organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S*,4aR*,5S*,6S*,8aR*)-3-Benzyl-1-methyl-5,6-di­phenyl-3,4,4a,5,6,8a-hexa­hydro-1H-2,3-benzoxazin-4-one

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 18 October 2009; accepted 23 October 2009; online 31 October 2009)

In the title compound, C28H27NO2, the oxazinone ring adopts a twist-boat conformation and the cyclo­hexene ring has a twisted envelope conformation. The crystal structure is stabilized by weak non-classical inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis of 1H-benzo[d][1,2]oxazin-4-ones by intra­molecular Diels–Alder (IMDA) cyclo­addition, see: Ishikawa et al. (2001[Ishikawa, T., Senzaki, M., Kadoya, R., Morimoto, T., Miyake, N., Izawa, M. & Saito, S. (2001). J. Am. Chem. Soc. 123, 4607-4608.]). For microwave-assisted IMDA cyclo­addition, see: Dai & Shi (2007[Dai, W.-M. & Shi, J. (2007). Comb. Chem. High Throughput Screening, 10, 837-856.]). For cyclo­addition of ester-tethered 1,3,8-nona­trienes, see: Wu et al. (2006[Wu, J., Sun, L. & Dai, W.-M. (2006). Tetrahedron, 62, 8360-8372.]), of sorbate-related 1,3,8-nona­trienes, see: Wu et al. (2007[Wu, J., Yu, H., Wang, Y., Xing, X. & Dai, W.-M. (2007). Tetrahedron Lett. 48, 6543-6547.]) and of hydroxamate-tethered 1,3,9-deca­trienes, see: Wang et al. (2009[Wang, Y., Wu, J. & Dai, W.-M. (2009). Synlett, pp. 2862-2866.]).

[Scheme 1]

Experimental

Crystal data
  • C28H27NO2

  • Mr = 409.51

  • Triclinic, [P \overline 1]

  • a = 7.9721 (5) Å

  • b = 11.0649 (7) Å

  • c = 13.578 (1) Å

  • α = 78.168 (2)°

  • β = 73.178 (2)°

  • γ = 82.819 (1)°

  • V = 1119.35 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.41 × 0.22 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.970, Tmax = 0.985

  • 8442 measured reflections

  • 3780 independent reflections

  • 2761 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.00

  • 3780 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.58 3.311 (2) 135
C7—H7⋯O1ii 0.98 2.47 3.378 (2) 154
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is a derivative of 1H-benzo[d][1,2]oxazin-4-ones which have been prepared by intramolecular Diels-Alder (IMDA) cycloaddition of the hydroxamate-tethered 1,3,9-decatrienes (Ishikawa et al., 2001). In our previous work on microwave-assisted IMDA cycloadditions (Dai et al., 2007), we have investigated the ester-tethered 1,3,8-nonatrienes (Wu et al., 2006), the sorbate-related 1,3,8-nonatrienes (Wu et al., 2007), and the hydroxamate-tethered 1,3,9-decatrienes (Wang et al., 2009). When racemic (3E,5E)-6-phenylhexa-3,5-dien-2-yl N-benzyl-cinnamoylhydroxamate was heated under microwave irradiation the title compound, together with another two major stereomers, was formed. Here we report the crystal structure of title compound (Fig. 1).

In the crystal structure of the title compound, there are one oxazinone ring and one cyclohexene ring. The oxazinone ring C1—C2/C7—C8/O2—N1 adopts a twist-boat conformation, whereas the cyclohexene ring C2—C7 has a twisted envelope conformation. Bond length of C3—C4 is larger than normal C—C single bond because of the hindrance between two phenyl rings at C3 and C4. The crystal packing (Fig. 2) is stabilized by weak non-classical intermolecular C—H···O hydrogen bonds; the first between an H atom of the cyclohexene ring and the oxygen of the CO unit, with a C6—H6···O1i, the second between an H atom of the ringjunction carbon and the oxygen of the CO unit, with a C7—H7···O1ii, respectively (Table 1).

Related literature top

For the synthesis of 1H-benzo[d[1,2]oxazin-4-ones by intramolecular Diels–Alder (IMDA) cycloaddition, see: Ishikawa et al. (2001). For microwave-assisted IMDA cycloaddition, see: Dai et al. (2007). For cycloaddition of ester-tethered 1,3,8-nonatrienes, see: Wu et al. (2006), of sorbate-related 1,3,8-nonatrienes, see: Wu et al. (2007) and of hydroxamate-tethered 1,3,9-decatrienes, see: Wang et al. (2009).

Experimental top

To a 10 ml pressurized process vial was added racemic (3E,5E)-6-phenylhexa-3,5-dien-2-yl N-benzyl-cinnamoylhydroxamate (93.0 mg, 0.23 mmol) and MeCN (5 ml). The loaded vial was then sealed with a cap containing a silicon septum, and put into the microwave cavity and heated at 453 K for 30 min (the holding time) with the temperature measured by an IR sensor. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure and the residue was then purified by colum chromatography (silica gel, 5% EtOAc in petroleum ether) to give the title compound in 10% yield (9.0 mg) as a white solid, and another two stereomers (in 29% and 49% yield, respectively). For the title compound, m.p. 464–466 K (EtOAc-hexane). Single crystals suitable for X-ray diffraction of the title compound were grown in the mixed solvent of ethyl acetate and hexane.

Refinement top

The H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and included in the refinement in riding model, with Uiso(H) = 1.2Ueq (carrier atom).

Structure description top

The title compound is a derivative of 1H-benzo[d][1,2]oxazin-4-ones which have been prepared by intramolecular Diels-Alder (IMDA) cycloaddition of the hydroxamate-tethered 1,3,9-decatrienes (Ishikawa et al., 2001). In our previous work on microwave-assisted IMDA cycloadditions (Dai et al., 2007), we have investigated the ester-tethered 1,3,8-nonatrienes (Wu et al., 2006), the sorbate-related 1,3,8-nonatrienes (Wu et al., 2007), and the hydroxamate-tethered 1,3,9-decatrienes (Wang et al., 2009). When racemic (3E,5E)-6-phenylhexa-3,5-dien-2-yl N-benzyl-cinnamoylhydroxamate was heated under microwave irradiation the title compound, together with another two major stereomers, was formed. Here we report the crystal structure of title compound (Fig. 1).

In the crystal structure of the title compound, there are one oxazinone ring and one cyclohexene ring. The oxazinone ring C1—C2/C7—C8/O2—N1 adopts a twist-boat conformation, whereas the cyclohexene ring C2—C7 has a twisted envelope conformation. Bond length of C3—C4 is larger than normal C—C single bond because of the hindrance between two phenyl rings at C3 and C4. The crystal packing (Fig. 2) is stabilized by weak non-classical intermolecular C—H···O hydrogen bonds; the first between an H atom of the cyclohexene ring and the oxygen of the CO unit, with a C6—H6···O1i, the second between an H atom of the ringjunction carbon and the oxygen of the CO unit, with a C7—H7···O1ii, respectively (Table 1).

For the synthesis of 1H-benzo[d[1,2]oxazin-4-ones by intramolecular Diels–Alder (IMDA) cycloaddition, see: Ishikawa et al. (2001). For microwave-assisted IMDA cycloaddition, see: Dai et al. (2007). For cycloaddition of ester-tethered 1,3,8-nonatrienes, see: Wu et al. (2006), of sorbate-related 1,3,8-nonatrienes, see: Wu et al. (2007) and of hydroxamate-tethered 1,3,9-decatrienes, see: Wang et al. (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 40% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, - y + 1, - z; (iii) x - 1, y, z].
(1S*,4aR*,5S*,6S*,8aR*)-3-Benzyl- 1-methyl-5,6-diphenyl-3,4,4a,5,6,8a-hexahydro-1H-2,3-benzoxazin-4-one top
Crystal data top
C28H27NO2Z = 2
Mr = 409.51F(000) = 436
Triclinic, P1Dx = 1.215 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9721 (5) ÅCell parameters from 6812 reflections
b = 11.0649 (7) Åθ = 3.0–27.4°
c = 13.578 (1) ŵ = 0.08 mm1
α = 78.168 (2)°T = 296 K
β = 73.178 (2)°Block, colorless
γ = 82.819 (1)°0.41 × 0.22 × 0.20 mm
V = 1119.35 (13) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3780 independent reflections
Radiation source: rolling anode2761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 89
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.970, Tmax = 0.985l = 1616
8442 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.035P)2 + 0.520P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3780 reflectionsΔρmax = 0.14 e Å3
282 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (2)
Crystal data top
C28H27NO2γ = 82.819 (1)°
Mr = 409.51V = 1119.35 (13) Å3
Triclinic, P1Z = 2
a = 7.9721 (5) ÅMo Kα radiation
b = 11.0649 (7) ŵ = 0.08 mm1
c = 13.578 (1) ÅT = 296 K
α = 78.168 (2)°0.41 × 0.22 × 0.20 mm
β = 73.178 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3780 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2761 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.985Rint = 0.021
8442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
3780 reflectionsΔρmin = 0.16 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31521 (17)0.51064 (13)0.10452 (11)0.0527 (4)
O20.52969 (18)0.30895 (13)0.27091 (11)0.0566 (4)
N10.4262 (2)0.34429 (15)0.19925 (14)0.0521 (4)
C10.4170 (2)0.46717 (18)0.15722 (14)0.0430 (5)
C20.5572 (2)0.53344 (17)0.17483 (14)0.0398 (4)
H20.53230.53270.25000.048*
C30.5745 (2)0.66685 (17)0.11789 (14)0.0423 (4)
H30.61240.66400.04290.051*
C40.7261 (2)0.72170 (18)0.14317 (15)0.0477 (5)
H40.75630.79670.09090.057*
C50.8884 (2)0.6345 (2)0.12960 (15)0.0516 (5)
H50.99520.66670.12070.062*
C60.8889 (2)0.5157 (2)0.12950 (15)0.0487 (5)
H60.99530.46850.12220.058*
C70.7277 (2)0.45197 (17)0.14044 (15)0.0425 (4)
H70.73380.43510.07140.051*
C80.7139 (3)0.32775 (19)0.21604 (17)0.0522 (5)
H80.77410.33270.26850.063*
C90.2941 (3)0.2601 (2)0.21231 (18)0.0568 (6)
H9A0.35040.17720.21200.068*
H9B0.24610.28170.15250.068*
C100.1442 (3)0.2581 (2)0.31043 (16)0.0527 (5)
C110.0603 (3)0.1503 (2)0.3554 (2)0.0759 (7)
H110.10290.07820.32860.091*
C120.0877 (4)0.1488 (3)0.4408 (2)0.0945 (9)
H120.14520.07630.46940.113*
C130.1489 (4)0.2533 (4)0.4827 (2)0.0920 (9)
H130.24690.25190.54020.110*
C140.0652 (3)0.3601 (3)0.4396 (2)0.0801 (8)
H140.10600.43120.46830.096*
C150.0799 (3)0.3628 (2)0.35354 (18)0.0649 (6)
H150.13470.43620.32430.078*
C160.4076 (2)0.75084 (17)0.13603 (15)0.0453 (5)
C170.2782 (3)0.7394 (2)0.23037 (17)0.0536 (5)
H170.29190.67630.28500.064*
C180.1290 (3)0.8199 (2)0.2451 (2)0.0653 (6)
H180.04390.81070.30910.078*
C190.1071 (3)0.9132 (2)0.1653 (2)0.0748 (7)
H190.00680.96720.17480.090*
C200.2332 (4)0.9266 (2)0.0717 (2)0.0797 (8)
H200.21870.99010.01750.096*
C210.3824 (3)0.8461 (2)0.05714 (19)0.0632 (6)
H210.46720.85640.00690.076*
C220.6757 (3)0.7609 (2)0.24998 (17)0.0519 (5)
C230.6937 (3)0.6795 (2)0.33864 (18)0.0639 (6)
H230.73400.59770.33410.077*
C240.6525 (4)0.7179 (3)0.4344 (2)0.0852 (8)
H240.66390.66170.49360.102*
C250.5950 (4)0.8386 (4)0.4419 (3)0.1007 (11)
H250.56970.86490.50580.121*
C260.5751 (4)0.9202 (3)0.3550 (3)0.0956 (10)
H260.53461.00190.36000.115*
C270.6148 (3)0.8819 (2)0.2602 (2)0.0708 (7)
H270.60060.93830.20170.085*
C280.8005 (3)0.2201 (2)0.1641 (2)0.0756 (7)
H28A0.79150.14570.21560.091*
H28B0.92210.23360.13080.091*
H28C0.74340.21210.11270.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0413 (7)0.0654 (9)0.0550 (9)0.0001 (7)0.0218 (7)0.0085 (7)
O20.0507 (8)0.0596 (9)0.0558 (9)0.0015 (7)0.0195 (7)0.0036 (7)
N10.0412 (9)0.0519 (10)0.0642 (11)0.0073 (8)0.0211 (8)0.0006 (8)
C10.0341 (9)0.0524 (12)0.0409 (11)0.0023 (9)0.0082 (8)0.0106 (9)
C20.0350 (9)0.0482 (11)0.0372 (10)0.0006 (8)0.0114 (8)0.0099 (8)
C30.0393 (10)0.0500 (11)0.0366 (10)0.0024 (9)0.0083 (8)0.0083 (8)
C40.0430 (11)0.0506 (11)0.0469 (12)0.0077 (9)0.0058 (9)0.0096 (9)
C50.0352 (10)0.0675 (14)0.0532 (13)0.0053 (10)0.0067 (9)0.0196 (10)
C60.0332 (10)0.0633 (13)0.0501 (12)0.0055 (9)0.0101 (8)0.0184 (10)
C70.0360 (10)0.0511 (11)0.0441 (11)0.0010 (9)0.0137 (8)0.0156 (9)
C80.0436 (11)0.0542 (12)0.0620 (13)0.0027 (10)0.0221 (10)0.0100 (10)
C90.0505 (12)0.0551 (13)0.0665 (14)0.0087 (10)0.0123 (10)0.0165 (11)
C100.0487 (12)0.0586 (13)0.0517 (13)0.0069 (10)0.0165 (10)0.0055 (10)
C110.0760 (17)0.0662 (16)0.0793 (18)0.0168 (13)0.0170 (14)0.0020 (13)
C120.087 (2)0.101 (2)0.079 (2)0.0365 (18)0.0093 (17)0.0198 (17)
C130.0741 (18)0.139 (3)0.0548 (17)0.019 (2)0.0074 (13)0.0057 (18)
C140.0695 (16)0.110 (2)0.0634 (16)0.0016 (16)0.0143 (13)0.0298 (15)
C150.0595 (14)0.0739 (16)0.0606 (15)0.0108 (12)0.0099 (11)0.0159 (12)
C160.0440 (11)0.0445 (11)0.0491 (12)0.0005 (9)0.0153 (9)0.0098 (9)
C170.0474 (11)0.0563 (12)0.0544 (13)0.0043 (10)0.0104 (10)0.0135 (10)
C180.0496 (13)0.0676 (15)0.0789 (17)0.0035 (12)0.0091 (11)0.0298 (13)
C190.0594 (15)0.0570 (15)0.113 (2)0.0169 (12)0.0304 (15)0.0284 (15)
C200.0811 (18)0.0561 (15)0.096 (2)0.0101 (14)0.0330 (16)0.0051 (13)
C210.0598 (14)0.0567 (13)0.0653 (15)0.0028 (12)0.0150 (11)0.0002 (11)
C220.0401 (10)0.0617 (13)0.0571 (13)0.0076 (10)0.0083 (9)0.0228 (10)
C230.0598 (14)0.0803 (16)0.0576 (14)0.0005 (12)0.0188 (11)0.0240 (12)
C240.0789 (18)0.124 (2)0.0601 (16)0.0048 (17)0.0195 (13)0.0333 (16)
C250.093 (2)0.139 (3)0.084 (2)0.013 (2)0.0077 (18)0.071 (2)
C260.097 (2)0.090 (2)0.104 (2)0.0098 (18)0.0022 (19)0.059 (2)
C270.0675 (15)0.0639 (15)0.0812 (18)0.0098 (12)0.0069 (13)0.0299 (13)
C280.0642 (15)0.0576 (14)0.107 (2)0.0089 (12)0.0245 (14)0.0250 (14)
Geometric parameters (Å, º) top
O1—C11.224 (2)C12—H120.9300
O2—N11.417 (2)C13—C141.368 (4)
O2—C81.461 (2)C13—H130.9300
N1—C11.364 (2)C14—C151.385 (3)
N1—C91.441 (3)C14—H140.9300
C1—C21.508 (3)C15—H150.9300
C2—C31.522 (3)C16—C211.381 (3)
C2—C71.542 (2)C16—C171.386 (3)
C2—H20.9800C17—C181.385 (3)
C3—C161.513 (3)C17—H170.9300
C3—C41.567 (3)C18—C191.370 (3)
C3—H30.9800C18—H180.9300
C4—C51.504 (3)C19—C201.367 (4)
C4—C221.526 (3)C19—H190.9300
C4—H40.9800C20—C211.385 (3)
C5—C61.315 (3)C20—H200.9300
C5—H50.9300C21—H210.9300
C6—C71.497 (3)C22—C231.380 (3)
C6—H60.9300C22—C271.386 (3)
C7—C81.533 (3)C23—C241.387 (3)
C7—H70.9800C23—H230.9300
C8—C281.500 (3)C24—C251.371 (4)
C8—H80.9800C24—H240.9300
C9—C101.509 (3)C25—C261.367 (4)
C9—H9A0.9700C25—H250.9300
C9—H9B0.9700C26—C271.375 (4)
C10—C111.381 (3)C26—H260.9300
C10—C151.380 (3)C27—H270.9300
C11—C121.393 (4)C28—H28A0.9600
C11—H110.9300C28—H28B0.9600
C12—C131.367 (4)C28—H28C0.9600
N1—O2—C8109.53 (14)C13—C12—C11120.3 (3)
C1—N1—O2115.87 (15)C13—C12—H12119.9
C1—N1—C9125.17 (16)C11—C12—H12119.9
O2—N1—C9114.00 (16)C12—C13—C14119.7 (3)
O1—C1—N1121.51 (18)C12—C13—H13120.2
O1—C1—C2126.71 (18)C14—C13—H13120.2
N1—C1—C2111.46 (15)C13—C14—C15120.3 (3)
C1—C2—C3115.43 (15)C13—C14—H14119.9
C1—C2—C7104.30 (14)C15—C14—H14119.9
C3—C2—C7111.71 (15)C10—C15—C14121.0 (2)
C1—C2—H2108.4C10—C15—H15119.5
C3—C2—H2108.4C14—C15—H15119.5
C7—C2—H2108.4C21—C16—C17117.39 (19)
C16—C3—C2115.82 (15)C21—C16—C3119.58 (18)
C16—C3—C4111.53 (15)C17—C16—C3123.01 (17)
C2—C3—C4109.12 (15)C18—C17—C16121.5 (2)
C16—C3—H3106.6C18—C17—H17119.2
C2—C3—H3106.6C16—C17—H17119.2
C4—C3—H3106.6C19—C18—C17119.9 (2)
C5—C4—C22111.07 (17)C19—C18—H18120.1
C5—C4—C3110.91 (16)C17—C18—H18120.1
C22—C4—C3114.42 (15)C20—C19—C18119.7 (2)
C5—C4—H4106.6C20—C19—H19120.1
C22—C4—H4106.6C18—C19—H19120.1
C3—C4—H4106.6C19—C20—C21120.3 (2)
C6—C5—C4124.13 (18)C19—C20—H20119.8
C6—C5—H5117.9C21—C20—H20119.8
C4—C5—H5117.9C16—C21—C20121.2 (2)
C5—C6—C7123.75 (18)C16—C21—H21119.4
C5—C6—H6118.1C20—C21—H21119.4
C7—C6—H6118.1C23—C22—C27117.6 (2)
C6—C7—C8113.55 (15)C23—C22—C4121.82 (19)
C6—C7—C2112.49 (16)C27—C22—C4120.5 (2)
C8—C7—C2108.48 (15)C22—C23—C24121.0 (2)
C6—C7—H7107.3C22—C23—H23119.5
C8—C7—H7107.3C24—C23—H23119.5
C2—C7—H7107.3C25—C24—C23120.1 (3)
O2—C8—C28111.25 (18)C25—C24—H24120.0
O2—C8—C7109.67 (15)C23—C24—H24120.0
C28—C8—C7113.35 (19)C26—C25—C24119.7 (3)
O2—C8—H8107.4C26—C25—H25120.2
C28—C8—H8107.4C24—C25—H25120.2
C7—C8—H8107.4C25—C26—C27120.2 (3)
N1—C9—C10115.45 (18)C25—C26—H26119.9
N1—C9—H9A108.4C27—C26—H26119.9
C10—C9—H9A108.4C26—C27—C22121.4 (3)
N1—C9—H9B108.4C26—C27—H27119.3
C10—C9—H9B108.4C22—C27—H27119.3
H9A—C9—H9B107.5C8—C28—H28A109.5
C11—C10—C15118.3 (2)C8—C28—H28B109.5
C11—C10—C9119.4 (2)H28A—C28—H28B109.5
C15—C10—C9122.2 (2)C8—C28—H28C109.5
C10—C11—C12120.6 (3)H28A—C28—H28C109.5
C10—C11—H11119.7H28B—C28—H28C109.5
C12—C11—H11119.7
C8—O2—N1—C166.3 (2)N1—C9—C10—C11150.2 (2)
C8—O2—N1—C9137.27 (17)N1—C9—C10—C1534.1 (3)
O2—N1—C1—O1171.05 (16)C15—C10—C11—C121.3 (4)
C9—N1—C1—O117.6 (3)C9—C10—C11—C12174.5 (2)
O2—N1—C1—C215.0 (2)C10—C11—C12—C131.7 (4)
C9—N1—C1—C2168.44 (18)C11—C12—C13—C140.8 (5)
O1—C1—C2—C31.8 (3)C12—C13—C14—C150.5 (4)
N1—C1—C2—C3171.77 (15)C11—C10—C15—C140.1 (3)
O1—C1—C2—C7124.77 (19)C9—C10—C15—C14175.7 (2)
N1—C1—C2—C748.8 (2)C13—C14—C15—C100.9 (4)
C1—C2—C3—C1653.8 (2)C2—C3—C16—C21148.07 (19)
C7—C2—C3—C16172.73 (15)C4—C3—C16—C2186.3 (2)
C1—C2—C3—C4179.38 (15)C2—C3—C16—C1733.9 (3)
C7—C2—C3—C460.46 (19)C4—C3—C16—C1791.7 (2)
C16—C3—C4—C5177.36 (16)C21—C16—C17—C180.3 (3)
C2—C3—C4—C548.1 (2)C3—C16—C17—C18178.32 (19)
C16—C3—C4—C2250.8 (2)C16—C17—C18—C190.1 (3)
C2—C3—C4—C2278.5 (2)C17—C18—C19—C200.3 (4)
C22—C4—C5—C6108.5 (2)C18—C19—C20—C210.2 (4)
C3—C4—C5—C619.9 (3)C17—C16—C21—C200.4 (3)
C4—C5—C6—C71.5 (3)C3—C16—C21—C20178.5 (2)
C5—C6—C7—C8135.8 (2)C19—C20—C21—C160.1 (4)
C5—C6—C7—C212.1 (3)C5—C4—C22—C2337.7 (3)
C1—C2—C7—C6167.33 (15)C3—C4—C22—C2388.8 (2)
C3—C2—C7—C642.0 (2)C5—C4—C22—C27140.3 (2)
C1—C2—C7—C866.20 (18)C3—C4—C22—C2793.2 (2)
C3—C2—C7—C8168.46 (15)C27—C22—C23—C240.1 (3)
N1—O2—C8—C2883.2 (2)C4—C22—C23—C24177.9 (2)
N1—O2—C8—C743.0 (2)C22—C23—C24—C250.8 (4)
C6—C7—C8—O2145.60 (16)C23—C24—C25—C261.3 (5)
C2—C7—C8—O219.7 (2)C24—C25—C26—C270.9 (5)
C6—C7—C8—C2889.4 (2)C25—C26—C27—C220.1 (4)
C2—C7—C8—C28144.74 (17)C23—C22—C27—C260.6 (4)
C1—N1—C9—C1084.5 (3)C4—C22—C27—C26177.5 (2)
O2—N1—C9—C1069.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.583.311 (2)135
C7—H7···O1ii0.982.473.378 (2)154
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC28H27NO2
Mr409.51
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9721 (5), 11.0649 (7), 13.578 (1)
α, β, γ (°)78.168 (2), 73.178 (2), 82.819 (1)
V3)1119.35 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.41 × 0.22 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.970, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
8442, 3780, 2761
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.00
No. of reflections3780
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.583.311 (2)135.4
C7—H7···O1ii0.982.473.378 (2)153.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by a research grant from the Natural Science Foundation of China (grant No. 20572092). Professor Wei-Min Dai is thanked for his valuable suggestions and Mr Jianming Gu and Ms Xiurong Hu of the X-ray crystallography facility of Zhejiang University are acknowledged for their assistance with the crystal structure analysis.

References

First citationDai, W.-M. & Shi, J. (2007). Comb. Chem. High Throughput Screening, 10, 837–856.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshikawa, T., Senzaki, M., Kadoya, R., Morimoto, T., Miyake, N., Izawa, M. & Saito, S. (2001). J. Am. Chem. Soc. 123, 4607–4608.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Wu, J. & Dai, W.-M. (2009). Synlett, pp. 2862–2866.  Google Scholar
First citationWu, J., Sun, L. & Dai, W.-M. (2006). Tetrahedron, 62, 8360–8372.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J., Yu, H., Wang, Y., Xing, X. & Dai, W.-M. (2007). Tetrahedron Lett. 48, 6543–6547.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds