 2009; accepted 21 September 2009; online 3 October 2009)

In the title compound, C15H9BrCl2O, the two benzene rings are twisted from each other with a dihedral angle of 47.33 (8)°. The crystal structure is stabilized by aromatic ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.680 (2) Å], and by weak inter­molecular C—H⋯O and C—H⋯Cl inter­actions. Additionally, the crystal structure exhibits a short intra­molecular C—H⋯Br contact (H⋯Br = 2.69 Å).

Related literature

For background on chalcones as possible nonlinear optical materials, see: Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.]). For related structures with the same backbone and different substituents on the aromatic rings, see: Butcher et al. (2006[Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1659-o1661.], 2007[Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4308-o4309.]); Dhanasekaran et al. (2007a[Dhanasekaran, V., Gayathri, D., Velmurugan, D., Ravikumar, K. & Karthikeyan, M. S. (2007a). Acta Cryst. E63, o2060-o2061.],b[Dhanasekaran, V., Gayathri, D., Velmurugan, D., Ravikumar, K. & Karthikeyan, M. S. (2007b). Acta Cryst. E63, o2309-o2310.]); Fun et al. (2008[Fun, H.-K., Jebas, S. R., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1559.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9BrCl2O

  • Mr = 356.03

  • Monoclinic, P 21

  • a = 7.7416 (3) Å

  • b = 9.7981 (4) Å

  • c = 9.6717 (3) Å

  • β = 109.075 (2)°

  • V = 693.34 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.34 mm−1

  • T = 120 K

  • 0.18 × 0.16 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.585, Tmax = 0.824

  • 12526 measured reflections

  • 3129 independent reflections

  • 2873 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.079

  • S = 1.04

  • 3129 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1434 Friedel pairs

  • Flack parameter: 0.044 (9)

Table 1
Selected torsion angles (°)

C6—C7—C8—C9 32.6 (5)
O1—C7—C8—Br1 31.2 (5)
C7—C8—C9—C10 174.4 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.47 3.411 (5) 171
C11—H11⋯Cl1ii 0.95 2.81 3.619 (4) 143
C15—H15⋯Br1 0.95 2.69 3.377 (4) 129
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SCALEPACK and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing investigations of chalcone derivatives as possible non-linear optical materials (Harrison et al., 2006), we now report the synthesis and structure of the noncentrosymmetric title compound, (I), (Fig 1.).

The molecule adopts a twisted conformation with the dihedral angle between ring A (C1-C6) and ring B (C10-C15) being 47.33 (8)°. Some of the atoms bonded to the benzene rings deviate significantly from their attached ring planes: Cl1 and C7 deviate by 0.106 (5) and 0.140 (6)Å respectively from the mean plane of C1-C6 and Cl2 and C9 deviate by 0.028 (5) and 0.063 (6)Å from the mean plane of C10-C15. The dihedral angles between atoms C7/C8/C9 and ring planes A and B are 55.9 (2) and 20.1 (3)°, respectively. The strongly twisted conformation (Table 1) may arise, in part, to relieve the short intramolecular H1···H9 contact of 2.35 Å. A short intramolecular C–H···Br contact occurs (Table 1).

The crystal packing for (I) is influenced by weak intermolecular C–H···O and C–H···Cl interactions (Table 2), resulting in a noncentrosymmetric structure. The C–H···O links lead to chains propagating in [010], which appear to be reinforced by aromatic ππ stacking between the A and B rings [centroid-centroid separation = 3.680 (2) Å; inter-plane angle = 10.82 (19)°]. The weaker C–H···Cl interaction also generates [010] chains and together, the non-classical bonds lead to (100) sheets.

Related literature top

For background on chalcones as possible nonlinear optical materials, see: Harrison et al. (2006). For related structures with the same backbone and different substituents on the aromatic rings, see: Butcher et al. (2006, 2007); Dhanasekaran et al. (2007a,b); Fun et al. (2008).

Experimental top

2,3-Dibromo-1,3-[bis(4-chlorophenyl)]-2-propan-1-one (4.32 g, 0.01 mol) was mixed with triethylamine (5 ml, 0.05 mol) in toluene (100 ml). The mixture was stirred well for 24 hrs and the precipitated ethylenehydrobromide was filtered off and the solvent was removed under reduced pressure. The resulting solid mass obtained on cooling was collected by filtration. The compound was dried and recrystallized four times with ethanol to yield colourless blocks of (I). Yield: 60%; m. p.: 325-328 K; analysis for C15H9BrCl2O: found (calculated): C: 18.01 (18.02); H: 9.15 (9.07).

Refinement top

The H atoms were placed in calculated positions (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The highest difference peak is 0.96Å from O1.

Structure description top

As part of our ongoing investigations of chalcone derivatives as possible non-linear optical materials (Harrison et al., 2006), we now report the synthesis and structure of the noncentrosymmetric title compound, (I), (Fig 1.).

The molecule adopts a twisted conformation with the dihedral angle between ring A (C1-C6) and ring B (C10-C15) being 47.33 (8)°. Some of the atoms bonded to the benzene rings deviate significantly from their attached ring planes: Cl1 and C7 deviate by 0.106 (5) and 0.140 (6)Å respectively from the mean plane of C1-C6 and Cl2 and C9 deviate by 0.028 (5) and 0.063 (6)Å from the mean plane of C10-C15. The dihedral angles between atoms C7/C8/C9 and ring planes A and B are 55.9 (2) and 20.1 (3)°, respectively. The strongly twisted conformation (Table 1) may arise, in part, to relieve the short intramolecular H1···H9 contact of 2.35 Å. A short intramolecular C–H···Br contact occurs (Table 1).

The crystal packing for (I) is influenced by weak intermolecular C–H···O and C–H···Cl interactions (Table 2), resulting in a noncentrosymmetric structure. The C–H···O links lead to chains propagating in [010], which appear to be reinforced by aromatic ππ stacking between the A and B rings [centroid-centroid separation = 3.680 (2) Å; inter-plane angle = 10.82 (19)°]. The weaker C–H···Cl interaction also generates [010] chains and together, the non-classical bonds lead to (100) sheets.

For background on chalcones as possible nonlinear optical materials, see: Harrison et al. (2006). For related structures with the same backbone and different substituents on the aromatic rings, see: Butcher et al. (2006, 2007); Dhanasekaran et al. (2007a,b); Fun et al. (2008).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids. The H atoms are drawn as spheres of arbitrary radius.
2-Bromo-1,3-bis(4-chlorophenyl)prop-2-en-1-one top
Crystal data top
C15H9BrCl2OF(000) = 352
Mr = 356.03Dx = 1.705 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 13953 reflections
a = 7.7416 (3) Åθ = 2.9–27.5°
b = 9.7981 (4) ŵ = 3.34 mm1
c = 9.6717 (3) ÅT = 120 K
β = 109.075 (2)°Block, colourless
V = 693.34 (5) Å30.18 × 0.16 × 0.06 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3129 independent reflections
Radiation source: fine-focus sealed tube2873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
k = 1212
Tmin = 0.585, Tmax = 0.824l = 1212
12526 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.5496P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3129 reflectionsΔρmax = 1.20 e Å3
172 parametersΔρmin = 0.46 e Å3
1 restraintAbsolute structure: Flack (1983), 1434 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.044 (9)
Crystal data top
C15H9BrCl2OV = 693.34 (5) Å3
Mr = 356.03Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.7416 (3) ŵ = 3.34 mm1
b = 9.7981 (4) ÅT = 120 K
c = 9.6717 (3) Å0.18 × 0.16 × 0.06 mm
β = 109.075 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3129 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2873 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.824Rint = 0.040
12526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.079Δρmax = 1.20 e Å3
S = 1.04Δρmin = 0.46 e Å3
3129 reflectionsAbsolute structure: Flack (1983), 1434 Friedel pairs
172 parametersAbsolute structure parameter: 0.044 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5669 (5)0.6271 (3)0.7407 (4)0.0255 (8)
H10.57610.56210.67060.031*
C20.6586 (5)0.6046 (4)0.8887 (4)0.0266 (8)
H20.72960.52450.92060.032*
C30.6438 (4)0.7025 (4)0.9891 (3)0.0241 (6)
C40.5385 (5)0.8181 (4)0.9458 (4)0.0288 (8)
H40.52830.88251.01600.035*
C50.4479 (5)0.8387 (4)0.7982 (4)0.0292 (8)
H50.37530.91820.76700.035*
C60.4622 (5)0.7436 (3)0.6945 (4)0.0250 (8)
C70.3742 (5)0.7800 (4)0.5351 (4)0.0277 (8)
C80.3109 (5)0.6665 (4)0.4271 (4)0.0271 (8)
C90.2468 (5)0.5475 (4)0.4610 (4)0.0252 (8)
H90.25750.54160.56150.030*
C100.1645 (5)0.4256 (4)0.3785 (4)0.0237 (7)
C110.1567 (5)0.3124 (4)0.4629 (4)0.0304 (8)
H110.20570.31880.56650.037*
C120.0786 (5)0.1897 (4)0.3994 (4)0.0341 (9)
H120.07740.11190.45780.041*
C130.0028 (5)0.1849 (4)0.2478 (4)0.0303 (8)
C140.0093 (5)0.2951 (4)0.1604 (4)0.0316 (9)
H140.04270.28900.05700.038*
C150.0928 (5)0.4146 (4)0.2258 (4)0.0276 (8)
H150.10160.48990.16650.033*
O10.3501 (5)0.8986 (3)0.4961 (3)0.0440 (8)
Cl10.76953 (13)0.67976 (9)1.17307 (9)0.0352 (2)
Cl20.10057 (15)0.03386 (11)0.16691 (12)0.0460 (3)
Br10.31668 (5)0.71253 (4)0.23765 (4)0.03793 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (19)0.0179 (17)0.0270 (17)0.0089 (15)0.0120 (15)0.0038 (14)
C20.0268 (18)0.0234 (18)0.0321 (19)0.0006 (15)0.0130 (15)0.0016 (15)
C30.0265 (15)0.0222 (16)0.0272 (14)0.0041 (17)0.0138 (12)0.0040 (17)
C40.0303 (19)0.0246 (18)0.037 (2)0.0052 (16)0.0185 (16)0.0088 (16)
C50.0298 (19)0.0202 (18)0.040 (2)0.0016 (15)0.0142 (17)0.0070 (16)
C60.0219 (16)0.023 (2)0.0308 (17)0.0049 (13)0.0095 (13)0.0000 (14)
C70.0249 (18)0.0258 (19)0.0325 (19)0.0014 (15)0.0094 (15)0.0036 (16)
C80.0251 (17)0.031 (2)0.0248 (17)0.0008 (14)0.0068 (14)0.0095 (14)
C90.0223 (17)0.0268 (19)0.0232 (16)0.0026 (15)0.0028 (14)0.0031 (15)
C100.0208 (16)0.0231 (18)0.0252 (17)0.0012 (14)0.0049 (14)0.0020 (14)
C110.038 (2)0.031 (2)0.0240 (17)0.0122 (17)0.0122 (16)0.0030 (16)
C120.041 (2)0.033 (2)0.0329 (17)0.0120 (19)0.0179 (16)0.0028 (18)
C130.0268 (17)0.034 (2)0.0318 (16)0.0077 (16)0.0124 (14)0.0120 (17)
C140.0270 (19)0.038 (2)0.0254 (18)0.0029 (16)0.0022 (15)0.0114 (17)
C150.0248 (18)0.0290 (19)0.0282 (18)0.0011 (15)0.0077 (15)0.0005 (16)
O10.075 (2)0.0152 (13)0.0357 (15)0.0042 (14)0.0097 (15)0.0106 (12)
Cl10.0448 (5)0.0336 (6)0.0279 (4)0.0016 (4)0.0131 (4)0.0049 (4)
Cl20.0468 (6)0.0417 (6)0.0522 (6)0.0183 (5)0.0199 (5)0.0197 (5)
Br10.0425 (2)0.0432 (2)0.02831 (17)0.0063 (2)0.01189 (14)0.01032 (19)
Geometric parameters (Å, º) top
C1—C61.387 (5)C8—Br11.902 (3)
C1—C21.392 (5)C9—C101.462 (5)
C1—H10.9500C9—H90.9500
C2—C31.397 (5)C10—C111.391 (5)
C2—H20.9500C10—C151.402 (5)
C3—C41.378 (5)C11—C121.395 (5)
C3—Cl11.741 (3)C11—H110.9500
C4—C51.384 (5)C12—C131.391 (5)
C4—H40.9500C12—H120.9500
C5—C61.399 (5)C13—C141.382 (6)
C5—H50.9500C13—Cl21.742 (4)
C6—C71.510 (5)C14—C151.387 (6)
C7—O11.217 (5)C14—H140.9500
C7—C81.495 (5)C15—H150.9500
C8—C91.349 (5)
C6—C1—C2120.6 (3)C7—C8—Br1113.0 (2)
C6—C1—H1119.7C8—C9—C10134.7 (3)
C2—C1—H1119.7C8—C9—H9112.7
C1—C2—C3118.4 (3)C10—C9—H9112.7
C1—C2—H2120.8C11—C10—C15118.7 (3)
C3—C2—H2120.8C11—C10—C9115.2 (3)
C4—C3—C2121.8 (3)C15—C10—C9126.1 (3)
C4—C3—Cl1119.6 (3)C10—C11—C12121.6 (3)
C2—C3—Cl1118.5 (3)C10—C11—H11119.2
C3—C4—C5119.0 (3)C12—C11—H11119.2
C3—C4—H4120.5C13—C12—C11117.8 (4)
C5—C4—H4120.5C13—C12—H12121.1
C4—C5—C6120.6 (3)C11—C12—H12121.1
C4—C5—H5119.7C14—C13—C12122.1 (4)
C6—C5—H5119.7C14—C13—Cl2119.5 (3)
C1—C6—C5119.5 (3)C12—C13—Cl2118.4 (3)
C1—C6—C7123.0 (3)C13—C14—C15119.1 (3)
C5—C6—C7117.3 (3)C13—C14—H14120.5
O1—C7—C8120.8 (3)C15—C14—H14120.5
O1—C7—C6121.0 (3)C14—C15—C10120.7 (4)
C8—C7—C6118.2 (3)C14—C15—H15119.7
C9—C8—C7122.4 (3)C10—C15—H15119.7
C9—C8—Br1124.4 (3)
C6—C1—C2—C30.6 (5)O1—C7—C8—Br131.2 (5)
C1—C2—C3—C41.4 (5)C6—C7—C8—Br1151.1 (3)
C1—C2—C3—Cl1176.1 (3)C7—C8—C9—C10174.4 (4)
C2—C3—C4—C51.3 (5)Br1—C8—C9—C101.5 (6)
Cl1—C3—C4—C5176.2 (3)C8—C9—C10—C11165.5 (4)
C3—C4—C5—C60.2 (5)C8—C9—C10—C1515.5 (7)
C2—C1—C6—C50.4 (5)C15—C10—C11—C120.4 (6)
C2—C1—C6—C7174.1 (3)C9—C10—C11—C12178.7 (3)
C4—C5—C6—C10.6 (5)C10—C11—C12—C132.0 (6)
C4—C5—C6—C7174.3 (3)C11—C12—C13—C142.5 (5)
C1—C6—C7—O1149.5 (4)C11—C12—C13—Cl2178.3 (3)
C5—C6—C7—O125.2 (5)C12—C13—C14—C150.5 (5)
C1—C6—C7—C832.8 (5)Cl2—C13—C14—C15179.6 (3)
C5—C6—C7—C8152.5 (3)C13—C14—C15—C102.1 (5)
O1—C7—C8—C9145.1 (4)C11—C10—C15—C142.5 (5)
C6—C7—C8—C932.6 (5)C9—C10—C15—C14176.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.473.411 (5)171
C11—H11···Cl1ii0.952.813.619 (4)143
C15—H15···Br10.952.693.377 (4)129
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC15H9BrCl2O
Mr356.03
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)7.7416 (3), 9.7981 (4), 9.6717 (3)
β (°) 109.075 (2)
V3)693.34 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.34
Crystal size (mm)0.18 × 0.16 × 0.06
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.585, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
12526, 3129, 2873
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.079, 1.04
No. of reflections3129
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.46
Absolute structureFlack (1983), 1434 Friedel pairs
Absolute structure parameter0.044 (9)

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected torsion angles (º) top
C6—C7—C8—C932.6 (5)C7—C8—C9—C10174.4 (4)
O1—C7—C8—Br131.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.473.411 (5)171
C11—H11···Cl1ii0.952.813.619 (4)143
C15—H15···Br10.952.693.377 (4)129
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y1/2, z+2.
 

Acknowledgements

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4308–o4309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1659–o1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhanasekaran, V., Gayathri, D., Velmurugan, D., Ravikumar, K. & Karthikeyan, M. S. (2007a). Acta Cryst. E63, o2060–o2061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhanasekaran, V., Gayathri, D., Velmurugan, D., Ravikumar, K. & Karthikeyan, M. S. (2007b). Acta Cryst. E63, o2309–o2310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1559.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578–o1579.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds