organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Anilino-1,3-di-2-pyridylpropan-1-one

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wj-crystal@163.com

(Received 26 August 2009; accepted 9 October 2009; online 17 October 2009)

The title compound, C19H17N3O, was prepared by the 1,4-addition reaction of 1,3-di-2-pyridylprop-2-en-1-one with aniline, and includes one chiral C atom of the methine group with an R configuration. The crystal structure is stabilized by inter­molecular N—H⋯N and C—H⋯O hydrogen bonds. The crystal structure also exhibits weak inter­molecular C—H⋯π inter­actions between a pyridyl H atom and the phenyl ring of adjacent mol­ecules.

Related literature

For properties of binucleating ligand coordination compounds, see: Casalino et al. (2009[Casalino, M., Felice, V. D., Fraldi, N., Panunzi, A. & Ruffo, F. (2009). Inorg. Chem. 48, 5913-5920.]); Clare et al. (2004[Clare, B., Sarker, N., Shoemaker, R. & Hagadorn, J. R. (2004). Inorg. Chem. 43, 1159-1166.]); Lam et al. (1996[Lam, F., Xu, J. X. & Chan, K. S. (1996). J. Org. Chem. 61, 8414-8418.]). For multiple pyridyl compounds, see: Huang et al. (2008[Huang, J. S., Xie, J., Kui, S. C. F., Fang, G. S., Zhu, N. Y. & Che, C. M. (2008). Inorg. Chem. 47, 5727-5735.]). For related structures, see: Champouret et al. (2006[Champouret, Y. D. M., Fawcett, J., Nodes, W. J., Singh, K. & Solan, G. A. (2006). Inorg. Chem. 45, 9890-9900.]); Murthy et al. (2001[Murthy, N. N., Mahroof-Tahir, M. & Karlin, K. D. (2001). Inorg. Chem. 40, 628-635.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N3O

  • Mr = 303.36

  • Orthorhombic, P 21 21 21

  • a = 9.316 (2) Å

  • b = 10.275 (2) Å

  • c = 16.652 (3) Å

  • V = 1594.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.24 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick (2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.976

  • 7562 measured reflections

  • 1961 independent reflections

  • 1040 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.118

  • S = 1.00

  • 1961 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N2i 0.86 2.35 3.191 (4) 164
C10—H10⋯O1i 0.93 2.62 3.398 (5) 141
C3—H3⋯Cgii 0.93 2.77 3.548 (5) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]. Cg is the centroid of the C14–C19 phenyl ring.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The binucleating ligand has continued to arouse interest among chemists, because the extensive investigation of binucleating ligands plays a key role in bimetallic chemistry. These coordination compounds were potentially applied in bioinorganic chemistry, homogeneous catalysis, magnetic exchange processes, and information of performance on important enzymes (Lam et al., 1996, Clare et al., 2004 & Casalino et al., 2009). Furthermore, compounds comprising multiple pyridyl groups are widely used in the design and self-assembly of metal-organic architectures (Huang et al., 2008). Here we report the crystal structure of title compound (I) (Fig. 1).

The bond distances and angles in (I) are consistent with the values in related structures (Champouret et al., 2006 & Murthy et al., 2001). The chiral C8 atom possesses the expected R configuaration. The molecualr packing (Fig. 2) is stabiized by intermolecular N—H···N and C—H···O hydrogen bonds; the first between the amino H atom and the pyridyl (C9–C13/N2) N atom, with a N3—H3···N2i, the second between the pyridyl (C9–C13/N2) H atom and the oxygen of the CO unit, with a C10—H10···O1i, respectively (Table 1). The crystal packing (Fig. 3) is further stabilized by intermolecular C—H···π interactions between the pyridyl (C1–C5/N1) H atom and the phenyl ring, with a C3—H3···Cgii (Table 1; Cg is the centroid of the C14–C19 phenyl ring).

Related literature top

For properties of binucleating ligand coordination compounds, see: Casalino et al. (2009); Clare et al. (2004); Lam et al. (1996). For multiple pyridyl compounds, see: Huang et al. (2008). For related structures, see: Champouret et al. (2006); Murthy et al. (2001). Cg is the centroid of the C14–C19 phenyl ring.

Experimental top

1,3-di-2-pyridyl-2-en-1-one (5 mmol/1.044 g) was mixed with aniline (6 mmol/0.558 g) in toluene (20 ml). And then the phosphotungsitic (0.01 g) in water (10 ml) was added dropwise and refluxed for 2 h. The insoluble materials were produced, and then removed by filtration. The organic layer was kept at room temperature for about two days. Yellow-colored and block shaped crystals were collected (yield 67.6%).

Refinement top

All the Friedel pairs were merged. H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93–0.96 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Structure description top

The binucleating ligand has continued to arouse interest among chemists, because the extensive investigation of binucleating ligands plays a key role in bimetallic chemistry. These coordination compounds were potentially applied in bioinorganic chemistry, homogeneous catalysis, magnetic exchange processes, and information of performance on important enzymes (Lam et al., 1996, Clare et al., 2004 & Casalino et al., 2009). Furthermore, compounds comprising multiple pyridyl groups are widely used in the design and self-assembly of metal-organic architectures (Huang et al., 2008). Here we report the crystal structure of title compound (I) (Fig. 1).

The bond distances and angles in (I) are consistent with the values in related structures (Champouret et al., 2006 & Murthy et al., 2001). The chiral C8 atom possesses the expected R configuaration. The molecualr packing (Fig. 2) is stabiized by intermolecular N—H···N and C—H···O hydrogen bonds; the first between the amino H atom and the pyridyl (C9–C13/N2) N atom, with a N3—H3···N2i, the second between the pyridyl (C9–C13/N2) H atom and the oxygen of the CO unit, with a C10—H10···O1i, respectively (Table 1). The crystal packing (Fig. 3) is further stabilized by intermolecular C—H···π interactions between the pyridyl (C1–C5/N1) H atom and the phenyl ring, with a C3—H3···Cgii (Table 1; Cg is the centroid of the C14–C19 phenyl ring).

For properties of binucleating ligand coordination compounds, see: Casalino et al. (2009); Clare et al. (2004); Lam et al. (1996). For multiple pyridyl compounds, see: Huang et al. (2008). For related structures, see: Champouret et al. (2006); Murthy et al. (2001). Cg is the centroid of the C14–C19 phenyl ring.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. C—H···O and N—H···N hydrogen bonds (dotted lines) in the title compound. [Symmetry codes: (i) - x + 1 , y - 1/2, - z + 3/2; (iii) - x + 1, y + 1/2, - z + 3/2.]
[Figure 3] Fig. 3. C—H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (ii) x + 1/2, - y + 1/2, - z + 1; (iv) - x + 1/2, - y, z + 1/2.]
3-Anilino-1,3-di-2-pyridylpropan-1-one top
Crystal data top
C19H17N3ODx = 1.264 Mg m3
Mr = 303.36Melting point: 400 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ac 2abCell parameters from 1025 reflections
a = 9.316 (2) Åθ = 2.3–27.0°
b = 10.275 (2) ŵ = 0.08 mm1
c = 16.652 (3) ÅT = 293 K
V = 1594.0 (5) Å3Block, yellow
Z = 40.35 × 0.30 × 0.24 mm
F(000) = 640
Data collection top
Bruker SMART CCD
diffractometer
1961 independent reflections
Radiation source: fine-focus sealed tube1040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.3°
φ and ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Sheldrick (2000)
k = 1313
Tmin = 0.950, Tmax = 0.976l = 1321
7562 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.118H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0005P)2 + 0.0531P]
where P = (Fo2 + 2Fc2)/3
1961 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C19H17N3OV = 1594.0 (5) Å3
Mr = 303.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.316 (2) ŵ = 0.08 mm1
b = 10.275 (2) ÅT = 293 K
c = 16.652 (3) Å0.35 × 0.30 × 0.24 mm
Data collection top
Bruker SMART CCD
diffractometer
1961 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick (2000)
1040 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.976Rint = 0.077
7562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
1961 reflectionsΔρmin = 0.13 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5253 (4)0.4411 (3)0.5808 (2)0.0934 (11)
N10.6804 (4)0.1340 (3)0.5653 (2)0.0659 (9)
N20.6078 (3)0.4744 (3)0.8480 (2)0.0551 (8)
N30.3789 (3)0.2540 (3)0.7351 (2)0.0628 (9)
H3N0.39710.18510.70760.075*
C10.7052 (5)0.0421 (5)0.5109 (3)0.0828 (14)
H10.76260.02770.52600.099*
C20.6530 (5)0.0426 (5)0.4350 (3)0.0841 (14)
H20.67340.02520.39970.101*
C30.5700 (5)0.1446 (5)0.4115 (3)0.0754 (13)
H30.53240.14800.35980.090*
C40.5428 (5)0.2424 (4)0.4655 (3)0.0693 (12)
H40.48680.31350.45080.083*
C50.5998 (4)0.2338 (3)0.5418 (2)0.0531 (10)
C60.5753 (4)0.3385 (4)0.6019 (3)0.0612 (11)
C70.6147 (4)0.3152 (4)0.6885 (2)0.0614 (11)
H7A0.69770.36770.70210.074*
H7B0.64050.22450.69560.074*
C80.4910 (4)0.3490 (3)0.7454 (2)0.0512 (10)
H80.45270.43400.72930.061*
C90.5452 (4)0.3607 (3)0.8309 (2)0.0493 (9)
C100.5356 (4)0.2627 (4)0.8858 (3)0.0660 (11)
H100.49120.18460.87260.079*
C110.5924 (5)0.2811 (5)0.9609 (3)0.0828 (14)
H11A0.58570.21560.99920.099*
C120.6590 (5)0.3961 (6)0.9794 (3)0.0842 (15)
H120.70000.41011.02960.101*
C130.6627 (4)0.4886 (4)0.9215 (3)0.0701 (13)
H130.70650.56740.93390.084*
C140.2431 (4)0.2689 (3)0.7675 (2)0.0504 (9)
C150.1444 (4)0.1682 (3)0.7591 (2)0.0552 (10)
H150.17200.09070.73480.066*
C160.0075 (5)0.1827 (4)0.7863 (3)0.0652 (11)
H160.05740.11490.77940.078*
C170.0373 (4)0.2942 (4)0.8235 (3)0.0654 (11)
H170.13120.30270.84170.078*
C180.0597 (4)0.3928 (4)0.8330 (3)0.0611 (11)
H180.03120.46900.85860.073*
C190.2000 (4)0.3816 (3)0.8054 (2)0.0545 (10)
H190.26440.44980.81240.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.135 (3)0.0631 (17)0.082 (2)0.0240 (19)0.001 (2)0.0020 (17)
N10.071 (2)0.067 (2)0.060 (2)0.0110 (19)0.0054 (18)0.008 (2)
N20.0545 (19)0.0534 (19)0.057 (2)0.0029 (16)0.0051 (16)0.0056 (17)
N30.0509 (19)0.0561 (19)0.082 (2)0.0027 (16)0.0062 (17)0.0321 (19)
C10.098 (4)0.081 (3)0.069 (3)0.023 (3)0.011 (3)0.011 (3)
C20.096 (4)0.083 (3)0.073 (3)0.008 (3)0.002 (3)0.020 (3)
C30.094 (4)0.082 (3)0.050 (3)0.007 (3)0.007 (2)0.000 (3)
C40.084 (3)0.066 (3)0.057 (3)0.002 (2)0.002 (2)0.019 (2)
C50.055 (2)0.047 (2)0.057 (3)0.005 (2)0.0043 (19)0.008 (2)
C60.066 (3)0.056 (2)0.062 (3)0.001 (2)0.006 (2)0.002 (2)
C70.064 (3)0.065 (2)0.055 (3)0.002 (2)0.005 (2)0.009 (2)
C80.050 (2)0.0438 (19)0.060 (3)0.0032 (18)0.0016 (18)0.0048 (19)
C90.046 (2)0.0425 (19)0.060 (2)0.0001 (18)0.0037 (19)0.002 (2)
C100.068 (3)0.052 (2)0.077 (3)0.001 (2)0.009 (2)0.012 (2)
C110.091 (4)0.087 (3)0.069 (3)0.028 (3)0.015 (3)0.028 (3)
C120.084 (4)0.110 (4)0.058 (3)0.025 (3)0.007 (3)0.008 (3)
C130.063 (3)0.076 (3)0.071 (3)0.001 (2)0.002 (2)0.021 (3)
C140.052 (2)0.046 (2)0.054 (2)0.0035 (18)0.0036 (19)0.007 (2)
C150.060 (3)0.048 (2)0.058 (2)0.001 (2)0.002 (2)0.0083 (19)
C160.064 (3)0.064 (3)0.068 (3)0.013 (2)0.005 (2)0.001 (2)
C170.050 (2)0.079 (3)0.067 (3)0.009 (2)0.006 (2)0.000 (2)
C180.065 (3)0.059 (2)0.059 (3)0.015 (2)0.003 (2)0.005 (2)
C190.055 (3)0.051 (2)0.058 (2)0.0027 (18)0.006 (2)0.0078 (19)
Geometric parameters (Å, º) top
O1—C61.205 (4)C8—C91.516 (5)
N1—C51.329 (4)C8—H80.9800
N1—C11.330 (5)C9—C101.363 (5)
N2—C131.335 (5)C10—C111.370 (7)
N2—C91.336 (4)C10—H100.9300
N3—C141.384 (4)C11—C121.370 (6)
N3—C81.440 (4)C11—H11A0.9300
N3—H3N0.8600C12—C131.354 (6)
C1—C21.354 (7)C12—H120.9300
C1—H10.9300C13—H130.9300
C2—C31.359 (6)C14—C191.379 (5)
C2—H20.9300C14—C151.390 (5)
C3—C41.372 (6)C15—C161.362 (5)
C3—H30.9300C15—H150.9300
C4—C51.380 (6)C16—C171.367 (5)
C4—H40.9300C16—H160.9300
C5—C61.487 (5)C17—C181.366 (5)
C6—C71.506 (6)C17—H170.9300
C7—C81.531 (5)C18—C191.391 (5)
C7—H7A0.9700C18—H180.9300
C7—H7B0.9700C19—H190.9300
C5—N1—C1116.4 (4)C7—C8—H8107.9
C13—N2—C9117.2 (4)N2—C9—C10122.1 (4)
C14—N3—C8122.8 (3)N2—C9—C8114.5 (3)
C14—N3—H3N118.6C10—C9—C8123.4 (3)
C8—N3—H3N118.6C9—C10—C11119.0 (4)
N1—C1—C2124.8 (5)C9—C10—H10120.5
N1—C1—H1117.6C11—C10—H10120.5
C2—C1—H1117.6C12—C11—C10119.9 (4)
C1—C2—C3118.4 (5)C12—C11—H11A120.0
C1—C2—H2120.8C10—C11—H11A120.0
C3—C2—H2120.8C13—C12—C11117.2 (4)
C2—C3—C4118.8 (4)C13—C12—H12121.4
C2—C3—H3120.6C11—C12—H12121.4
C4—C3—H3120.6N2—C13—C12124.5 (4)
C3—C4—C5119.0 (4)N2—C13—H13117.7
C3—C4—H4120.5C12—C13—H13117.7
C5—C4—H4120.5C19—C14—N3122.5 (3)
N1—C5—C4122.5 (4)C19—C14—C15118.6 (3)
N1—C5—C6116.5 (4)N3—C14—C15118.9 (3)
C4—C5—C6121.0 (4)C16—C15—C14120.3 (3)
O1—C6—C5119.8 (4)C16—C15—H15119.9
O1—C6—C7120.8 (4)C14—C15—H15119.9
C5—C6—C7119.5 (3)C15—C16—C17121.9 (4)
C6—C7—C8111.9 (3)C15—C16—H16119.0
C6—C7—H7A109.2C17—C16—H16119.0
C8—C7—H7A109.2C18—C17—C16118.1 (4)
C6—C7—H7B109.2C18—C17—H17120.9
C8—C7—H7B109.2C16—C17—H17120.9
H7A—C7—H7B107.9C17—C18—C19121.5 (4)
N3—C8—C9114.0 (3)C17—C18—H18119.3
N3—C8—C7108.5 (3)C19—C18—H18119.3
C9—C8—C7110.4 (3)C14—C19—C18119.6 (4)
N3—C8—H8107.9C14—C19—H19120.2
C9—C8—H8107.9C18—C19—H19120.2
C5—N1—C1—C21.0 (7)N3—C8—C9—N2157.1 (3)
N1—C1—C2—C30.7 (8)C7—C8—C9—N280.3 (4)
C1—C2—C3—C40.0 (7)N3—C8—C9—C1024.8 (5)
C2—C3—C4—C50.3 (7)C7—C8—C9—C1097.7 (4)
C1—N1—C5—C40.7 (6)N2—C9—C10—C110.2 (6)
C1—N1—C5—C6178.4 (4)C8—C9—C10—C11177.7 (4)
C3—C4—C5—N10.1 (6)C9—C10—C11—C120.8 (7)
C3—C4—C5—C6179.0 (4)C10—C11—C12—C131.3 (7)
N1—C5—C6—O1167.1 (4)C9—N2—C13—C120.0 (6)
C4—C5—C6—O112.0 (6)C11—C12—C13—N20.9 (7)
N1—C5—C6—C712.3 (5)C8—N3—C14—C196.6 (5)
C4—C5—C6—C7168.6 (4)C8—N3—C14—C15175.7 (3)
O1—C6—C7—C851.2 (5)C19—C14—C15—C161.5 (6)
C5—C6—C7—C8129.4 (3)N3—C14—C15—C16176.3 (4)
C14—N3—C8—C967.7 (4)C14—C15—C16—C171.0 (6)
C14—N3—C8—C7168.8 (3)C15—C16—C17—C180.0 (6)
C6—C7—C8—N369.9 (4)C16—C17—C18—C190.6 (6)
C6—C7—C8—C9164.4 (3)N3—C14—C19—C18176.7 (4)
C13—N2—C9—C100.6 (5)C15—C14—C19—C180.9 (5)
C13—N2—C9—C8177.4 (3)C17—C18—C19—C140.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N2i0.862.353.191 (4)164
C10—H10···O1i0.932.623.398 (5)141
C3—H3···Cgii0.932.773.548 (5)142
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H17N3O
Mr303.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.316 (2), 10.275 (2), 16.652 (3)
V3)1594.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.30 × 0.24
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick (2000)
Tmin, Tmax0.950, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
7562, 1961, 1040
Rint0.077
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.118, 1.00
No. of reflections1961
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N2i0.862.353.191 (4)164.2
C10—H10···O1i0.932.623.398 (5)141.2
C3—H3···Cgii0.932.773.548 (5)141.9
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasalino, M., Felice, V. D., Fraldi, N., Panunzi, A. & Ruffo, F. (2009). Inorg. Chem. 48, 5913–5920.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChampouret, Y. D. M., Fawcett, J., Nodes, W. J., Singh, K. & Solan, G. A. (2006). Inorg. Chem. 45, 9890–9900.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationClare, B., Sarker, N., Shoemaker, R. & Hagadorn, J. R. (2004). Inorg. Chem. 43, 1159–1166.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, J. S., Xie, J., Kui, S. C. F., Fang, G. S., Zhu, N. Y. & Che, C. M. (2008). Inorg. Chem. 47, 5727–5735.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLam, F., Xu, J. X. & Chan, K. S. (1996). J. Org. Chem. 61, 8414–8418.  CrossRef CAS Web of Science Google Scholar
First citationMurthy, N. N., Mahroof-Tahir, M. & Karlin, K. D. (2001). Inorg. Chem. 40, 628–635.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds