organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-1,2,4-triazolo[3,4-a]phthalazine monohydrate

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cSequent Scientific Ltd, New Mangalore 575 011, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 2 October 2009; accepted 6 October 2009; online 10 October 2009)

In the crystal structure of the title compound, C10H8N4·H2O, the organic mol­ecules are approximately planar [maximum deviation from the least-squares plane = 0.041 (2) Å]. Two mol­ecules are connected by two water mol­ecules via O—H⋯N hydrogen bonding into dimers, which are located around centres of inversion. In the crystal, mol­ecules are stacked in the a-axis direction, with mean distances between the π systems of 3.43 (1) and 3.46 (1) Å [centroid–centroid distances are 3.604 (2) and 3.591 (2) Å].

Related literature

For general background to phthalazines, see: Cheng et al. (1999[Cheng, Y., Ma, B. & Wuld, F. (1999). J. Mater. Chem. 9, 2183-2188.]); Coates (1999[Coates, W. J. (1999). In Comprehensive Heterocyclic Chemistry II, Vol. 6, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. Oxford: Pergamon Press.]); De Stevens (1981[De Stevens, G. (1981). Medicinal Research Reviews, Vol. 1, p 73. New York: Wiley-Interscience.]); Shubin et al. (2004[Shubin, K. M., Kuznestsov, V. A. & Galishev, V. A. (2004). Tetrahedron Lett. 45, 1407-1408.]); Tarzia et al. (1989[Tarzia, G., Occelli, E. & Barone, D. (1989). Farmaco, 44, 3-16.]); Yatani et al. (2001[Yatani, A., Fuji, M., Nakao, Y., Kashino, S., Kinoshita, M., Mori, W. & Suzuki, S. (2001). Inorg. Chim. Acta, 316, 127-131.]). For related structures, see: Boulanger et al. (1991[Boulanger, T., Evrard, C., Vercauteren, D. P., Evrard, G. & Durant, F. (1991). J. Crystallogr. Spectrosc. Res. 21, 287-295.]); Burton-Pye et al. (2005[Burton-Pye, B. P., Heath, S. L. & Faulkner, S. (2005). Dalton Trans. pp. 146-149.]); Zimmer et al. (1995[Zimmer, H., Safwat, A. R., Ho, D., Amer, A. & Badawi, M. (1995). J. Org. Chem. 60, 1908-1910.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N4·H2O

  • Mr = 202.22

  • Triclinic, [P \overline 1]

  • a = 7.3009 (9) Å

  • b = 7.9253 (9) Å

  • c = 9.2755 (10) Å

  • α = 109.663 (10)°

  • β = 104.91 (1)°

  • γ = 95.830 (9)°

  • V = 477.83 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 295 K

  • 0.4 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction SuperNova (single source at offset) Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.831, Tmax = 0.932

  • 2893 measured reflections

  • 1772 independent reflections

  • 1615 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.147

  • S = 1.12

  • 1772 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W2⋯N1 0.92 (5) 2.08 (5) 2.987 (2) 168 (4)
O1W—H1W1⋯N2i 0.83 (3) 2.21 (3) 3.043 (2) 177 (3)
Symmetry code: (i) -x, -y+1, -z.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1989[Siemens (1989). XP Operations Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The practical interest upon phthalazine derivatives is based on their widespread applications (Coates, 1999). They are commonly used as ligands in transition metal catalysis (e.g., Yatani et al., 2001), as chemiluminescent materials (Shubin et al., 2004) and for optical applications (Cheng et al., 1999). The chemistry of phthalazine derivatives has been of increasing interest since many of these compounds have found chemotherapeutic applications, especially as antihypertensive agents (De Stevens, 1981). 3-substituted 1,2,4-triazolo[3,4-a]phthalazines have been described as high affinity ligands for benzodiazepine receptor site (e.g., Tarzia et al., 1989).

In the Cambridge Database (Allen, 2002; ver. 5.30, November 2008) there are only four structures with 1,2,4-triazolo[3,4-a]phthalazine units. This includes 3-chloromethyl-1,2,4-triazolophthalazine (Burton-Pye et al., 2005), 3-(p-methoxyphenyl)triazolo(4,3 - a)phthalazine (Boulanger et al., 1991), 3-(p-methoxyphenyl)-6-(N,N-bis(2-methoxyethyl)amino)triazolo(4,3 - a)phthalazine (Boulanger et al., 1991), and 3-butyl-s-triazolo(3,4 - a)phthalazine (Zimmer et al., 1995). Here we present the X-ray structural analysis of the hydrate of 3-methyl[1,2,4]triazolo[3,4-a]phthalazine.

The molecules are almost planar with maximum deviation from the least-squares plane through all 13 ring atoms of 0.041 (2) Å (Fig. 1). The dihedral angle between the planes of the phenyl and the 1,2,4-triazole rings amount to 2.84 (7)°.

In the crystal the principal motif is built of two molecules of 3-methyl[1,2,4]triazolo[3,4-a]phthalazine and two water molecules, which are connected by means of O—H···N hydrogen bonds into centrosymmetric dimers which can be described according to the graph set notation as R44(10), cf. (Fig. 2). The planar molecules are stacked in a head-to-tail manner in the direction of the crystallographic a-axis with distances between the subsequent mean planes of 3.43 (1)Å and 3.46 (1)Å.

Related literature top

For general background to phthalazines, see: Cheng et al. (1999); Coates (1999); De Stevens (1981); Shubin et al. (2004); Tarzia et al. (1989); Yatani et al. (2001). For related structures, see: Boulanger et al. (1991); Burton-Pye et al. (2005); Zimmer et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

1-Hydrazinophthalazine (2 g, 12.5 mmol) in 10 ml acetic acid was refluxed for 4 h. The reaction mixture was quenched to ice cold water and the solid separated was collected by filteration. The solid obtained was crystallized from methanol. Crystals for x-ray measurements were grown by a slow evaporation of ethyl acetate solution (m.p.: 421–423 K).

Refinement top

Hydrogen atoms from the methyl group were placed in idealized positions and were refined as riding model with Uiso values set at 1.5 times Ueq of their carrier carbon atom. All other hydrogen atoms, including those from water molecule, were freely refined.

Structure description top

The practical interest upon phthalazine derivatives is based on their widespread applications (Coates, 1999). They are commonly used as ligands in transition metal catalysis (e.g., Yatani et al., 2001), as chemiluminescent materials (Shubin et al., 2004) and for optical applications (Cheng et al., 1999). The chemistry of phthalazine derivatives has been of increasing interest since many of these compounds have found chemotherapeutic applications, especially as antihypertensive agents (De Stevens, 1981). 3-substituted 1,2,4-triazolo[3,4-a]phthalazines have been described as high affinity ligands for benzodiazepine receptor site (e.g., Tarzia et al., 1989).

In the Cambridge Database (Allen, 2002; ver. 5.30, November 2008) there are only four structures with 1,2,4-triazolo[3,4-a]phthalazine units. This includes 3-chloromethyl-1,2,4-triazolophthalazine (Burton-Pye et al., 2005), 3-(p-methoxyphenyl)triazolo(4,3 - a)phthalazine (Boulanger et al., 1991), 3-(p-methoxyphenyl)-6-(N,N-bis(2-methoxyethyl)amino)triazolo(4,3 - a)phthalazine (Boulanger et al., 1991), and 3-butyl-s-triazolo(3,4 - a)phthalazine (Zimmer et al., 1995). Here we present the X-ray structural analysis of the hydrate of 3-methyl[1,2,4]triazolo[3,4-a]phthalazine.

The molecules are almost planar with maximum deviation from the least-squares plane through all 13 ring atoms of 0.041 (2) Å (Fig. 1). The dihedral angle between the planes of the phenyl and the 1,2,4-triazole rings amount to 2.84 (7)°.

In the crystal the principal motif is built of two molecules of 3-methyl[1,2,4]triazolo[3,4-a]phthalazine and two water molecules, which are connected by means of O—H···N hydrogen bonds into centrosymmetric dimers which can be described according to the graph set notation as R44(10), cf. (Fig. 2). The planar molecules are stacked in a head-to-tail manner in the direction of the crystallographic a-axis with distances between the subsequent mean planes of 3.43 (1)Å and 3.46 (1)Å.

For general background to phthalazines, see: Cheng et al. (1999); Coates (1999); De Stevens (1981); Shubin et al. (2004); Tarzia et al. (1989); Yatani et al. (2001). For related structures, see: Boulanger et al. (1991); Burton-Pye et al. (2005); Zimmer et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the dimers in the crystal structure of the title compound with labelling and displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are depicted as spheres with arbitrary radii and hydrogen bonding is shown as dashed lines. Symmetry code: (i) -x,1 - y,-z.
[Figure 2] Fig. 2. Two mutually perpendicular views of the stacking in the crystal structure of the title compound.
3-Methyl-1,2,4-triazolo[3,4-a]phthalazine monohydrate top
Crystal data top
C10H8N4·H2OZ = 2
Mr = 202.22F(000) = 212
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 7.3009 (9) ÅCell parameters from 2647 reflections
b = 7.9253 (9) Åθ = 6.4–75.6°
c = 9.2755 (10) ŵ = 0.80 mm1
α = 109.663 (10)°T = 295 K
β = 104.91 (1)°Block, colourless
γ = 95.830 (9)°0.4 × 0.2 × 0.1 mm
V = 477.83 (10) Å3
Data collection top
Oxford Diffraction SuperNova (single source at offset) Atlas
diffractometer
1772 independent reflections
Radiation source: Nova (Cu) X-ray Source1615 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 5.2679 pixels mm-1θmax = 70.0°, θmin = 6.4°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 99
Tmin = 0.831, Tmax = 0.932l = 1011
2893 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.07P)2 + 0.128P]
where P = (Fo2 + 2Fc2)/3
1772 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H8N4·H2Oγ = 95.830 (9)°
Mr = 202.22V = 477.83 (10) Å3
Triclinic, P1Z = 2
a = 7.3009 (9) ÅCu Kα radiation
b = 7.9253 (9) ŵ = 0.80 mm1
c = 9.2755 (10) ÅT = 295 K
α = 109.663 (10)°0.4 × 0.2 × 0.1 mm
β = 104.91 (1)°
Data collection top
Oxford Diffraction SuperNova (single source at offset) Atlas
diffractometer
1772 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1615 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.932Rint = 0.024
2893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.20 e Å3
1772 reflectionsΔρmin = 0.17 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0820 (2)0.4413 (2)0.25290 (18)0.0576 (5)
N20.0116 (2)0.2599 (2)0.16838 (18)0.0585 (5)
C30.0258 (2)0.1699 (3)0.2642 (2)0.0504 (4)
C310.0377 (3)0.0275 (3)0.2252 (2)0.0629 (5)
H31A0.13010.08250.11930.094*
H31B0.09660.04360.30240.094*
H31C0.07220.08470.22870.094*
N40.1420 (2)0.2902 (2)0.41193 (16)0.0455 (4)
N50.2127 (2)0.2489 (2)0.54647 (17)0.0530 (4)
C60.3218 (3)0.3879 (3)0.6698 (2)0.0533 (5)
H60.372 (3)0.360 (3)0.765 (3)0.070 (6)*
C70.3736 (2)0.5716 (2)0.6764 (2)0.0477 (4)
C80.4993 (3)0.7118 (3)0.8151 (2)0.0562 (5)
H80.557 (4)0.683 (3)0.913 (3)0.080 (7)*
C90.5466 (3)0.8835 (3)0.8153 (3)0.0600 (5)
H90.636 (3)0.978 (3)0.909 (3)0.067 (6)*
C100.4682 (3)0.9207 (3)0.6786 (3)0.0613 (5)
H100.506 (4)1.043 (4)0.685 (3)0.080 (7)*
C110.3434 (3)0.7866 (3)0.5412 (2)0.0573 (5)
H110.283 (3)0.805 (3)0.447 (3)0.074 (7)*
C120.2970 (2)0.6096 (2)0.5382 (2)0.0467 (4)
C130.1741 (2)0.4575 (3)0.4000 (2)0.0466 (4)
O1W0.2725 (3)0.6362 (3)0.0877 (2)0.0876 (6)
H1W20.198 (6)0.571 (6)0.125 (5)0.143 (14)*
H1W10.197 (4)0.662 (4)0.018 (4)0.092 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0568 (9)0.0734 (11)0.0449 (8)0.0125 (8)0.0080 (7)0.0313 (8)
N20.0558 (9)0.0759 (11)0.0431 (8)0.0143 (8)0.0092 (6)0.0263 (8)
C30.0470 (9)0.0637 (11)0.0399 (9)0.0137 (8)0.0129 (7)0.0185 (8)
C310.0655 (12)0.0629 (12)0.0510 (10)0.0102 (9)0.0132 (9)0.0145 (9)
N40.0483 (8)0.0565 (8)0.0363 (7)0.0158 (6)0.0120 (6)0.0228 (6)
N50.0653 (9)0.0569 (9)0.0416 (8)0.0159 (7)0.0124 (7)0.0265 (7)
C60.0634 (11)0.0610 (11)0.0382 (9)0.0159 (8)0.0103 (8)0.0253 (8)
C70.0495 (9)0.0572 (10)0.0413 (9)0.0157 (7)0.0159 (7)0.0218 (8)
C80.0594 (11)0.0645 (11)0.0429 (9)0.0142 (9)0.0142 (8)0.0191 (8)
C90.0565 (11)0.0608 (11)0.0555 (11)0.0067 (9)0.0189 (9)0.0136 (9)
C100.0616 (11)0.0558 (11)0.0717 (13)0.0122 (9)0.0251 (10)0.0274 (10)
C110.0586 (11)0.0634 (11)0.0599 (11)0.0164 (8)0.0184 (9)0.0345 (9)
C120.0444 (8)0.0585 (10)0.0451 (9)0.0165 (7)0.0168 (7)0.0255 (8)
C130.0454 (8)0.0595 (10)0.0435 (9)0.0164 (7)0.0150 (7)0.0275 (8)
O1W0.0682 (10)0.1226 (15)0.0838 (12)0.0115 (9)0.0052 (8)0.0695 (12)
Geometric parameters (Å, º) top
N1—C131.312 (2)C7—C81.398 (3)
N1—N21.384 (2)C7—C121.404 (2)
N2—C31.309 (2)C8—C91.369 (3)
C3—N41.365 (2)C8—H81.01 (3)
C3—C311.476 (3)C9—C101.391 (3)
C31—H31A0.9600C9—H90.96 (2)
C31—H31B0.9600C10—C111.370 (3)
C31—H31C0.9600C10—H100.96 (3)
N4—C131.369 (2)C11—C121.399 (3)
N4—N51.3818 (18)C11—H110.94 (3)
N5—C61.289 (2)C12—C131.432 (3)
C6—C71.443 (3)O1W—H1W20.92 (5)
C6—H60.97 (2)O1W—H1W10.83 (3)
C13—N1—N2107.24 (15)C12—C7—C6118.75 (16)
C3—N2—N1108.84 (14)C9—C8—C7120.13 (18)
N2—C3—N4108.18 (16)C9—C8—H8121.1 (14)
N2—C3—C31127.98 (17)C7—C8—H8118.7 (14)
N4—C3—C31123.82 (16)C8—C9—C10120.41 (19)
C3—C31—H31A109.5C8—C9—H9119.8 (14)
C3—C31—H31B109.5C10—C9—H9119.8 (14)
H31A—C31—H31B109.5C11—C10—C9120.85 (19)
C3—C31—H31C109.5C11—C10—H10122.1 (15)
H31A—C31—H31C109.5C9—C10—H10117.0 (15)
H31B—C31—H31C109.5C10—C11—C12119.35 (18)
C3—N4—C13106.81 (14)C10—C11—H11124.5 (15)
C3—N4—N5126.01 (15)C12—C11—H11116.2 (15)
C13—N4—N5127.18 (15)C11—C12—C7120.10 (18)
C6—N5—N4113.22 (14)C11—C12—C13124.20 (16)
N5—C6—C7126.56 (16)C7—C12—C13115.70 (16)
N5—C6—H6113.6 (14)N1—C13—N4108.93 (16)
C7—C6—H6119.8 (14)N1—C13—C12132.48 (17)
C8—C7—C12119.14 (17)N4—C13—C12118.57 (15)
C8—C7—C6122.10 (16)H1W2—O1W—H1W1107 (3)
C13—N1—N2—C30.4 (2)C10—C11—C12—C71.7 (3)
N1—N2—C3—N40.5 (2)C10—C11—C12—C13177.70 (16)
N1—N2—C3—C31177.91 (17)C8—C7—C12—C111.3 (3)
N2—C3—N4—C130.45 (19)C6—C7—C12—C11179.58 (15)
C31—C3—N4—C13178.04 (16)C8—C7—C12—C13178.19 (14)
N2—C3—N4—N5179.64 (14)C6—C7—C12—C130.9 (2)
C31—C3—N4—N51.9 (3)N2—N1—C13—N40.06 (19)
C3—N4—N5—C6178.98 (16)N2—N1—C13—C12178.52 (17)
C13—N4—N5—C60.9 (2)C3—N4—C13—N10.23 (19)
N4—N5—C6—C70.6 (3)N5—N4—C13—N1179.86 (14)
N5—C6—C7—C8177.53 (18)C3—N4—C13—C12178.47 (13)
N5—C6—C7—C121.6 (3)N5—N4—C13—C121.4 (3)
C12—C7—C8—C90.0 (3)C11—C12—C13—N10.7 (3)
C6—C7—C8—C9179.10 (17)C7—C12—C13—N1178.71 (17)
C7—C8—C9—C100.8 (3)C11—C12—C13—N4179.08 (15)
C8—C9—C10—C110.4 (3)C7—C12—C13—N40.4 (2)
C9—C10—C11—C120.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W2···N10.92 (5)2.08 (5)2.987 (2)168 (4)
O1W—H1W1···N2i0.83 (3)2.21 (3)3.043 (2)177 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8N4·H2O
Mr202.22
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.3009 (9), 7.9253 (9), 9.2755 (10)
α, β, γ (°)109.663 (10), 104.91 (1), 95.830 (9)
V3)477.83 (10)
Z2
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction SuperNova (single source at offset) Atlas
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.831, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
2893, 1772, 1615
Rint0.024
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.147, 1.12
No. of reflections1772
No. of parameters164
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W2···N10.92 (5)2.08 (5)2.987 (2)168 (4)
O1W—H1W1···N2i0.83 (3)2.21 (3)3.043 (2)177 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

CSC thanks the University of Mysore for research facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoulanger, T., Evrard, C., Vercauteren, D. P., Evrard, G. & Durant, F. (1991). J. Crystallogr. Spectrosc. Res. 21, 287–295.  CSD CrossRef CAS Web of Science Google Scholar
First citationBurton-Pye, B. P., Heath, S. L. & Faulkner, S. (2005). Dalton Trans. pp. 146–149.  Web of Science CSD CrossRef Google Scholar
First citationCheng, Y., Ma, B. & Wuld, F. (1999). J. Mater. Chem. 9, 2183–2188.  Web of Science CrossRef CAS Google Scholar
First citationCoates, W. J. (1999). In Comprehensive Heterocyclic Chemistry II, Vol. 6, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. Oxford: Pergamon Press.  Google Scholar
First citationDe Stevens, G. (1981). Medicinal Research Reviews, Vol. 1, p 73. New York: Wiley-Interscience.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShubin, K. M., Kuznestsov, V. A. & Galishev, V. A. (2004). Tetrahedron Lett. 45, 1407–1408.  Web of Science CrossRef CAS Google Scholar
First citationSiemens (1989). XP Operations Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTarzia, G., Occelli, E. & Barone, D. (1989). Farmaco, 44, 3–16.  CAS PubMed Web of Science Google Scholar
First citationYatani, A., Fuji, M., Nakao, Y., Kashino, S., Kinoshita, M., Mori, W. & Suzuki, S. (2001). Inorg. Chim. Acta, 316, 127–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationZimmer, H., Safwat, A. R., Ho, D., Amer, A. & Badawi, M. (1995). J. Org. Chem. 60, 1908–1910.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds