organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Glu­cosyl anthranilate

aState Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, 22 Hankou Road, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: wangxm07@nju.edu.cn, yangyh@nju.edu.cn

(Received 9 September 2009; accepted 7 October 2009; online 13 October 2009)

In the crystal structure of the title compound, C21H25NO11, the hexopyranosyl ring adopts a chair conformation and the five substituents are in equatorial positions. An intra­molecular hydrogen bond between the amino group and a neighbouring carbonyl group is found. Two carbonyl groups are disordered and were refined using a split model.

Related literature

The title compound was first obtained by Robert & Tabone (1953[Robert, D. & Tabone, J. (1953). C. R. Acad. Sci. 236, 206-208.]). For the glycosyl­ation reaction of N-hydroxy­phthalimide, see: Cao et al. (1995[Cao, S. D., Tropper, T. D. & Roy, R. (1995). Tetrahedron, 51, 6679-6686.]); Saulius et al. (2005[Saulius, G., Sabine, C., Olivier, R., Richard, L. M., Edith, D., Claude, L. & Pascal, D. (2005). Bioconjug. Chem. 16, 1149-1159.]). For the Hofmann rearrangement, see: Aspinall (1941[Aspinall, S. R. (1941). J. Am. Chem. Soc. 63, 2843-2843.]); Yu et al. (2001[Yu, C. Z., Jiang, Y. Y., Liu, B. & Hu, L. Q. (2001). Tetrahedron Lett. 42, 1449-1452.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO11

  • Mr = 467.42

  • Triclinic, P 1

  • a = 5.8220 (12) Å

  • b = 9.1210 (18) Å

  • c = 11.131 (2) Å

  • α = 98.94 (3)°

  • β = 94.53 (3)°

  • γ = 90.22 (3)°

  • V = 582.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2321 measured reflections

  • 2096 independent reflections

  • 1783 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.04

  • 2096 reflections

  • 320 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O11 0.86 2.06 2.704 (5) 131

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was obtained as a by-product of the glycosylation reaction of N-hydroxyphthalimide during the synthesis of O-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)- N-oxyphthalimide (Cao et al., 1995; Saulius et al., 2005). Hofmann rearrangement is considered to be the reaction mechanism for its formation (Aspinall,1941;Yu et al.,2001).

The hexopyranosyl ring adopts a chair configuration and all substitutents are in equatorial positions (Fig. 1). Between the amino H atoms and the neighboured carbonyl oxygen atom intramolecular N-H···O hydrogen bonding is found (Table 1).

Related literature top

The title compound was first obtained by Robert & Tabone et al. (1953). For the glycosylation reaction of N-hydroxyphthalimide, see: Cao et al. (1995); Saulius et al. (2005). For the Hofmann rearrangement, see: Aspinall (1941); Yu et al. (2001).

Experimental top

A mixture of N-hydroxyphthalimide(1.5 g, 9.2 mmol), tetrabutylammonium hydrogen sulfate (TBAHS 0.34 g, 1 mmol) and Na2CO3 (1M, 20 mL) was stirred at room temperature. After one hour a chloroform solution of 2,3,4,6- tetra-O-acetyl-α-D- glucopyranosyl bromide (3.7 g, 9.0 mmol) was added and the mixture was stirred over night. The organic phase was separated, dried over magnesium sulfate, filtered and concentrated under reduced pressure. Afterwards the product was purified by column chromatography on silica gel(ethylacetate: petroleum ether v/v 1:2). Removal of the solvent leads to the title compound. Yield: 0.34 g (8%). Single crystals suitable for X-ray analysis were obtained by recrystallization from EtOAc. m.p. 403–405 K.

Refinement top

The H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined using a riding model. One of the three methyl groups is disordered in two orientations and was refined as disordered group. Two carbonyl groups are disordered and were refined using a split model. Because the absolute structure cannot be determined Friedel opposites were merged in the refinement.

Structure description top

The title compound was obtained as a by-product of the glycosylation reaction of N-hydroxyphthalimide during the synthesis of O-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)- N-oxyphthalimide (Cao et al., 1995; Saulius et al., 2005). Hofmann rearrangement is considered to be the reaction mechanism for its formation (Aspinall,1941;Yu et al.,2001).

The hexopyranosyl ring adopts a chair configuration and all substitutents are in equatorial positions (Fig. 1). Between the amino H atoms and the neighboured carbonyl oxygen atom intramolecular N-H···O hydrogen bonding is found (Table 1).

The title compound was first obtained by Robert & Tabone et al. (1953). For the glycosylation reaction of N-hydroxyphthalimide, see: Cao et al. (1995); Saulius et al. (2005). For the Hofmann rearrangement, see: Aspinall (1941); Yu et al. (2001).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The bonds to the disordered atoms are shown with dashed lines. H atoms are omitted for clarity.
Glucosyl anthranilate top
Crystal data top
C21H25NO11Z = 1
Mr = 467.42F(000) = 246
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8220 (12) ÅCell parameters from 25 reflections
b = 9.1210 (18) Åθ = 9–12°
c = 11.131 (2) ŵ = 0.11 mm1
α = 98.94 (3)°T = 293 K
β = 94.53 (3)°Block, colourless
γ = 90.22 (3)°0.30 × 0.20 × 0.10 mm
V = 582.0 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
Radiation source: fine-focus sealed tubeθmax = 25.3°, θmin = 1.9°
Graphite monochromatorh = 06
ω/2θ scansk = 1010
2321 measured reflectionsl = 1313
2096 independent reflections3 standard reflections every 200 reflections
1783 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.0615P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2096 reflectionsΔρmin = 0.13 e Å3
320 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.052 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H25NO11γ = 90.22 (3)°
Mr = 467.42V = 582.0 (2) Å3
Triclinic, P1Z = 1
a = 5.8220 (12) ÅMo Kα radiation
b = 9.1210 (18) ŵ = 0.11 mm1
c = 11.131 (2) ÅT = 293 K
α = 98.94 (3)°0.30 × 0.20 × 0.10 mm
β = 94.53 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
2321 measured reflections3 standard reflections every 200 reflections
2096 independent reflections intensity decay: 1%
1783 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.040320 parameters
wR(F2) = 0.1005 restraints
S = 1.04H-atom parameters constrained
2096 reflectionsΔρmin = 0.13 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4723 (4)0.2186 (3)0.0201 (2)0.0473 (6)
O20.4296 (4)0.0007 (3)0.1971 (2)0.0552 (6)
O30.6518 (6)0.1311 (4)0.3260 (4)0.1014 (13)
O40.6863 (4)0.4159 (3)0.2092 (2)0.0478 (6)
O51.0705 (5)0.4424 (4)0.1993 (3)0.0797 (9)
O60.8323 (4)0.6042 (3)0.0311 (2)0.0539 (6)
O70.6443 (18)0.8007 (11)0.0182 (10)0.089 (3)0.50
O7'0.697 (2)0.7638 (13)0.0826 (9)0.102 (4)0.50
O80.4552 (5)0.5912 (3)0.1864 (2)0.0642 (7)
O90.715 (3)0.587 (3)0.337 (2)0.172 (11)0.50
O9'0.650 (4)0.562 (2)0.3641 (18)0.138 (8)0.50
O100.3348 (4)0.2984 (3)0.2025 (2)0.0538 (6)
O110.0099 (4)0.2080 (3)0.1202 (2)0.0613 (7)
N10.2584 (6)0.0580 (5)0.2582 (4)0.0830 (11)
H1A0.37430.00710.27340.100*
H1B0.25090.08170.18680.100*
C10.3810 (6)0.3425 (4)0.0908 (3)0.0468 (8)
H1C0.24060.37580.04930.056*
C20.5594 (6)0.4647 (4)0.1187 (3)0.0498 (8)
H2A0.69350.43310.16650.060*
C30.6312 (5)0.5090 (4)0.0013 (3)0.0447 (8)
H3A0.50610.56280.03600.054*
C40.6931 (5)0.3744 (4)0.0887 (3)0.0442 (8)
H4A0.84740.34060.06530.053*
C50.5175 (6)0.2470 (4)0.0987 (3)0.0423 (7)
H5A0.37400.27250.14230.051*
C60.6126 (6)0.1085 (4)0.1660 (3)0.0498 (8)
H6A0.67670.12970.23950.060*
H6B0.73440.07070.11520.060*
C70.4769 (8)0.1189 (5)0.2748 (4)0.0656 (11)
C80.2885 (9)0.2322 (5)0.2932 (5)0.0827 (14)
H8A0.27550.27990.37670.124*
H8B0.14590.18520.27390.124*
H8C0.32230.30490.24070.124*
C90.8873 (6)0.4456 (4)0.2551 (3)0.0527 (9)
C100.8433 (8)0.4856 (5)0.3784 (4)0.0667 (11)
H10A0.79420.58670.37180.100*
H10B0.72510.42140.42360.100*
H10C0.98220.47480.41990.100*
C110.8326 (8)0.7376 (4)0.0001 (4)0.0644 (10)
C121.0535 (8)0.8176 (5)0.0358 (5)0.0797 (13)
H12A1.02860.92260.04440.120*0.50
H12B1.15870.78970.02560.120*0.50
H12C1.11720.79280.11220.120*0.50
H12D1.17440.74750.04290.120*0.50
H12E1.04430.88040.11290.120*0.50
H12F1.08580.87730.02490.120*0.50
C130.5261 (15)0.6275 (7)0.3044 (5)0.104 (2)
C140.3672 (15)0.7450 (8)0.3642 (6)0.140 (3)
H14A0.42080.77420.44830.210*
H14B0.21350.70480.35890.210*
H14C0.36750.82990.32290.210*
C150.1294 (6)0.2281 (4)0.2076 (3)0.0463 (8)
C160.1078 (6)0.1823 (4)0.3258 (3)0.0509 (8)
C170.2779 (7)0.2219 (5)0.4221 (3)0.0662 (11)
H17A0.40590.27710.40930.079*
C180.2601 (8)0.1814 (6)0.5343 (4)0.0797 (13)
H18A0.37560.20770.59670.096*
C190.0679 (8)0.1007 (6)0.5540 (4)0.0797 (13)
H19A0.05420.07270.63000.096*
C200.0983 (8)0.0629 (5)0.4637 (4)0.0734 (12)
H20A0.22590.00930.47920.088*
C210.0876 (6)0.1010 (5)0.3469 (4)0.0598 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0441 (13)0.0510 (13)0.0484 (14)0.0033 (10)0.0031 (10)0.0132 (11)
O20.0537 (14)0.0508 (14)0.0595 (15)0.0097 (11)0.0062 (11)0.0030 (12)
O30.103 (3)0.079 (2)0.117 (3)0.0201 (19)0.056 (2)0.026 (2)
O40.0410 (12)0.0614 (14)0.0442 (13)0.0013 (10)0.0038 (10)0.0185 (10)
O50.0482 (16)0.115 (3)0.085 (2)0.0004 (16)0.0113 (14)0.0408 (19)
O60.0488 (13)0.0473 (13)0.0660 (15)0.0081 (10)0.0006 (11)0.0135 (11)
O70.097 (6)0.059 (5)0.111 (8)0.001 (4)0.026 (6)0.027 (6)
O7'0.137 (9)0.074 (7)0.097 (7)0.030 (6)0.043 (7)0.048 (6)
O80.0817 (19)0.0653 (17)0.0434 (14)0.0074 (14)0.0076 (13)0.0007 (12)
O90.195 (14)0.25 (2)0.054 (10)0.041 (14)0.044 (11)0.003 (10)
O9'0.24 (2)0.120 (9)0.045 (7)0.027 (12)0.037 (9)0.012 (6)
O100.0464 (13)0.0762 (17)0.0416 (13)0.0096 (12)0.0003 (10)0.0195 (12)
O110.0465 (13)0.0835 (18)0.0562 (15)0.0085 (12)0.0038 (12)0.0225 (13)
N10.056 (2)0.113 (3)0.084 (3)0.024 (2)0.0081 (19)0.029 (2)
C10.0431 (18)0.057 (2)0.0412 (18)0.0010 (16)0.0010 (14)0.0115 (16)
C20.053 (2)0.055 (2)0.0421 (17)0.0015 (16)0.0016 (15)0.0115 (16)
C30.0415 (18)0.0468 (19)0.0463 (19)0.0008 (15)0.0011 (14)0.0115 (15)
C40.0395 (17)0.051 (2)0.0440 (18)0.0010 (15)0.0026 (14)0.0153 (15)
C50.0365 (16)0.0510 (19)0.0408 (17)0.0019 (14)0.0005 (13)0.0127 (14)
C60.0476 (19)0.052 (2)0.0501 (19)0.0045 (16)0.0055 (15)0.0068 (16)
C70.083 (3)0.055 (2)0.057 (2)0.010 (2)0.007 (2)0.0042 (19)
C80.099 (4)0.064 (3)0.080 (3)0.028 (3)0.008 (3)0.005 (2)
C90.050 (2)0.052 (2)0.059 (2)0.0008 (16)0.0101 (18)0.0132 (17)
C100.074 (3)0.074 (3)0.056 (2)0.011 (2)0.014 (2)0.019 (2)
C110.076 (3)0.050 (2)0.069 (3)0.007 (2)0.001 (2)0.0158 (19)
C120.081 (3)0.059 (3)0.099 (4)0.020 (2)0.016 (3)0.007 (2)
C130.152 (6)0.099 (4)0.052 (3)0.029 (4)0.004 (4)0.006 (3)
C140.209 (8)0.121 (5)0.081 (4)0.021 (5)0.050 (5)0.032 (4)
C150.0416 (18)0.049 (2)0.0492 (19)0.0038 (15)0.0062 (15)0.0104 (15)
C160.047 (2)0.059 (2)0.050 (2)0.0088 (16)0.0126 (16)0.0149 (17)
C170.061 (2)0.093 (3)0.048 (2)0.001 (2)0.0040 (18)0.021 (2)
C180.069 (3)0.121 (4)0.053 (2)0.005 (3)0.006 (2)0.028 (2)
C190.080 (3)0.112 (4)0.060 (3)0.023 (3)0.026 (2)0.041 (2)
C200.067 (3)0.086 (3)0.078 (3)0.004 (2)0.031 (2)0.034 (2)
C210.045 (2)0.070 (2)0.069 (2)0.0069 (18)0.0152 (18)0.021 (2)
Geometric parameters (Å, º) top
O1—C11.405 (4)C6—H6A0.9700
O1—C51.430 (4)C6—H6B0.9700
O2—C71.326 (5)C7—C81.485 (6)
O2—C61.432 (4)C8—H8A0.9600
O3—C71.203 (5)C8—H8B0.9600
O4—C91.356 (4)C8—H8C0.9600
O4—C41.447 (4)C9—C101.478 (5)
O5—C91.194 (4)C10—H10A0.9600
O6—C111.316 (4)C10—H10B0.9600
O6—C31.441 (4)C10—H10C0.9600
O7—C111.257 (10)C11—C121.472 (6)
O7'—C111.217 (9)C12—H12A0.9600
O8—C131.335 (6)C12—H12B0.9600
O8—C21.440 (5)C12—H12C0.9600
O9—C131.204 (17)C12—H12D0.9600
O9'—C131.169 (14)C12—H12E0.9600
O10—C151.364 (4)C12—H12F0.9600
O10—C11.409 (4)C13—C141.526 (11)
O11—C151.206 (4)C14—H14A0.9600
N1—C211.357 (5)C14—H14B0.9600
N1—H1A0.8600C14—H14C0.9600
N1—H1B0.8600C15—C161.456 (5)
C1—C21.500 (5)C16—C171.404 (5)
C1—H1C0.9800C16—C211.410 (5)
C2—C31.515 (5)C17—C181.368 (6)
C2—H2A0.9800C17—H17A0.9300
C3—C41.522 (5)C18—C191.388 (7)
C3—H3A0.9800C18—H18A0.9300
C4—C51.530 (4)C19—C201.342 (7)
C4—H4A0.9800C19—H19A0.9300
C5—C61.497 (5)C20—C211.403 (6)
C5—H5A0.9800C20—H20A0.9300
C1—O1—C5112.2 (2)H10B—C10—H10C109.5
C7—O2—C6115.5 (3)O7'—C11—O739.0 (6)
C9—O4—C4118.9 (3)O7'—C11—O6119.0 (6)
C11—O6—C3120.2 (3)O7—C11—O6119.4 (6)
C13—O8—C2117.4 (4)O7'—C11—C12124.0 (7)
C15—O10—C1117.7 (3)O7—C11—C12123.8 (6)
C21—N1—H1A120.0O6—C11—C12112.6 (4)
C21—N1—H1B120.0C11—C12—H12A109.5
H1A—N1—H1B120.0C11—C12—H12B109.5
O1—C1—O10106.7 (3)H12A—C12—H12B109.5
O1—C1—C2109.6 (3)C11—C12—H12C109.5
O10—C1—C2107.4 (3)H12A—C12—H12C109.5
O1—C1—H1C111.0H12B—C12—H12C109.5
O10—C1—H1C111.0C11—C12—H12D109.5
C2—C1—H1C111.0H12A—C12—H12D141.1
O8—C2—C1107.6 (3)H12B—C12—H12D56.3
O8—C2—C3108.0 (3)H12C—C12—H12D56.3
C1—C2—C3110.1 (3)C11—C12—H12E109.5
O8—C2—H2A110.3H12A—C12—H12E56.3
C1—C2—H2A110.3H12B—C12—H12E141.1
C3—C2—H2A110.3H12C—C12—H12E56.3
O6—C3—C2107.8 (3)H12D—C12—H12E109.5
O6—C3—C4108.3 (3)C11—C12—H12F109.5
C2—C3—C4111.6 (3)H12A—C12—H12F56.3
O6—C3—H3A109.7H12B—C12—H12F56.3
C2—C3—H3A109.7H12C—C12—H12F141.1
C4—C3—H3A109.7H12D—C12—H12F109.5
O4—C4—C3108.6 (3)H12E—C12—H12F109.5
O4—C4—C5105.5 (2)O9'—C13—O928 (2)
C3—C4—C5112.4 (3)O9'—C13—O8128.1 (11)
O4—C4—H4A110.1O9—C13—O8117.2 (13)
C3—C4—H4A110.1O9'—C13—C14120.6 (12)
C5—C4—H4A110.1O9—C13—C14131.9 (12)
O1—C5—C6107.8 (3)O8—C13—C14109.1 (7)
O1—C5—C4110.3 (2)C13—C14—H14A109.5
C6—C5—C4109.7 (3)C13—C14—H14B109.5
O1—C5—H5A109.7H14A—C14—H14B109.5
C6—C5—H5A109.7C13—C14—H14C109.5
C4—C5—H5A109.7H14A—C14—H14C109.5
O2—C6—C5108.5 (3)H14B—C14—H14C109.5
O2—C6—H6A110.0O11—C15—O10120.9 (3)
C5—C6—H6A110.0O11—C15—C16126.9 (3)
O2—C6—H6B110.0O10—C15—C16112.2 (3)
C5—C6—H6B110.0C17—C16—C21118.7 (3)
H6A—C6—H6B108.4C17—C16—C15120.6 (3)
O3—C7—O2123.0 (4)C21—C16—C15120.7 (3)
O3—C7—C8124.4 (4)C18—C17—C16121.6 (4)
O2—C7—C8112.5 (4)C18—C17—H17A119.2
C7—C8—H8A109.5C16—C17—H17A119.2
C7—C8—H8B109.5C17—C18—C19119.3 (4)
H8A—C8—H8B109.5C17—C18—H18A120.4
C7—C8—H8C109.5C19—C18—H18A120.4
H8A—C8—H8C109.5C20—C19—C18120.2 (4)
H8B—C8—H8C109.5C20—C19—H19A119.9
O5—C9—O4122.9 (3)C18—C19—H19A119.9
O5—C9—C10126.6 (4)C19—C20—C21122.7 (4)
O4—C9—C10110.5 (3)C19—C20—H20A118.6
C9—C10—H10A109.5C21—C20—H20A118.6
C9—C10—H10B109.5N1—C21—C20120.4 (4)
H10A—C10—H10B109.5N1—C21—C16122.1 (4)
C9—C10—H10C109.5C20—C21—C16117.5 (4)
H10A—C10—H10C109.5
C5—O1—C1—O10177.4 (2)O1—C5—C6—O272.2 (3)
C5—O1—C1—C266.6 (3)C4—C5—C6—O2167.7 (3)
C15—O10—C1—O184.7 (3)C6—O2—C7—O37.3 (6)
C15—O10—C1—C2157.9 (3)C6—O2—C7—C8174.2 (4)
C13—O8—C2—C1109.3 (4)C4—O4—C9—O51.8 (5)
C13—O8—C2—C3131.8 (4)C4—O4—C9—C10180.0 (3)
O1—C1—C2—O8177.5 (3)C3—O6—C11—O7'21.7 (9)
O10—C1—C2—O867.0 (3)C3—O6—C11—O723.3 (8)
O1—C1—C2—C360.0 (3)C3—O6—C11—C12179.0 (3)
O10—C1—C2—C3175.5 (3)C2—O8—C13—O9'7.0 (19)
C11—O6—C3—C2124.0 (3)C2—O8—C13—O923.4 (19)
C11—O6—C3—C4115.1 (4)C2—O8—C13—C14170.0 (4)
O8—C2—C3—O673.9 (3)C1—O10—C15—O111.9 (5)
C1—C2—C3—O6168.8 (3)C1—O10—C15—C16177.2 (3)
O8—C2—C3—C4167.2 (3)O11—C15—C16—C17175.7 (4)
C1—C2—C3—C449.9 (4)O10—C15—C16—C175.2 (5)
C9—O4—C4—C3101.4 (3)O11—C15—C16—C212.4 (6)
C9—O4—C4—C5137.9 (3)O10—C15—C16—C21176.7 (3)
O6—C3—C4—O479.8 (3)C21—C16—C17—C181.2 (6)
C2—C3—C4—O4161.6 (2)C15—C16—C17—C18179.3 (4)
O6—C3—C4—C5163.8 (2)C16—C17—C18—C190.8 (7)
C2—C3—C4—C545.2 (3)C17—C18—C19—C200.0 (8)
C1—O1—C5—C6179.8 (3)C18—C19—C20—C210.3 (8)
C1—O1—C5—C460.5 (3)C19—C20—C21—N1178.9 (4)
O4—C4—C5—O1167.3 (2)C19—C20—C21—C160.1 (7)
C3—C4—C5—O149.1 (3)C17—C16—C21—N1179.6 (4)
O4—C4—C5—C674.1 (3)C15—C16—C21—N12.2 (6)
C3—C4—C5—C6167.7 (3)C17—C16—C21—C200.8 (5)
C7—O2—C6—C5169.0 (3)C15—C16—C21—C20178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O110.862.062.704 (5)131

Experimental details

Crystal data
Chemical formulaC21H25NO11
Mr467.42
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.8220 (12), 9.1210 (18), 11.131 (2)
α, β, γ (°)98.94 (3), 94.53 (3), 90.22 (3)
V3)582.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2321, 2096, 1783
Rint0.020
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.04
No. of reflections2096
No. of parameters320
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)?, 0.13

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O110.862.062.704 (5)130.6
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 30701041)

References

First citationAspinall, S. R. (1941). J. Am. Chem. Soc. 63, 2843–2843.  CrossRef CAS Google Scholar
First citationCao, S. D., Tropper, T. D. & Roy, R. (1995). Tetrahedron, 51, 6679–6686.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationRobert, D. & Tabone, J. (1953). C. R. Acad. Sci. 236, 206–208.  CAS Google Scholar
First citationSaulius, G., Sabine, C., Olivier, R., Richard, L. M., Edith, D., Claude, L. & Pascal, D. (2005). Bioconjug. Chem. 16, 1149–1159.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, C. Z., Jiang, Y. Y., Liu, B. & Hu, L. Q. (2001). Tetrahedron Lett. 42, 1449–1452.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds