organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-N-(diisopropoxyphosphor­yl)benzamide

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa, and bA. M. Butlerov Chemistry Institute, Kazan State University, Kremlevskaya Street 18, 420008 Kazan, Russian Federation
*Correspondence e-mail: rcluckay@sun.ac.za

(Received 11 October 2009; accepted 26 October 2009; online 31 October 2009)

In the title compound, C13H19BrNO4P, the crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds between the phosphoryl O atom and the amide N atom which link the mol­ecules into centrosymmetric dimers. These dimers are further packed into stacks along the c axis by inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the synthesis, see: Safin, Sokolov, Baranov et al. (2008[Safin, D. A., Sokolov, F. D., Baranov, S. V., Szyrwiel, Ł., Babashkina, M. G., Shakirova, E. R., Hahn, F. E. & Kozlowski, H. (2008). Z. Anorg. Allg. Chem. 634, 835-838.]). For related structures, see: Chekhlov (1990[Chekhlov, A. N. (1990). Zh. Strukt. Khim. 31, 186-190.]); Safin et al. (2009[Safin, D. A., Klein, A., Babashkina, M. G., Nöth, H., Krivolapov, D. B., Litvinov, I. A. & Kozlowski, H. (2009). Polyhedron, 28, 1504-1510.]); Safin, Sokolov, Nöth et al. (2008[Safin, D. A., Sokolov, F. D., Nöth, H., Babashkina, M. G., Gimadiev, T. R., Galezowska, J. & Kozlowski, H. (2008). Polyhedron, 27, 2022-2028.]); Solov'ev et al. (1990[Solov'ev, V. N., Chekhlov, A. N., Zabirov, N. G., Cherkazov, R. A. & Martynov, I. V. (1990). Zh. Strukt. Khim. 31, 117-122.]). For the chemistry of phosphine derivatives of urea and thio­urea, see: Birdsall et al. (1999[Birdsall, D. J., Green, J., Ly, T. Q., Novosad, J., Necas, M., Slawin, A. M. Z., Woollins, J. D. & Zak, Z. (1999). Eur. J. Inorg. Chem. pp. 1445-1452.]). For the use of bidentate organophospho­rus ligand systems, see: Crespo et al. (2004[Crespo, O., Brusko, V. V., Gimeno, M. C., Tornil, M. L., Laguna, A. & Zabirov, N. G. (2004). Eur. J. Inorg. Chem. pp. 423-430.]); Safin et al. (2006[Safin, D. A., Sokolov, F. D., Zabirov, N. G., Brusko, V. V., Krivolapov, D. B., Litvinov, I. A., Luckay, R. C. & Cherkasov, R. A. (2006). Polyhedron, 25, 3330-3336.]) and for the transport and extraction of metal ions, see: Luckay et al. (2009a[Luckay, R. C., Sheng, X., Strasser, C. E., Raubenheimer, H. G., Safin, D. A., Babashkina, M. G. & Klein, A. (2009a). Dalton Trans. pp. 4646-4652.],b[Luckay, R. C., Sheng, X., Strasser, C. E., Raubenheimer, H. G., Safin, D. A., Babashkina, M. G. & Klein, A. (2009b). Dalton Trans. pp. 8227-8236.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19BrNO4P

  • Mr = 364.17

  • Monoclinic, P 21 /n

  • a = 8.611 (1) Å

  • b = 19.786 (3) Å

  • c = 9.849 (1) Å

  • β = 95.357 (2)°

  • V = 1670.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.57 mm−1

  • T = 100 K

  • 0.32 × 0.07 × 0.05 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.494, Tmax = 0.893

  • 9035 measured reflections

  • 3405 independent reflections

  • 2604 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 1.05

  • 3405 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.96 2.819 (3) 166
C3—H3⋯O4ii 0.95 2.29 3.213 (4) 163
C6—H6⋯O1i 0.95 2.48 3.241 (3) 137
C16—H16CCgiii 0.98 2.63 3.608 (4) 173
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z+1. Cg is the centroid of the C1–C6 benzene ring.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The chemistry of phosphine derivatives of urea and thiourea was first studied during the 1960 s (Birdsall et al., 1999). Subsequently, related bidentate organophosphorus ligand systems were developed to form R1C(X)NHPR2 and their derivatives (Safin et al., 2006). Different R1C(X)NHP(Y)R2R3 (R1 = RNH or NZ2 with Z = H, alkyl or aryl; R2, R3 = alkyl, aryl, alkoxy or aryloxy; X, Y = O, S, Se) have been reported (Crespo et al., 2004). These types of ligands have recently been used successfully as ionophores for the transport and extraction of a number of metal ions (Luckay et al., 2009a, 2009b). Here we report the crystal structure of the title compound (I) (Fig. 1).

The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds between the phosphoryl O atom and the amide N atom which link the molecules into centrosymmetric dimers (Table 1 and Fig. 2). These dimers are further packed into stacks along the c axis by intermolecular C—H···O and C—H···π interactions; the first between the benzene H atom and the oxygen of the CO unit, with a C3—H3···O4ii, the second between the benzene H atom and the oxygen of the PO unit, with a C6—H6···O1i, the third between the methyl H atom of the isopropyl group and the benzene ring, with a C16—H16C···Cgiii (Cg is the centroid of the C1–C6 benzene ring), respectively (Table 1 and Fig. 2).

Related literature top

For the synthesis, see: Safin, Sokolov, Baranov et al. (2008). For related structures, see: Chekhlov (1990); Safin et al. (2009); Safin, Sokolov, Nöth et al. (2008); Solov"ev et al. (1990). For chemistry of phosphine derivatives of urea and thiourea, see: Birdsall et al. (1999). For the use of bidentate organophosphorus ligand systems (Crespo et al., 2004; Safin et al., 2006) for the transport and extraction of metal ions, see: Luckay et al. (2009a,b). Cg is the centroid of the C1–C6 benzene ring.

Experimental top

4-bromo-N-(diisopropoxyphosphoryl)benzthioamide was prepared according to the procedure of Safin et al. (2009). This ligand and one equivalent of copper(I) iodide was dissolved in acetone and heated to 50 °C for 2 hours. The colourless powder obtained was dissolved in a minimal quantity of THF and allowed to slowly evaporate. After 6 days, colourless needles were deposited. The hydrolysis of the thione group group was most likely caused by the presence of moisture in the solvents as well as the presence of the Cu+ ion.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95, 1.00 and 0.98 Å for aromatic CH, alkyl CH and CH3 groups, respectively; N—H = 0.88 Å) and constrained to ride on their parent atoms. Uiso(H) values were set at 1.2 times Ueq(C,N) except for methyl groups where Uiso(H) was set at 1.5 times Ueq(C).

The largest residual electron density peak of 1.29 e Å-3 is located 0.93 Å next to Br1.

Structure description top

The chemistry of phosphine derivatives of urea and thiourea was first studied during the 1960 s (Birdsall et al., 1999). Subsequently, related bidentate organophosphorus ligand systems were developed to form R1C(X)NHPR2 and their derivatives (Safin et al., 2006). Different R1C(X)NHP(Y)R2R3 (R1 = RNH or NZ2 with Z = H, alkyl or aryl; R2, R3 = alkyl, aryl, alkoxy or aryloxy; X, Y = O, S, Se) have been reported (Crespo et al., 2004). These types of ligands have recently been used successfully as ionophores for the transport and extraction of a number of metal ions (Luckay et al., 2009a, 2009b). Here we report the crystal structure of the title compound (I) (Fig. 1).

The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds between the phosphoryl O atom and the amide N atom which link the molecules into centrosymmetric dimers (Table 1 and Fig. 2). These dimers are further packed into stacks along the c axis by intermolecular C—H···O and C—H···π interactions; the first between the benzene H atom and the oxygen of the CO unit, with a C3—H3···O4ii, the second between the benzene H atom and the oxygen of the PO unit, with a C6—H6···O1i, the third between the methyl H atom of the isopropyl group and the benzene ring, with a C16—H16C···Cgiii (Cg is the centroid of the C1–C6 benzene ring), respectively (Table 1 and Fig. 2).

For the synthesis, see: Safin, Sokolov, Baranov et al. (2008). For related structures, see: Chekhlov (1990); Safin et al. (2009); Safin, Sokolov, Nöth et al. (2008); Solov"ev et al. (1990). For chemistry of phosphine derivatives of urea and thiourea, see: Birdsall et al. (1999). For the use of bidentate organophosphorus ligand systems (Crespo et al., 2004; Safin et al., 2006) for the transport and extraction of metal ions, see: Luckay et al. (2009a,b). Cg is the centroid of the C1–C6 benzene ring.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. N—H···O, C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) x - 1/2, - y + 1/2, z - 1/2; (iii) x, y, z + 1.
4-Bromo-N-(diisopropoxyphosphoryl)benzamide top
Crystal data top
C13H19BrNO4PF(000) = 744
Mr = 364.17Dx = 1.448 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2372 reflections
a = 8.611 (1) Åθ = 2.3–26.3°
b = 19.786 (3) ŵ = 2.57 mm1
c = 9.849 (1) ÅT = 100 K
β = 95.357 (2)°Needle, colourless
V = 1670.7 (4) Å30.32 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
3405 independent reflections
Radiation source: fine-focus sealed tube2604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 109
Tmin = 0.494, Tmax = 0.893k = 2424
9035 measured reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.120H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0687P)2]
where P = (Fo2 + 2Fc2)/3
3405 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C13H19BrNO4PV = 1670.7 (4) Å3
Mr = 364.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.611 (1) ŵ = 2.57 mm1
b = 19.786 (3) ÅT = 100 K
c = 9.849 (1) Å0.32 × 0.07 × 0.05 mm
β = 95.357 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3405 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2604 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.893Rint = 0.038
9035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 1.29 e Å3
3405 reflectionsΔρmin = 0.65 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.02989 (4)0.39671 (2)0.17708 (4)0.03600 (16)
P10.63994 (9)0.40142 (4)0.52752 (8)0.01485 (19)
O10.6535 (2)0.46798 (10)0.5943 (2)0.0195 (5)
O20.7917 (2)0.37315 (10)0.4748 (2)0.0174 (5)
O30.5980 (2)0.34095 (10)0.6189 (2)0.0190 (5)
O40.5279 (3)0.29938 (10)0.3200 (2)0.0260 (5)
N10.5031 (3)0.40726 (12)0.3964 (2)0.0161 (5)
H10.45240.44570.38360.019*
C10.3453 (3)0.36868 (15)0.1896 (3)0.0160 (6)
C20.2722 (4)0.31254 (15)0.1264 (3)0.0201 (7)
H20.29940.26840.15830.024*
C30.1603 (3)0.32078 (16)0.0175 (3)0.0217 (7)
H30.10950.28270.02540.026*
C40.1240 (4)0.38516 (17)0.0273 (3)0.0233 (7)
C50.1961 (4)0.44202 (16)0.0329 (3)0.0228 (7)
H50.17020.48600.00070.027*
C60.3062 (3)0.43314 (15)0.1425 (3)0.0177 (6)
H60.35560.47140.18600.021*
C100.4653 (3)0.35442 (15)0.3062 (3)0.0166 (6)
C110.8492 (5)0.4199 (2)0.2571 (4)0.0480 (11)
H11C0.83810.37380.22100.072*
H11B0.92840.44400.21070.072*
H11A0.74910.44350.24140.072*
C120.8981 (4)0.41721 (17)0.4076 (4)0.0287 (8)
H120.89520.46380.44690.034*
C131.0587 (4)0.3875 (2)0.4397 (4)0.0439 (11)
H13A1.08280.38480.53880.066*
H13B1.13590.41620.40070.066*
H13C1.06180.34200.40050.066*
C140.3657 (4)0.28522 (19)0.6749 (4)0.0366 (9)
H14A0.33240.28230.57720.055*
H14B0.27370.28840.72620.055*
H14C0.42560.24470.70360.055*
C150.4659 (4)0.34681 (17)0.7022 (3)0.0246 (7)
H150.40380.38790.67320.030*
C160.5304 (5)0.3551 (2)0.8481 (3)0.0445 (11)
H16A0.58540.31370.87920.067*
H16C0.44490.36370.90480.067*
H16B0.60330.39320.85560.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0283 (2)0.0495 (3)0.0267 (2)0.00590 (16)0.01544 (16)0.00825 (16)
P10.0128 (4)0.0175 (4)0.0137 (4)0.0027 (3)0.0017 (3)0.0004 (3)
O10.0173 (11)0.0195 (11)0.0204 (11)0.0039 (9)0.0046 (9)0.0037 (9)
O20.0118 (10)0.0202 (11)0.0200 (11)0.0009 (8)0.0004 (8)0.0004 (9)
O30.0174 (11)0.0204 (11)0.0197 (11)0.0047 (9)0.0043 (9)0.0039 (9)
O40.0309 (13)0.0168 (12)0.0285 (13)0.0061 (10)0.0071 (10)0.0023 (9)
N10.0173 (13)0.0148 (13)0.0153 (13)0.0027 (10)0.0040 (10)0.0011 (9)
C10.0156 (15)0.0201 (16)0.0125 (14)0.0008 (12)0.0025 (12)0.0010 (12)
C20.0213 (16)0.0184 (16)0.0209 (16)0.0074 (12)0.0024 (13)0.0005 (12)
C30.0171 (16)0.0243 (17)0.0238 (17)0.0073 (13)0.0028 (13)0.0050 (13)
C40.0150 (16)0.040 (2)0.0140 (16)0.0005 (13)0.0025 (12)0.0076 (13)
C50.0240 (17)0.0236 (17)0.0196 (16)0.0043 (13)0.0035 (13)0.0005 (13)
C60.0188 (16)0.0163 (15)0.0172 (15)0.0003 (12)0.0023 (12)0.0023 (12)
C100.0192 (15)0.0174 (16)0.0133 (15)0.0025 (12)0.0026 (12)0.0016 (11)
C110.039 (2)0.062 (3)0.045 (3)0.012 (2)0.0156 (19)0.027 (2)
C120.0242 (18)0.0203 (17)0.044 (2)0.0065 (14)0.0148 (16)0.0082 (15)
C130.0169 (19)0.077 (3)0.039 (2)0.0014 (18)0.0074 (17)0.010 (2)
C140.0266 (19)0.040 (2)0.045 (2)0.0015 (16)0.0130 (16)0.0000 (17)
C150.0194 (17)0.0299 (18)0.0257 (17)0.0053 (14)0.0082 (13)0.0019 (14)
C160.036 (2)0.077 (3)0.0219 (19)0.011 (2)0.0110 (16)0.0021 (19)
Geometric parameters (Å, º) top
Br1—C41.902 (3)C6—H60.9500
P1—O11.472 (2)C11—C121.504 (5)
P1—O21.555 (2)C11—H11C0.9800
P1—O31.560 (2)C11—H11B0.9800
P1—N11.669 (2)C11—H11A0.9800
O2—C121.466 (4)C12—C131.509 (5)
O3—C151.468 (4)C12—H121.0000
O4—C101.217 (4)C13—H13A0.9800
N1—C101.390 (4)C13—H13B0.9800
N1—H10.8800C13—H13C0.9800
C1—C61.388 (4)C14—C151.503 (5)
C1—C21.394 (4)C14—H14A0.9800
C1—C101.498 (4)C14—H14B0.9800
C2—C31.383 (4)C14—H14C0.9800
C2—H20.9500C15—C161.500 (4)
C3—C41.374 (4)C15—H151.0000
C3—H30.9500C16—H16A0.9800
C4—C51.391 (4)C16—H16C0.9800
C5—C61.380 (4)C16—H16B0.9800
C5—H50.9500
O1—P1—O2115.92 (12)H11C—C11—H11B109.5
O1—P1—O3116.21 (12)C12—C11—H11A109.5
O2—P1—O399.42 (11)H11C—C11—H11A109.5
O1—P1—N1107.74 (12)H11B—C11—H11A109.5
O2—P1—N1108.74 (12)O2—C12—C11109.7 (3)
O3—P1—N1108.36 (12)O2—C12—C13105.8 (3)
C12—O2—P1121.12 (19)C11—C12—C13112.8 (3)
C15—O3—P1119.68 (18)O2—C12—H12109.5
C10—N1—P1123.3 (2)C11—C12—H12109.5
C10—N1—H1118.4C13—C12—H12109.5
P1—N1—H1118.4C12—C13—H13A109.5
C6—C1—C2119.8 (3)C12—C13—H13B109.5
C6—C1—C10123.9 (3)H13A—C13—H13B109.5
C2—C1—C10116.3 (3)C12—C13—H13C109.5
C3—C2—C1120.3 (3)H13A—C13—H13C109.5
C3—C2—H2119.8H13B—C13—H13C109.5
C1—C2—H2119.8C15—C14—H14A109.5
C4—C3—C2118.6 (3)C15—C14—H14B109.5
C4—C3—H3120.7H14A—C14—H14B109.5
C2—C3—H3120.7C15—C14—H14C109.5
C3—C4—C5122.3 (3)H14A—C14—H14C109.5
C3—C4—Br1118.8 (2)H14B—C14—H14C109.5
C5—C4—Br1119.0 (3)O3—C15—C16107.9 (3)
C6—C5—C4118.5 (3)O3—C15—C14107.3 (3)
C6—C5—H5120.7C16—C15—C14114.5 (3)
C4—C5—H5120.7O3—C15—H15109.0
C5—C6—C1120.4 (3)C16—C15—H15109.0
C5—C6—H6119.8C14—C15—H15109.0
C1—C6—H6119.8C15—C16—H16A109.5
O4—C10—N1121.8 (3)C15—C16—H16C109.5
O4—C10—C1121.4 (3)H16A—C16—H16C109.5
N1—C10—C1116.8 (3)C15—C16—H16B109.5
C12—C11—H11C109.5H16A—C16—H16B109.5
C12—C11—H11B109.5H16C—C16—H16B109.5
O1—P1—O2—C1240.8 (2)Br1—C4—C5—C6179.2 (2)
O3—P1—O2—C12166.1 (2)C4—C5—C6—C11.0 (5)
N1—P1—O2—C1280.7 (2)C2—C1—C6—C50.4 (4)
O1—P1—O3—C1549.5 (2)C10—C1—C6—C5178.9 (3)
O2—P1—O3—C15174.7 (2)P1—N1—C10—O42.0 (4)
N1—P1—O3—C1571.9 (2)P1—N1—C10—C1177.1 (2)
O1—P1—N1—C10176.7 (2)C6—C1—C10—O4158.7 (3)
O2—P1—N1—C1050.3 (3)C2—C1—C10—O420.6 (4)
O3—P1—N1—C1056.8 (3)C6—C1—C10—N120.4 (4)
C6—C1—C2—C30.4 (4)C2—C1—C10—N1160.3 (3)
C10—C1—C2—C3179.7 (3)P1—O2—C12—C1188.3 (3)
C1—C2—C3—C40.5 (5)P1—O2—C12—C13149.8 (2)
C2—C3—C4—C50.1 (5)P1—O3—C15—C16106.3 (3)
C2—C3—C4—Br1180.0 (2)P1—O3—C15—C14129.8 (2)
C3—C4—C5—C60.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.962.819 (3)166
C3—H3···O4ii0.952.293.213 (4)163
C6—H6···O1i0.952.483.241 (3)137
C16—H16C···Cgiii0.982.633.608 (4)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H19BrNO4P
Mr364.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.611 (1), 19.786 (3), 9.849 (1)
β (°) 95.357 (2)
V3)1670.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.57
Crystal size (mm)0.32 × 0.07 × 0.05
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.494, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
9035, 3405, 2604
Rint0.038
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.05
No. of reflections3405
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.65

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.962.819 (3)165.5
C3—H3···O4ii0.952.293.213 (4)163.3
C6—H6···O1i0.952.483.241 (3)136.8
C16—H16C···Cgiii0.982.633.608 (4)172.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z+1.
 

Acknowledgements

We would like to thank the National Research Foundation (NRF) of South Africa for financial support.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBirdsall, D. J., Green, J., Ly, T. Q., Novosad, J., Necas, M., Slawin, A. M. Z., Woollins, J. D. & Zak, Z. (1999). Eur. J. Inorg. Chem. pp. 1445–1452.  CrossRef Google Scholar
First citationBruker (2002). SADABS and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekhlov, A. N. (1990). Zh. Strukt. Khim. 31, 186–190.  Google Scholar
First citationCrespo, O., Brusko, V. V., Gimeno, M. C., Tornil, M. L., Laguna, A. & Zabirov, N. G. (2004). Eur. J. Inorg. Chem. pp. 423–430.  Web of Science CSD CrossRef Google Scholar
First citationLuckay, R. C., Sheng, X., Strasser, C. E., Raubenheimer, H. G., Safin, D. A., Babashkina, M. G. & Klein, A. (2009a). Dalton Trans. pp. 4646–4652.  Web of Science CSD CrossRef Google Scholar
First citationLuckay, R. C., Sheng, X., Strasser, C. E., Raubenheimer, H. G., Safin, D. A., Babashkina, M. G. & Klein, A. (2009b). Dalton Trans. pp. 8227–8236.  Web of Science CSD CrossRef Google Scholar
First citationSafin, D. A., Klein, A., Babashkina, M. G., Nöth, H., Krivolapov, D. B., Litvinov, I. A. & Kozlowski, H. (2009). Polyhedron, 28, 1504–1510.  Web of Science CSD CrossRef CAS Google Scholar
First citationSafin, D. A., Sokolov, F. D., Baranov, S. V., Szyrwiel, Ł., Babashkina, M. G., Shakirova, E. R., Hahn, F. E. & Kozlowski, H. (2008). Z. Anorg. Allg. Chem. 634, 835–838.  Web of Science CSD CrossRef CAS Google Scholar
First citationSafin, D. A., Sokolov, F. D., Nöth, H., Babashkina, M. G., Gimadiev, T. R., Galezowska, J. & Kozlowski, H. (2008). Polyhedron, 27, 2022–2028.  Web of Science CSD CrossRef CAS Google Scholar
First citationSafin, D. A., Sokolov, F. D., Zabirov, N. G., Brusko, V. V., Krivolapov, D. B., Litvinov, I. A., Luckay, R. C. & Cherkasov, R. A. (2006). Polyhedron, 25, 3330–3336.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolov'ev, V. N., Chekhlov, A. N., Zabirov, N. G., Cherkazov, R. A. & Martynov, I. V. (1990). Zh. Strukt. Khim. 31, 117–122.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds