organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Dec­yl­oxy-4-nitro­benzene

aAlan G. MacDiarmid Institute, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: yuexigui@jlu.edu.cn

(Received 17 September 2009; accepted 27 September 2009; online 3 October 2009)

The title compound, C16H25NO3, has a zigzag dec­yloxy chain para to the nitro group of the aromatic ring. There are two independent mol­ecules; the two rings are aligned at 48.15 (7)°. In the crystal, weak C—H⋯O hydrogen bonds lead to the formation of infinite chains.

Related literature

For structures of analogs of the title compound, see: McBurney et al. (2004[McBurney, B., Foss, P. C. D., Reed, E. M., Shine, T. D., Glagovich, N. M., Westcott, B. L., Crundwell, G., Zeller, M. & Hunter, A. D. (2004). Acta Cryst. E60, o2179-o2180.]).

[Scheme 1]

Experimental

Crystal data
  • C16H25NO3

  • Mr = 279.37

  • Triclinic, [P \overline 1]

  • a = 5.642 (3) Å

  • b = 16.065 (8) Å

  • c = 19.135 (7) Å

  • α = 107.410 (16)°

  • β = 90.610 (16)°

  • γ = 99.780 (18)°

  • V = 1627.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.20 × 0.19 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.984, Tmax = 0.987

  • 15990 measured reflections

  • 7274 independent reflections

  • 3970 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.176

  • S = 0.97

  • 7274 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.53 3.378 (3) 152
C7—H7B⋯O5ii 0.97 2.77 3.263 (3) 112
C18—H18⋯O4iii 0.93 2.60 3.379 (3) 141
C21—H21⋯O1iv 0.93 2.70 3.346 (3) 127
C22—H22⋯O1iv 0.93 2.79 3.381 (3) 123
Symmetry codes: (i) -x+3, -y, -z+1; (ii) -x+3, -y+1, -z+1; (iii) -x+4, -y+1, -z+1; (iv) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The hydroxy H atom of 4-nitropheno can be substituted by multifarious groups to form many ramifications(McBurney et al., 2004). We have synthesized the analogs using different alkyl as terminal groups and report here the molecular and crystal structures of the title compound, (I).

The title compound, (I), as shown in Fig. 1, crystallizes in space group P-1 and each asymmetric unit consists of two crystallographically independent 1-(decyloxy)-4-nitrobenzene. The angles of the two benzene rings (C1—C6 and C17—C22) in the same asymmetric unit is 48.15 (7) °. All nitryl oxygen atoms are engaged in C—H···O (2.53 (2), 2.60 (2), 2.70 (2), 2.77 (2), 2.79 (2) Å) hydrogen bonds. The weak C—H···O hydrogen bonds link the crystal into a two-dimensional network.

Related literature top

For structures of analogs of the title compound, see: McBurney et al. (2004)

Experimental top

1-(decyloxy)-4-nitrobenzene was prepared by adding 4-nitrophenol (0.14 g, 1 mmol), decyl iodide (0.27 g, 1 mmol) and acetone(15 ml) into 10 ml of 8% sodium hydroxide solution. The resultant mixture was heated for 2 h under reflux, then the solution was cooled to room temperaure in an ice bath with stirring. The colorless products were obtained by recrystallized the crude solid from 95% ethanol.

Refinement top

The benzene H atoms were treated as riding on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms attached to methylene were treated as riding on their parent atoms with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C), instead with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl.

Structure description top

The hydroxy H atom of 4-nitropheno can be substituted by multifarious groups to form many ramifications(McBurney et al., 2004). We have synthesized the analogs using different alkyl as terminal groups and report here the molecular and crystal structures of the title compound, (I).

The title compound, (I), as shown in Fig. 1, crystallizes in space group P-1 and each asymmetric unit consists of two crystallographically independent 1-(decyloxy)-4-nitrobenzene. The angles of the two benzene rings (C1—C6 and C17—C22) in the same asymmetric unit is 48.15 (7) °. All nitryl oxygen atoms are engaged in C—H···O (2.53 (2), 2.60 (2), 2.70 (2), 2.77 (2), 2.79 (2) Å) hydrogen bonds. The weak C—H···O hydrogen bonds link the crystal into a two-dimensional network.

For structures of analogs of the title compound, see: McBurney et al. (2004)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
1-Decyloxy-4-nitrobenzene top
Crystal data top
C16H25NO3Z = 4
Mr = 279.37F(000) = 608
Triclinic, P1Dx = 1.140 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.642 (3) ÅCell parameters from 9752 reflections
b = 16.065 (8) Åθ = 3.2–27.5°
c = 19.135 (7) ŵ = 0.08 mm1
α = 107.410 (16)°T = 291 K
β = 90.610 (16)°Block, colorless
γ = 99.780 (18)°0.20 × 0.19 × 0.17 mm
V = 1627.4 (13) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7274 independent reflections
Radiation source: fine-focus sealed tube3970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 77
Tmin = 0.984, Tmax = 0.987k = 2020
15990 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
7274 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H25NO3γ = 99.780 (18)°
Mr = 279.37V = 1627.4 (13) Å3
Triclinic, P1Z = 4
a = 5.642 (3) ÅMo Kα radiation
b = 16.065 (8) ŵ = 0.08 mm1
c = 19.135 (7) ÅT = 291 K
α = 107.410 (16)°0.20 × 0.19 × 0.17 mm
β = 90.610 (16)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7274 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3970 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.030
15990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 0.97Δρmax = 0.18 e Å3
7274 reflectionsΔρmin = 0.17 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0435 (3)0.10617 (12)0.41928 (9)0.0498 (4)
C20.8180 (4)0.14170 (12)0.38389 (10)0.0552 (5)
H20.74140.19820.38260.066*
C30.7089 (4)0.09201 (13)0.35064 (10)0.0561 (5)
H30.55830.11550.32580.067*
C40.8218 (3)0.00675 (12)0.35376 (9)0.0492 (4)
C51.0481 (3)0.02798 (12)0.38982 (9)0.0518 (4)
H51.12450.08480.39200.062*
C61.1591 (3)0.02269 (13)0.42251 (9)0.0530 (5)
H61.31120.00020.44650.064*
C70.7923 (4)0.12696 (13)0.32581 (11)0.0622 (5)
H7A0.94860.13130.30520.075*
H7B0.81150.16280.37700.075*
C80.6180 (4)0.15878 (14)0.28437 (10)0.0608 (5)
H8A0.66850.22210.29340.073*
H8B0.46030.14940.30330.073*
C90.5963 (4)0.11315 (13)0.20197 (9)0.0557 (5)
H9A0.75390.12210.18280.067*
H9B0.54390.04990.19270.067*
C100.4209 (4)0.14703 (13)0.16135 (10)0.0562 (5)
H10A0.47050.21070.17240.067*
H10B0.26270.13630.17970.067*
C110.4007 (4)0.10524 (13)0.07868 (10)0.0575 (5)
H11A0.35070.04160.06740.069*
H11B0.55840.11610.06000.069*
C120.2237 (4)0.14028 (13)0.03955 (10)0.0569 (5)
H12A0.06590.12860.05790.068*
H12B0.27240.20410.05190.068*
C130.2023 (4)0.10103 (14)0.04315 (10)0.0611 (5)
H13A0.15370.03720.05570.073*
H13B0.35950.11300.06180.073*
C140.0239 (4)0.13677 (14)0.08081 (10)0.0591 (5)
H14A0.13330.12410.06240.071*
H14B0.07150.20070.06730.071*
C150.0008 (4)0.10000 (17)0.16340 (11)0.0763 (6)
H15A0.15770.11280.18200.092*
H15B0.04710.03600.17710.092*
C160.1776 (5)0.13638 (19)0.19974 (12)0.0838 (7)
H16A0.33620.11980.18490.126*
H16B0.17570.11270.25210.126*
H16C0.13490.19990.18540.126*
C171.6603 (3)0.61062 (12)0.48056 (9)0.0483 (4)
C181.7118 (3)0.52982 (12)0.44104 (9)0.0515 (4)
H181.84240.50940.45590.062*
C191.5682 (3)0.47936 (12)0.37915 (9)0.0528 (5)
H191.60150.42460.35180.063*
C201.3741 (3)0.51059 (12)0.35782 (9)0.0485 (4)
C211.3281 (4)0.59306 (12)0.39760 (10)0.0550 (5)
H211.20020.61450.38240.066*
C221.4712 (3)0.64329 (12)0.45951 (10)0.0549 (5)
H221.44020.69850.48670.066*
C231.2354 (4)0.37683 (12)0.25940 (10)0.0599 (5)
H23A1.23080.34120.29240.072*
H23B1.38610.37570.23550.072*
C241.0252 (4)0.34081 (13)0.20304 (10)0.0597 (5)
H24A0.87760.34850.22780.072*
H24B1.01930.27760.18100.072*
C251.0330 (4)0.38395 (13)0.14233 (9)0.0577 (5)
H25A1.04120.44730.16410.069*
H25B1.17860.37520.11670.069*
C260.8174 (4)0.34758 (13)0.08732 (10)0.0596 (5)
H26A0.80710.28400.06670.072*
H26B0.67250.35750.11300.072*
C270.8234 (4)0.38781 (14)0.02524 (10)0.0636 (5)
H27A0.96630.37660.00120.076*
H27B0.83770.45160.04590.076*
C280.6052 (4)0.35306 (15)0.02876 (11)0.0664 (6)
H28A0.59150.28930.04950.080*
H28B0.46250.36400.00220.080*
C290.6087 (4)0.39286 (17)0.09064 (11)0.0740 (6)
H29A0.74860.38020.11810.089*
H29B0.62820.45680.06990.089*
C300.3882 (4)0.36084 (16)0.14327 (11)0.0727 (6)
H30A0.36880.29690.16390.087*
H30B0.24850.37350.11570.087*
C310.3896 (5)0.3997 (2)0.20473 (15)0.1040 (10)
H31A0.52280.38340.23430.125*
H31B0.42060.46380.18420.125*
C320.1645 (5)0.3727 (2)0.25393 (14)0.0943 (8)
H32A0.12620.30920.27270.141*
H32B0.18840.39690.29400.141*
H32C0.03440.39470.22670.141*
N11.1571 (3)0.15848 (12)0.45537 (9)0.0611 (4)
N21.8046 (3)0.66154 (12)0.54848 (8)0.0598 (4)
O11.0497 (3)0.23246 (12)0.45217 (11)0.0953 (6)
O21.3531 (3)0.12644 (11)0.48909 (9)0.0814 (5)
O30.6957 (2)0.03615 (9)0.31962 (7)0.0598 (4)
O41.9796 (3)0.63492 (11)0.56572 (8)0.0779 (5)
O51.7400 (3)0.72868 (11)0.58678 (8)0.0860 (5)
O61.2164 (2)0.46592 (9)0.29918 (7)0.0616 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0558 (11)0.0542 (11)0.0446 (9)0.0219 (9)0.0075 (8)0.0163 (7)
C20.0593 (12)0.0479 (11)0.0608 (11)0.0114 (9)0.0059 (9)0.0190 (8)
C30.0517 (11)0.0557 (12)0.0607 (11)0.0080 (9)0.0042 (9)0.0188 (9)
C40.0543 (11)0.0536 (11)0.0428 (8)0.0139 (8)0.0003 (7)0.0174 (7)
C50.0569 (11)0.0500 (10)0.0489 (9)0.0059 (8)0.0016 (8)0.0181 (8)
C60.0529 (11)0.0605 (12)0.0462 (9)0.0129 (9)0.0013 (8)0.0161 (8)
C70.0787 (14)0.0553 (12)0.0549 (10)0.0099 (10)0.0063 (10)0.0218 (9)
C80.0753 (14)0.0561 (12)0.0580 (10)0.0216 (10)0.0011 (9)0.0228 (9)
C90.0632 (12)0.0560 (11)0.0547 (10)0.0197 (9)0.0011 (9)0.0223 (8)
C100.0613 (12)0.0558 (11)0.0577 (10)0.0188 (9)0.0021 (9)0.0223 (9)
C110.0623 (12)0.0578 (12)0.0558 (10)0.0153 (9)0.0008 (9)0.0204 (9)
C120.0581 (12)0.0610 (12)0.0553 (10)0.0159 (9)0.0011 (9)0.0205 (9)
C130.0654 (13)0.0649 (13)0.0536 (10)0.0150 (10)0.0033 (9)0.0171 (9)
C140.0568 (12)0.0652 (13)0.0553 (10)0.0105 (10)0.0005 (9)0.0190 (9)
C150.0738 (15)0.0979 (18)0.0552 (11)0.0226 (13)0.0071 (10)0.0168 (11)
C160.0803 (16)0.113 (2)0.0585 (12)0.0234 (14)0.0106 (11)0.0247 (12)
C170.0491 (10)0.0482 (10)0.0461 (9)0.0050 (8)0.0005 (7)0.0142 (7)
C180.0495 (10)0.0560 (11)0.0525 (10)0.0140 (8)0.0011 (8)0.0198 (8)
C190.0611 (12)0.0514 (11)0.0466 (9)0.0194 (9)0.0010 (8)0.0112 (8)
C200.0532 (11)0.0513 (10)0.0417 (8)0.0115 (8)0.0008 (7)0.0144 (7)
C210.0553 (11)0.0543 (11)0.0569 (10)0.0189 (9)0.0033 (8)0.0143 (8)
C220.0584 (11)0.0458 (10)0.0591 (10)0.0156 (8)0.0014 (9)0.0106 (8)
C230.0765 (14)0.0540 (11)0.0481 (9)0.0175 (10)0.0059 (9)0.0112 (8)
C240.0676 (13)0.0561 (11)0.0509 (10)0.0060 (9)0.0048 (9)0.0130 (8)
C250.0613 (12)0.0583 (12)0.0503 (10)0.0056 (9)0.0032 (9)0.0150 (8)
C260.0608 (12)0.0626 (12)0.0521 (10)0.0029 (10)0.0059 (9)0.0173 (9)
C270.0603 (13)0.0726 (14)0.0571 (11)0.0025 (10)0.0061 (9)0.0239 (10)
C280.0628 (13)0.0753 (14)0.0598 (11)0.0001 (11)0.0096 (10)0.0261 (10)
C290.0664 (14)0.0923 (17)0.0672 (12)0.0002 (12)0.0090 (11)0.0387 (11)
C300.0696 (14)0.0848 (16)0.0630 (12)0.0045 (12)0.0099 (10)0.0272 (11)
C310.0847 (18)0.150 (3)0.0893 (17)0.0053 (17)0.0188 (14)0.0705 (18)
C320.0967 (19)0.118 (2)0.0747 (15)0.0257 (16)0.0117 (14)0.0354 (14)
N10.0681 (11)0.0645 (11)0.0604 (9)0.0272 (9)0.0088 (8)0.0251 (8)
N20.0583 (10)0.0597 (11)0.0558 (9)0.0045 (8)0.0032 (8)0.0128 (8)
O10.1013 (13)0.0676 (11)0.1324 (14)0.0189 (9)0.0091 (11)0.0523 (10)
O20.0739 (11)0.0946 (12)0.0890 (11)0.0244 (9)0.0106 (9)0.0433 (9)
O30.0613 (8)0.0587 (8)0.0645 (8)0.0088 (6)0.0112 (6)0.0279 (6)
O40.0709 (10)0.0857 (11)0.0717 (9)0.0151 (8)0.0216 (8)0.0163 (8)
O50.0878 (12)0.0727 (11)0.0754 (10)0.0160 (9)0.0120 (8)0.0105 (8)
O60.0696 (9)0.0574 (8)0.0524 (7)0.0203 (6)0.0148 (6)0.0047 (6)
Geometric parameters (Å, º) top
C1—C61.371 (3)C17—N21.462 (2)
C1—C21.381 (3)C18—C191.378 (2)
C1—N11.454 (2)C18—H180.9300
C2—C31.372 (3)C19—C201.385 (3)
C2—H20.9300C19—H190.9300
C3—C41.393 (3)C20—O61.359 (2)
C3—H30.9300C20—C211.385 (3)
C4—O31.354 (2)C21—C221.375 (2)
C4—C51.388 (3)C21—H210.9300
C5—C61.384 (2)C22—H220.9300
C5—H50.9300C23—O61.429 (2)
C6—H60.9300C23—C241.507 (3)
C7—O31.437 (2)C23—H23A0.9700
C7—C81.501 (3)C23—H23B0.9700
C7—H7A0.9700C24—C251.518 (3)
C7—H7B0.9700C24—H24A0.9700
C8—C91.521 (3)C24—H24B0.9700
C8—H8A0.9700C25—C261.514 (2)
C8—H8B0.9700C25—H25A0.9700
C9—C101.516 (2)C25—H25B0.9700
C9—H9A0.9700C26—C271.511 (3)
C9—H9B0.9700C26—H26A0.9700
C10—C111.517 (3)C26—H26B0.9700
C10—H10A0.9700C27—C281.513 (3)
C10—H10B0.9700C27—H27A0.9700
C11—C121.517 (3)C27—H27B0.9700
C11—H11A0.9700C28—C291.504 (3)
C11—H11B0.9700C28—H28A0.9700
C12—C131.513 (3)C28—H28B0.9700
C12—H12A0.9700C29—C301.507 (3)
C12—H12B0.9700C29—H29A0.9700
C13—C141.513 (3)C29—H29B0.9700
C13—H13A0.9700C30—C311.487 (3)
C13—H13B0.9700C30—H30A0.9700
C14—C151.508 (3)C30—H30B0.9700
C14—H14A0.9700C31—C321.494 (3)
C14—H14B0.9700C31—H31A0.9700
C15—C161.506 (3)C31—H31B0.9700
C15—H15A0.9700C32—H32A0.9600
C15—H15B0.9700C32—H32B0.9600
C16—H16A0.9600C32—H32C0.9600
C16—H16B0.9600N1—O11.222 (2)
C16—H16C0.9600N1—O21.223 (2)
C17—C221.373 (3)N2—O41.220 (2)
C17—C181.374 (3)N2—O51.225 (2)
C6—C1—C2121.73 (17)C17—C18—H18120.3
C6—C1—N1119.66 (17)C19—C18—H18120.3
C2—C1—N1118.59 (18)C18—C19—C20119.66 (18)
C3—C2—C1118.74 (18)C18—C19—H19120.2
C3—C2—H2120.6C20—C19—H19120.2
C1—C2—H2120.6O6—C20—C19124.99 (17)
C2—C3—C4120.55 (18)O6—C20—C21114.94 (16)
C2—C3—H3119.7C19—C20—C21120.08 (16)
C4—C3—H3119.7C22—C21—C20120.23 (17)
O3—C4—C5124.92 (17)C22—C21—H21119.9
O3—C4—C3115.19 (16)C20—C21—H21119.9
C5—C4—C3119.89 (17)C17—C22—C21118.89 (18)
C6—C5—C4119.46 (17)C17—C22—H22120.6
C6—C5—H5120.3C21—C22—H22120.6
C4—C5—H5120.3O6—C23—C24107.35 (16)
C1—C6—C5119.62 (17)O6—C23—H23A110.2
C1—C6—H6120.2C24—C23—H23A110.2
C5—C6—H6120.2O6—C23—H23B110.2
O3—C7—C8107.42 (16)C24—C23—H23B110.2
O3—C7—H7A110.2H23A—C23—H23B108.5
C8—C7—H7A110.2C23—C24—C25114.59 (17)
O3—C7—H7B110.2C23—C24—H24A108.6
C8—C7—H7B110.2C25—C24—H24A108.6
H7A—C7—H7B108.5C23—C24—H24B108.6
C7—C8—C9114.15 (17)C25—C24—H24B108.6
C7—C8—H8A108.7H24A—C24—H24B107.6
C9—C8—H8A108.7C26—C25—C24113.38 (16)
C7—C8—H8B108.7C26—C25—H25A108.9
C9—C8—H8B108.7C24—C25—H25A108.9
H8A—C8—H8B107.6C26—C25—H25B108.9
C10—C9—C8113.08 (16)C24—C25—H25B108.9
C10—C9—H9A109.0H25A—C25—H25B107.7
C8—C9—H9A109.0C27—C26—C25114.50 (16)
C10—C9—H9B109.0C27—C26—H26A108.6
C8—C9—H9B109.0C25—C26—H26A108.6
H9A—C9—H9B107.8C27—C26—H26B108.6
C9—C10—C11114.62 (16)C25—C26—H26B108.6
C9—C10—H10A108.6H26A—C26—H26B107.6
C11—C10—H10A108.6C26—C27—C28114.52 (17)
C9—C10—H10B108.6C26—C27—H27A108.6
C11—C10—H10B108.6C28—C27—H27A108.6
H10A—C10—H10B107.6C26—C27—H27B108.6
C10—C11—C12113.45 (17)C28—C27—H27B108.6
C10—C11—H11A108.9H27A—C27—H27B107.6
C12—C11—H11A108.9C29—C28—C27115.03 (17)
C10—C11—H11B108.9C29—C28—H28A108.5
C12—C11—H11B108.9C27—C28—H28A108.5
H11A—C11—H11B107.7C29—C28—H28B108.5
C13—C12—C11114.79 (17)C27—C28—H28B108.5
C13—C12—H12A108.6H28A—C28—H28B107.5
C11—C12—H12A108.6C28—C29—C30115.36 (18)
C13—C12—H12B108.6C28—C29—H29A108.4
C11—C12—H12B108.6C30—C29—H29A108.4
H12A—C12—H12B107.5C28—C29—H29B108.4
C12—C13—C14113.73 (17)C30—C29—H29B108.4
C12—C13—H13A108.8H29A—C29—H29B107.5
C14—C13—H13A108.8C31—C30—C29115.8 (2)
C12—C13—H13B108.8C31—C30—H30A108.3
C14—C13—H13B108.8C29—C30—H30A108.3
H13A—C13—H13B107.7C31—C30—H30B108.3
C15—C14—C13115.11 (18)C29—C30—H30B108.3
C15—C14—H14A108.5H30A—C30—H30B107.4
C13—C14—H14A108.5C30—C31—C32115.9 (2)
C15—C14—H14B108.5C30—C31—H31A108.3
C13—C14—H14B108.5C32—C31—H31A108.3
H14A—C14—H14B107.5C30—C31—H31B108.3
C16—C15—C14114.2 (2)C32—C31—H31B108.3
C16—C15—H15A108.7H31A—C31—H31B107.4
C14—C15—H15A108.7C31—C32—H32A109.5
C16—C15—H15B108.7C31—C32—H32B109.5
C14—C15—H15B108.7H32A—C32—H32B109.5
H15A—C15—H15B107.6C31—C32—H32C109.5
C15—C16—H16A109.5H32A—C32—H32C109.5
C15—C16—H16B109.5H32B—C32—H32C109.5
H16A—C16—H16B109.5O1—N1—O2122.39 (18)
C15—C16—H16C109.5O1—N1—C1118.43 (18)
H16A—C16—H16C109.5O2—N1—C1119.15 (18)
H16B—C16—H16C109.5O4—N2—O5122.67 (17)
C22—C17—C18121.79 (16)O4—N2—C17119.36 (18)
C22—C17—N2119.07 (17)O5—N2—C17117.95 (17)
C18—C17—N2119.10 (17)C4—O3—C7118.14 (14)
C17—C18—C19119.34 (17)C20—O6—C23118.71 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.533.378 (3)152
C7—H7B···O5ii0.972.773.263 (3)112
C18—H18···O4iii0.932.603.379 (3)141
C21—H21···O1iv0.932.703.346 (3)127
C22—H22···O1iv0.932.793.381 (3)123
Symmetry codes: (i) x+3, y, z+1; (ii) x+3, y+1, z+1; (iii) x+4, y+1, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H25NO3
Mr279.37
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)5.642 (3), 16.065 (8), 19.135 (7)
α, β, γ (°)107.410 (16), 90.610 (16), 99.780 (18)
V3)1627.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.19 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
15990, 7274, 3970
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.176, 0.97
No. of reflections7274
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.533.378 (3)152.2
C7—H7B···O5ii0.972.773.263 (3)112.3
C18—H18···O4iii0.932.603.379 (3)141.2
C21—H21···O1iv0.932.703.346 (3)126.8
C22—H22···O1iv0.932.793.381 (3)122.8
Symmetry codes: (i) x+3, y, z+1; (ii) x+3, y+1, z+1; (iii) x+4, y+1, z+1; (iv) x, y+1, z.
 

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcBurney, B., Foss, P. C. D., Reed, E. M., Shine, T. D., Glagovich, N. M., Westcott, B. L., Crundwell, G., Zeller, M. & Hunter, A. D. (2004). Acta Cryst. E60, o2179–o2180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds