metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­[μ2-2-(1H-1,2,4-triazol-1-yl)acetato]zinc(II)]

aCollege of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China, and bDepartment of Quality Examination and Management, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou, Henan 450011, People's Republic of China
*Correspondence e-mail: toxielix@163.com

(Received 13 July 2009; accepted 1 October 2009; online 7 October 2009)

In the title compound, [Zn(C4H4N3O2)2]n, the ZnII atom is coordinated by two O atoms [Zn—O = 1.969 (2) and 1.997 (2) Å] and two N atoms [Zn—N = 2.046 (2) and 2.001 (2) Å] in a distorted tetra­hedral geometry. Non-classical inter­molecular C—H⋯O hydrogen bonds link the complex into a three-dimensional supra­molecular framework.

Related literature

For related structures, see: Dixon et al. (2000[Dixon, F. M., Eisenberg, A. H., Farrell, J. R., Mirkin, C. A., Liable-Sands, L. M. & Rheingold, A. L. (2000). Inorg. Chem. 39, 3432-3433.]); Fujita et al. (1998[Fujita, M., Aoyagi, M., Ibukuro, F., Ogura, K. & Yamaguchi, K. (1998). J. Am. Chem. Soc. 120, 611-612.]); Ouellette et al. (2006[Ouellette, W., Prosvirin, A. V., Chieffo, V., Dunbar, K. R., Hudson, B. & Zubieta, J. (2006). Inorg. Chem. 45, 9346-9366.]); Xie et al. (2009[Xie, L. X., Ning, A. M. & Li, X. (2009). J. Coord. Chem. 62, 1604-1612.]); Zhou et al. (2009[Zhou, X. Y., Huang, Y. Q. & Sun, W. L. (2009). Inorg. Chim. Acta, 362, 1399-1404.]). For the preparation of 2-(1H-1,2,4-triazol-1-yl)acetic acid, see: Zaderenko et al. (1994[Zaderenko, P., Gil, M. S., Ballesteros, P. & Cerdan, S. (1994). J. Org. Chem. 59 6268-6273.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H4N3O2)2]

  • Mr = 317.57

  • Monoclinic, P 21 /c

  • a = 8.791 (1) Å

  • b = 13.514 (2) Å

  • c = 10.006 (1) Å

  • β = 99.458 (1)°

  • V = 1172.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.12 mm−1

  • T = 293 K

  • 0.38 × 0.20 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.609, Tmax = 0.792

  • 8509 measured reflections

  • 2286 independent reflections

  • 1956 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.04

  • 2286 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.93 2.62 3.212 (3) 122
C5—H5⋯O1ii 0.93 2.46 3.265 (3) 145
C7—H7A⋯O4iii 0.97 2.60 3.165 (3) 118
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The triazoles are members of the polyazaheteroaromatic class of compounds such as pyrazole, imidazole, and tetrazole, which are significant for their technological applications and for their widespread use as bridging ligands. (Ouellette et al., 2006). Triazole derivatives have been studied as anti-inflammatory drug candidates and also been used as ligands for binding Pt and Ru to form antitumor metal complexes. A system takes advantage of the multifunction of the carboxylate and triazolyl group to develop the complexes (Xie et al., 2009; Zhou et al., 2009).

Here we report the crystal structure of the title compound (Fig. 1). Each zincII atom is four-coordinated by two nitrogen atoms (N3 and N6) and two oxygen atoms (O1 and O3) from four distinct ligands, and the coordination bond lengths of Zn–N and Zn–O are 2.046 (2), 2.001 (2) Å and 1.969 (2), 1.997 (2) Å, respectively. The coordination geometry around ZnII could be described as a distorted tetrahedral configuration because the O–Zn–N coordination angles are in the range from 98.54 (6)° to 124.72 (7)° . The fully deprotonated ligand establishes a physical bridge between Zn atoms. Four ZnII centers are linked together by four ligands through triazole N-donors and carboxylate O-donors into a 28-membered box macrocycle. This cavity, however, is arguably not a rectangular box(Dixon et al., 2000; Fujita et al., 1998), because not all the sides are truly face-to-face parallel. Taking advantage of these twists in ligands, the approximate dimensions of the rectangles are 8.5644 (9) * 8.0680 (9) Å, measured by the distance between the Zn···Zn i separations (symmetry code (i): - x + 2, y - 1/2, - z + 1/2), and Zn···Znii separations (symmetry code (ii): - x + 1, y + 1/2, - z + 1/2). Thus the macrocycle unit is interconnected to yield a two-dimensional sheet along ab plane(Fig. 2). Molecules are linked by non-classical intermolecular C–H···O hydrogen bonds (Table 1 and Fig. 3).

Related literature top

For related structures, see: Dixon et al. (2000); Fujita et al. (1998); Ouellette et al. (2006); Xie et al. (2009); Zhou et al. (2009). For the preparation of 2-(1H-1,2,4-triazol-1-yl)acetic acid, see: Zaderenko et al. (1994).

Experimental top

The ligand 2-(1H-1,2,4-triazol-1-yl)acetic acid was prepared by the literature method (Zaderenko et al., 1994). A solution of 2-(1H-1,2,4-triazol-1-yl)acetic acid (0.1 mmol), Zn(NO3)2.6H2O (0.1 mmol) and NaOH (0.1 mmol) in 30 ml ethanol was refluxed for 2 h, and then cooled to room temperature and filtered. After ten days, colourless single crystals suitable for X-ray analysis were obtained. Anal. Calcd(%) for C8H8ZnN6O4: C, 30.26; H, 2.54; N, 26.46. Found: C, 30.22; H, 2.60; N, 26.50.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for the triazole and 0.97 Å for the methylene H atoms. Uiso(H) = 1.2Ueq(C) for the triazole and the methylene H atoms.

Structure description top

The triazoles are members of the polyazaheteroaromatic class of compounds such as pyrazole, imidazole, and tetrazole, which are significant for their technological applications and for their widespread use as bridging ligands. (Ouellette et al., 2006). Triazole derivatives have been studied as anti-inflammatory drug candidates and also been used as ligands for binding Pt and Ru to form antitumor metal complexes. A system takes advantage of the multifunction of the carboxylate and triazolyl group to develop the complexes (Xie et al., 2009; Zhou et al., 2009).

Here we report the crystal structure of the title compound (Fig. 1). Each zincII atom is four-coordinated by two nitrogen atoms (N3 and N6) and two oxygen atoms (O1 and O3) from four distinct ligands, and the coordination bond lengths of Zn–N and Zn–O are 2.046 (2), 2.001 (2) Å and 1.969 (2), 1.997 (2) Å, respectively. The coordination geometry around ZnII could be described as a distorted tetrahedral configuration because the O–Zn–N coordination angles are in the range from 98.54 (6)° to 124.72 (7)° . The fully deprotonated ligand establishes a physical bridge between Zn atoms. Four ZnII centers are linked together by four ligands through triazole N-donors and carboxylate O-donors into a 28-membered box macrocycle. This cavity, however, is arguably not a rectangular box(Dixon et al., 2000; Fujita et al., 1998), because not all the sides are truly face-to-face parallel. Taking advantage of these twists in ligands, the approximate dimensions of the rectangles are 8.5644 (9) * 8.0680 (9) Å, measured by the distance between the Zn···Zn i separations (symmetry code (i): - x + 2, y - 1/2, - z + 1/2), and Zn···Znii separations (symmetry code (ii): - x + 1, y + 1/2, - z + 1/2). Thus the macrocycle unit is interconnected to yield a two-dimensional sheet along ab plane(Fig. 2). Molecules are linked by non-classical intermolecular C–H···O hydrogen bonds (Table 1 and Fig. 3).

For related structures, see: Dixon et al. (2000); Fujita et al. (1998); Ouellette et al. (2006); Xie et al. (2009); Zhou et al. (2009). For the preparation of 2-(1H-1,2,4-triazol-1-yl)acetic acid, see: Zaderenko et al. (1994).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering [symmetry codes: (i) - x + 2, y - 1/2, - z + 1/2; (ii) - x + 1, y + 1/2, - z + 1/2.]
[Figure 2] Fig. 2. Two-dimensional polymeric structure of the title compound.
[Figure 3] Fig. 3. C–H···O hydrogen bonds (dotted lines) in the title compound. [symmetry codes: (i) - x + 1, y + 1/2, - z + 1/2; (ii) x - 1, - y + 1/2, z - 1/2; (iii) x, - y - 1/2, z + 1/2; (iv) x + 1, - y + 1/2, z + 1/2; (v) - x + 1, y - 1/2, - z + 1/2; (vi) x, - y - 1/2, z - 1/2.]
Poly[bis[µ2-2-(1H-1,2,4-triazol-1-yl)acetato]zinc(II)] top
Crystal data top
[Zn(C4H4N3O2)2]F(000) = 640
Mr = 317.57Dx = 1.799 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3281 reflections
a = 8.791 (1) Åθ = 2.6–26.5°
b = 13.514 (2) ŵ = 2.12 mm1
c = 10.006 (1) ÅT = 293 K
β = 99.458 (1)°Block, colorless
V = 1172.6 (2) Å30.38 × 0.20 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2286 independent reflections
Radiation source: fine-focus sealed tube1956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.609, Tmax = 0.792k = 1616
8509 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.057H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.7046P]
where P = (Fo2 + 2Fc2)/3
2286 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Zn(C4H4N3O2)2]V = 1172.6 (2) Å3
Mr = 317.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.791 (1) ŵ = 2.12 mm1
b = 13.514 (2) ÅT = 293 K
c = 10.006 (1) Å0.38 × 0.20 × 0.11 mm
β = 99.458 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2286 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1956 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.792Rint = 0.022
8509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
2286 reflectionsΔρmin = 0.29 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.70429 (3)0.049976 (17)0.14839 (2)0.02917 (9)
O11.19552 (19)0.45868 (11)0.46359 (16)0.0407 (4)
O21.1138 (2)0.37002 (13)0.27788 (17)0.0499 (5)
O30.3598 (2)0.34549 (11)0.49053 (16)0.0418 (4)
O40.4781 (2)0.29890 (13)0.32459 (18)0.0585 (5)
N10.9991 (2)0.22447 (13)0.41958 (18)0.0335 (4)
N21.0940 (2)0.14488 (15)0.4250 (2)0.0470 (5)
N30.8718 (2)0.11702 (12)0.28465 (18)0.0321 (4)
N40.4890 (2)0.10956 (12)0.41086 (17)0.0306 (4)
N50.3571 (2)0.06552 (14)0.3463 (2)0.0416 (5)
N60.5619 (2)0.01888 (12)0.25474 (17)0.0294 (4)
C11.0113 (3)0.08183 (18)0.3430 (2)0.0429 (6)
H11.04560.01860.32660.052*
C20.8698 (3)0.20781 (16)0.3354 (2)0.0344 (5)
H20.78930.25280.31470.041*
C31.0519 (3)0.31596 (17)0.4896 (2)0.0401 (6)
H3A1.12550.30030.57010.048*
H3B0.96490.34920.51810.048*
C41.1271 (2)0.38505 (16)0.3997 (2)0.0333 (5)
C50.4076 (3)0.01127 (17)0.2543 (2)0.0369 (5)
H50.34350.02890.19400.044*
C60.6078 (3)0.08246 (16)0.3545 (2)0.0320 (5)
H60.70850.10450.38050.038*
C70.4817 (3)0.18783 (16)0.5093 (2)0.0370 (5)
H7A0.40550.17140.56560.044*
H7B0.58100.19450.56740.044*
C80.4383 (3)0.28544 (16)0.4351 (2)0.0333 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.03301 (15)0.02428 (14)0.02973 (14)0.00137 (10)0.00366 (10)0.00331 (10)
O10.0491 (10)0.0311 (9)0.0414 (9)0.0133 (7)0.0059 (8)0.0041 (7)
O20.0666 (12)0.0483 (11)0.0364 (10)0.0205 (9)0.0128 (8)0.0035 (8)
O30.0579 (11)0.0291 (8)0.0379 (9)0.0138 (8)0.0059 (8)0.0029 (7)
O40.0943 (15)0.0394 (10)0.0484 (11)0.0108 (10)0.0309 (11)0.0129 (8)
N10.0381 (11)0.0292 (10)0.0333 (10)0.0092 (8)0.0060 (8)0.0011 (8)
N20.0451 (13)0.0363 (11)0.0531 (13)0.0013 (9)0.0113 (10)0.0015 (10)
N30.0319 (10)0.0281 (9)0.0354 (10)0.0043 (7)0.0032 (8)0.0007 (8)
N40.0375 (11)0.0251 (9)0.0291 (9)0.0064 (7)0.0054 (8)0.0006 (7)
N50.0344 (11)0.0418 (12)0.0494 (12)0.0002 (9)0.0096 (9)0.0028 (9)
N60.0322 (10)0.0240 (9)0.0311 (9)0.0026 (7)0.0030 (8)0.0035 (7)
C10.0427 (15)0.0323 (12)0.0493 (14)0.0039 (10)0.0059 (11)0.0013 (11)
C20.0300 (12)0.0313 (12)0.0422 (13)0.0029 (9)0.0064 (10)0.0008 (10)
C30.0503 (15)0.0370 (13)0.0336 (12)0.0152 (11)0.0087 (11)0.0082 (10)
C40.0310 (12)0.0282 (11)0.0402 (13)0.0029 (9)0.0044 (10)0.0000 (9)
C50.0328 (13)0.0354 (12)0.0414 (13)0.0032 (10)0.0027 (10)0.0053 (10)
C60.0306 (12)0.0299 (11)0.0347 (12)0.0035 (9)0.0028 (9)0.0027 (9)
C70.0543 (15)0.0306 (12)0.0269 (11)0.0139 (10)0.0092 (10)0.0012 (9)
C80.0421 (13)0.0273 (11)0.0288 (11)0.0007 (9)0.0003 (10)0.0006 (9)
Geometric parameters (Å, º) top
Zn—O1i1.9693 (15)N4—C61.318 (3)
Zn—O3ii1.9970 (15)N4—N51.367 (3)
Zn—N62.0010 (17)N4—C71.454 (3)
Zn—N32.0463 (17)N5—C51.310 (3)
O1—C41.278 (3)N6—C61.328 (3)
O1—Zniii1.9693 (15)N6—C51.359 (3)
O2—C41.223 (3)C1—H10.9300
O3—C81.252 (3)C2—H20.9300
O3—Zniv1.9970 (15)C3—C41.520 (3)
O4—C81.227 (3)C3—H3A0.9700
N1—C21.318 (3)C3—H3B0.9700
N1—N21.357 (3)C5—H50.9300
N1—C31.459 (3)C6—H60.9300
N2—C11.316 (3)C7—C81.531 (3)
N3—C21.329 (3)C7—H7A0.9700
N3—C11.355 (3)C7—H7B0.9700
O1i—Zn—O3ii98.54 (6)N1—C2—H2125.1
O1i—Zn—N6112.87 (7)N3—C2—H2125.1
O3ii—Zn—N6124.72 (7)N1—C3—C4111.80 (18)
O1i—Zn—N3108.45 (7)N1—C3—H3A109.3
O3ii—Zn—N3103.90 (7)C4—C3—H3A109.3
N6—Zn—N3107.23 (7)N1—C3—H3B109.3
C4—O1—Zniii114.91 (14)C4—C3—H3B109.3
C8—O3—Zniv105.24 (14)H3A—C3—H3B107.9
C2—N1—N2110.52 (18)O2—C4—O1126.0 (2)
C2—N1—C3128.6 (2)O2—C4—C3120.6 (2)
N2—N1—C3120.51 (19)O1—C4—C3113.40 (19)
C1—N2—N1102.41 (18)N5—C5—N6114.1 (2)
C2—N3—C1103.11 (19)N5—C5—H5122.9
C2—N3—Zn127.61 (15)N6—C5—H5122.9
C1—N3—Zn129.27 (15)N4—C6—N6109.70 (19)
C6—N4—N5110.29 (18)N4—C6—H6125.2
C6—N4—C7128.2 (2)N6—C6—H6125.2
N5—N4—C7120.56 (18)N4—C7—C8109.48 (17)
C5—N5—N4102.52 (18)N4—C7—H7A109.8
C6—N6—C5103.36 (18)C8—C7—H7A109.8
C6—N6—Zn124.11 (15)N4—C7—H7B109.8
C5—N6—Zn132.40 (15)C8—C7—H7B109.8
N2—C1—N3114.2 (2)H7A—C7—H7B108.2
N2—C1—H1122.9O4—C8—O3124.2 (2)
N3—C1—H1122.9O4—C8—C7118.7 (2)
N1—C2—N3109.7 (2)O3—C8—C7117.06 (19)
C2—N1—N2—C11.5 (3)C1—N3—C2—N10.7 (2)
C3—N1—N2—C1175.3 (2)Zn—N3—C2—N1179.62 (14)
O1i—Zn—N3—C2148.06 (18)C2—N1—C3—C482.7 (3)
O3ii—Zn—N3—C243.95 (19)N2—N1—C3—C489.9 (2)
N6—Zn—N3—C289.77 (19)Zniii—O1—C4—O23.3 (3)
O1i—Zn—N3—C130.5 (2)Zniii—O1—C4—C3179.67 (15)
O3ii—Zn—N3—C1134.6 (2)N1—C3—C4—O213.0 (3)
N6—Zn—N3—C191.6 (2)N1—C3—C4—O1169.84 (19)
C6—N4—N5—C51.4 (2)N4—N5—C5—N60.9 (3)
C7—N4—N5—C5171.21 (18)C6—N6—C5—N50.0 (3)
O1i—Zn—N6—C666.44 (18)Zn—N6—C5—N5175.96 (16)
O3ii—Zn—N6—C6174.32 (15)N5—N4—C6—N61.5 (2)
N3—Zn—N6—C652.92 (18)C7—N4—C6—N6170.30 (18)
O1i—Zn—N6—C5118.3 (2)C5—N6—C6—N40.9 (2)
O3ii—Zn—N6—C50.9 (2)Zn—N6—C6—N4175.46 (13)
N3—Zn—N6—C5122.3 (2)C6—N4—C7—C888.3 (3)
N1—N2—C1—N31.0 (3)N5—N4—C7—C879.5 (2)
C2—N3—C1—N20.2 (3)Zniv—O3—C8—O47.6 (3)
Zn—N3—C1—N2178.63 (16)Zniv—O3—C8—C7170.28 (16)
N2—N1—C2—N31.4 (3)N4—C7—C8—O430.4 (3)
C3—N1—C2—N3174.63 (19)N4—C7—C8—O3147.6 (2)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4ii0.932.623.212 (3)122
C5—H5···O1v0.932.463.265 (3)145
C7—H7A···O4vi0.972.603.165 (3)118
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (v) x1, y+1/2, z1/2; (vi) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C4H4N3O2)2]
Mr317.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.791 (1), 13.514 (2), 10.006 (1)
β (°) 99.458 (1)
V3)1172.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.12
Crystal size (mm)0.38 × 0.20 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.609, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
8509, 2286, 1956
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.04
No. of reflections2286
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.623.212 (3)121.8
C5—H5···O1ii0.932.463.265 (3)144.9
C7—H7A···O4iii0.972.603.165 (3)117.7
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x, y1/2, z+1/2.
 

Acknowledgements

This work was sponsored by the start-up fund of Henan Agricultural University (No. 30700061) and the Natural Science Foundation of Henan Province (No. 200510469005).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDixon, F. M., Eisenberg, A. H., Farrell, J. R., Mirkin, C. A., Liable-Sands, L. M. & Rheingold, A. L. (2000). Inorg. Chem. 39, 3432–3433.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFujita, M., Aoyagi, M., Ibukuro, F., Ogura, K. & Yamaguchi, K. (1998). J. Am. Chem. Soc. 120, 611–612.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuellette, W., Prosvirin, A. V., Chieffo, V., Dunbar, K. R., Hudson, B. & Zubieta, J. (2006). Inorg. Chem. 45, 9346–9366.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, L. X., Ning, A. M. & Li, X. (2009). J. Coord. Chem. 62, 1604–1612.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaderenko, P., Gil, M. S., Ballesteros, P. & Cerdan, S. (1994). J. Org. Chem. 59 6268–6273.  CrossRef CAS Web of Science Google Scholar
First citationZhou, X. Y., Huang, Y. Q. & Sun, W. L. (2009). Inorg. Chim. Acta, 362, 1399–1404.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds