organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(9-Anthr­yl)-1-(4-chloro­phen­yl)-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 23 September 2009; accepted 24 September 2009; online 3 October 2009)

In the title compound, C25H16ClN3O, the anthryl and chloro­phenyl substituents are on opposite sides of the triazole ring. The anthryl and benzene mean planes are aligned at 83.35 (2) and 89.09 (2)°, respectively, with respect to the triazole ring.

Related literature

For general background to the biological properties of chalcones, see: Corréa et al. (2001[Corréa, R., Pereira, M. A. S., Buffon, D., Santos, L., Filho, V. C., Santos, A. R. S. & Nunes, R. J. (2001). Arch. Pharm. Med. Chem. 334, 332-334.]). For the synthesis, see: Erhardt et al. (1985[Erhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.]); Kranz et al. (1980[Kranz, E., Krämer, W., Büchel, K. H., Brandes, W. & Forhberger, P. E. (1980). German Patent No. DE2832233.]). For similar crystal structures, see: Lu et al. (2009[Lu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396.]); Wang et al. (2009[Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.]); Yan et al. (2009[Yan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.]).

[Scheme 1]

Experimental

Crystal data
  • C25H16ClN3O

  • Mr = 409.86

  • Orthorhombic, P b c a

  • a = 13.1464 (11) Å

  • b = 13.5485 (12) Å

  • c = 22.0974 (19) Å

  • V = 3935.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.26 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.979

  • 19759 measured reflections

  • 3859 independent reflections

  • 3430 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.162

  • S = 1.12

  • 3859 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcone derivatives possess wide biological properties such as antimicrobial, antifungal, antileishmanial, antibacterial, antimalarial, analgesic, anti-inflammatory and chemopreventive activities (Corréa et al., 2001). Recently chalcone-containing derivatives received special attention. Our interest is the research and development of azole-derived chalcones as medicinal agents. We found that all the synthesized imidazole-derived chalcone compounds exhibited significant antimicrobial and anticancer activities, and have reported several crystal structues of nitroimidazole-containing chalcones (Lu et al., 2009; Wang et al., 2009b) and a triazole-derived phenyl compound(Yan et al., 2009c). In our ongoing research, here we would like to report the crystal structure of the first both triazole and anthracence derived chalcone.

In the crystal structure (Fig. 1), the title compound is non-planar, display a ' Y ' shape, with the anthryl ring and phenyl moiety on opposite sides of the triazole ring, the anthracene and benzene mean planes make dihedral angles of 83.35 (2) and 89.09 (2)°, respectively, with the plane of the triazole ring. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds.

Related literature top

For general background to the biological properties of chalcones, see: Corréa et al. (2001). For the synthesis, see: Erhardt et al. (1985); Kranz et al. (1980). For similar crystal structures, see: Lu et al. (2009); Wang et al. (2009); Yan et al. (2009).

Experimental top

Compound (I) was synthesized according to the procedure of Erhardt et al. (1985); Kranz et al., (1980). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of chloroform and acetone by slow evaporationat room temperature.

Refinement top

All the hydrogen atoms were placed at their geometrical positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Chalcone derivatives possess wide biological properties such as antimicrobial, antifungal, antileishmanial, antibacterial, antimalarial, analgesic, anti-inflammatory and chemopreventive activities (Corréa et al., 2001). Recently chalcone-containing derivatives received special attention. Our interest is the research and development of azole-derived chalcones as medicinal agents. We found that all the synthesized imidazole-derived chalcone compounds exhibited significant antimicrobial and anticancer activities, and have reported several crystal structues of nitroimidazole-containing chalcones (Lu et al., 2009; Wang et al., 2009b) and a triazole-derived phenyl compound(Yan et al., 2009c). In our ongoing research, here we would like to report the crystal structure of the first both triazole and anthracence derived chalcone.

In the crystal structure (Fig. 1), the title compound is non-planar, display a ' Y ' shape, with the anthryl ring and phenyl moiety on opposite sides of the triazole ring, the anthracene and benzene mean planes make dihedral angles of 83.35 (2) and 89.09 (2)°, respectively, with the plane of the triazole ring. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds.

For general background to the biological properties of chalcones, see: Corréa et al. (2001). For the synthesis, see: Erhardt et al. (1985); Kranz et al. (1980). For similar crystal structures, see: Lu et al. (2009); Wang et al. (2009); Yan et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the three-dimensional network.
(E)-3-(9-Anthryl)-1-(4-chlorophenyl)-2-(1H-1,2,4-triazol-1- yl)prop-2-en-1-one top
Crystal data top
C25H16ClN3OF(000) = 1696
Mr = 409.86Dx = 1.383 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6265 reflections
a = 13.1464 (11) Åθ = 2.4–27.5°
b = 13.5485 (12) ŵ = 0.22 mm1
c = 22.0974 (19) ÅT = 298 K
V = 3935.9 (6) Å3Block, yellow
Z = 80.26 × 0.12 × 0.10 mm
Data collection top
Bruker SMART
diffractometer
3859 independent reflections
Radiation source: fine-focus sealed tube3430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
φ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.946, Tmax = 0.979k = 1616
19759 measured reflectionsl = 1727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0638P)2 + 1.7945P]
where P = (Fo2 + 2Fc2)/3
3859 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C25H16ClN3OV = 3935.9 (6) Å3
Mr = 409.86Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.1464 (11) ŵ = 0.22 mm1
b = 13.5485 (12) ÅT = 298 K
c = 22.0974 (19) Å0.26 × 0.12 × 0.10 mm
Data collection top
Bruker SMART
diffractometer
3859 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3430 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.979Rint = 0.119
19759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.12Δρmax = 0.43 e Å3
3859 reflectionsΔρmin = 0.34 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30643 (17)1.1607 (2)0.39287 (11)0.0426 (6)
C20.27174 (18)1.0658 (2)0.40129 (11)0.0447 (6)
H20.23931.04810.43710.054*
C30.28585 (17)0.99743 (18)0.35589 (11)0.0391 (5)
H30.26070.93370.36040.047*
C40.33774 (15)1.02351 (17)0.30331 (9)0.0330 (5)
C50.37216 (18)1.11961 (18)0.29626 (11)0.0421 (6)
H50.40681.13730.26120.051*
C60.35564 (19)1.18896 (19)0.34055 (12)0.0474 (6)
H60.37721.25380.33530.057*
C70.35073 (16)0.95057 (16)0.25405 (10)0.0346 (5)
C80.45084 (15)0.95049 (15)0.22047 (9)0.0303 (5)
C90.3687 (2)0.9653 (2)0.11838 (12)0.0535 (7)
H90.30440.98630.13040.064*
C100.4936 (2)0.9244 (2)0.06792 (11)0.0484 (6)
H100.53450.91050.03470.058*
C110.54031 (16)0.94857 (17)0.24822 (9)0.0340 (5)
H110.59850.94970.22430.041*
C120.55381 (15)0.94475 (17)0.31479 (9)0.0327 (5)
C130.52315 (15)0.86077 (17)0.34745 (9)0.0332 (5)
C140.48195 (18)0.77419 (18)0.32006 (11)0.0406 (5)
H140.47330.77240.27830.049*
C150.4552 (2)0.6945 (2)0.35349 (13)0.0506 (6)
H150.42920.63890.33430.061*
C160.4662 (2)0.6944 (2)0.41698 (12)0.0517 (7)
H160.44700.63930.43940.062*
C170.5045 (2)0.7742 (2)0.44502 (11)0.0464 (6)
H170.51100.77350.48690.056*
C180.53536 (16)0.85998 (18)0.41238 (10)0.0376 (5)
C190.57685 (18)0.94139 (19)0.44096 (10)0.0423 (6)
H190.58260.94110.48290.051*
C200.61025 (17)1.02352 (18)0.40905 (10)0.0386 (5)
C210.6548 (2)1.1069 (2)0.43795 (12)0.0534 (7)
H210.66031.10750.47990.064*
C220.6890 (3)1.1848 (2)0.40624 (14)0.0653 (8)
H220.71771.23830.42630.078*
C230.6813 (2)1.1853 (2)0.34226 (13)0.0590 (7)
H230.70651.23860.32040.071*
C240.63764 (19)1.10861 (19)0.31269 (11)0.0450 (6)
H240.63211.11080.27080.054*
C250.60008 (16)1.02502 (17)0.34426 (9)0.0345 (5)
Cl10.28705 (6)1.24841 (6)0.44918 (4)0.0647 (3)
N40.39691 (19)0.95338 (19)0.06181 (9)0.0571 (6)
N50.52736 (15)0.91671 (17)0.12348 (9)0.0449 (5)
N60.44473 (13)0.94308 (14)0.15650 (8)0.0334 (4)
O10.28455 (12)0.89224 (14)0.24077 (9)0.0505 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0445 (12)0.0499 (15)0.0335 (12)0.0064 (11)0.0001 (9)0.0160 (11)
C20.0506 (14)0.0532 (16)0.0303 (12)0.0020 (11)0.0086 (10)0.0021 (11)
C30.0449 (12)0.0371 (13)0.0354 (12)0.0013 (10)0.0042 (9)0.0017 (10)
C40.0348 (11)0.0350 (12)0.0293 (11)0.0028 (9)0.0000 (8)0.0028 (9)
C50.0513 (13)0.0387 (13)0.0364 (13)0.0036 (10)0.0105 (10)0.0026 (10)
C60.0573 (15)0.0347 (13)0.0503 (15)0.0030 (11)0.0081 (11)0.0093 (11)
C70.0378 (11)0.0346 (12)0.0313 (11)0.0009 (9)0.0031 (8)0.0021 (9)
C80.0418 (11)0.0280 (11)0.0211 (10)0.0010 (8)0.0003 (8)0.0030 (8)
C90.0489 (14)0.078 (2)0.0332 (13)0.0122 (13)0.0078 (10)0.0027 (13)
C100.0687 (16)0.0541 (16)0.0225 (11)0.0060 (13)0.0009 (11)0.0051 (11)
C110.0397 (11)0.0380 (12)0.0244 (11)0.0011 (9)0.0025 (8)0.0015 (9)
C120.0365 (11)0.0386 (12)0.0230 (11)0.0049 (9)0.0012 (8)0.0014 (9)
C130.0358 (11)0.0377 (12)0.0260 (11)0.0070 (9)0.0000 (8)0.0019 (9)
C140.0520 (13)0.0389 (13)0.0309 (12)0.0042 (10)0.0024 (10)0.0025 (10)
C150.0654 (16)0.0412 (15)0.0454 (15)0.0044 (12)0.0060 (12)0.0003 (12)
C160.0632 (16)0.0476 (16)0.0444 (15)0.0039 (12)0.0039 (12)0.0151 (12)
C170.0566 (15)0.0524 (16)0.0303 (12)0.0013 (12)0.0055 (10)0.0108 (11)
C180.0423 (12)0.0432 (13)0.0272 (11)0.0060 (10)0.0009 (9)0.0012 (10)
C190.0568 (14)0.0494 (15)0.0208 (11)0.0048 (11)0.0032 (9)0.0036 (10)
C200.0487 (13)0.0406 (13)0.0264 (11)0.0074 (10)0.0045 (9)0.0051 (10)
C210.0813 (19)0.0464 (15)0.0324 (13)0.0027 (13)0.0121 (12)0.0104 (11)
C220.102 (2)0.0429 (16)0.0509 (17)0.0114 (15)0.0188 (16)0.0087 (13)
C230.087 (2)0.0419 (15)0.0486 (16)0.0120 (14)0.0113 (14)0.0063 (12)
C240.0604 (15)0.0420 (14)0.0325 (12)0.0027 (11)0.0076 (10)0.0040 (10)
C250.0397 (11)0.0376 (12)0.0261 (11)0.0057 (9)0.0041 (8)0.0021 (9)
Cl10.0712 (5)0.0703 (5)0.0526 (5)0.0044 (4)0.0062 (3)0.0339 (4)
N40.0731 (15)0.0724 (17)0.0258 (11)0.0103 (13)0.0114 (10)0.0013 (10)
N50.0533 (11)0.0574 (13)0.0240 (10)0.0118 (10)0.0013 (8)0.0069 (9)
N60.0422 (10)0.0347 (10)0.0234 (9)0.0036 (8)0.0032 (7)0.0042 (7)
O10.0446 (9)0.0519 (11)0.0550 (11)0.0086 (8)0.0035 (8)0.0199 (9)
Geometric parameters (Å, º) top
C1—C21.377 (4)C12—C131.406 (3)
C1—C61.379 (4)C13—C141.427 (3)
C1—Cl11.740 (2)C13—C181.444 (3)
C2—C31.378 (3)C14—C151.355 (4)
C2—H20.9300C14—H140.9300
C3—C41.393 (3)C15—C161.411 (4)
C3—H30.9300C15—H150.9300
C4—C51.387 (3)C16—C171.344 (4)
C4—C71.480 (3)C16—H160.9300
C5—C61.374 (3)C17—C181.427 (4)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—C191.383 (3)
C7—O11.211 (3)C19—C201.388 (4)
C7—C81.511 (3)C19—H190.9300
C8—C111.327 (3)C20—C211.424 (3)
C8—N61.419 (3)C20—C251.438 (3)
C9—N41.314 (3)C21—C221.344 (4)
C9—N61.342 (3)C21—H210.9300
C9—H90.9300C22—C231.417 (4)
C10—N51.310 (3)C22—H220.9300
C10—N41.337 (4)C23—C241.355 (4)
C10—H100.9300C23—H230.9300
C11—C121.483 (3)C24—C251.419 (3)
C11—H110.9300C24—H240.9300
C12—C251.406 (3)N5—N61.356 (3)
C2—C1—C6121.9 (2)C15—C14—H14119.2
C2—C1—Cl1119.53 (19)C13—C14—H14119.2
C6—C1—Cl1118.6 (2)C14—C15—C16121.1 (2)
C1—C2—C3119.0 (2)C14—C15—H15119.5
C1—C2—H2120.5C16—C15—H15119.5
C3—C2—H2120.5C17—C16—C15119.8 (2)
C2—C3—C4120.2 (2)C17—C16—H16120.1
C2—C3—H3119.9C15—C16—H16120.1
C4—C3—H3119.9C16—C17—C18121.9 (2)
C5—C4—C3119.4 (2)C16—C17—H17119.0
C5—C4—C7120.4 (2)C18—C17—H17119.0
C3—C4—C7120.0 (2)C19—C18—C17122.1 (2)
C6—C5—C4120.7 (2)C19—C18—C13119.5 (2)
C6—C5—H5119.7C17—C18—C13118.5 (2)
C4—C5—H5119.7C18—C19—C20122.1 (2)
C5—C6—C1118.8 (2)C18—C19—H19118.9
C5—C6—H6120.6C20—C19—H19118.9
C1—C6—H6120.6C19—C20—C21122.6 (2)
O1—C7—C4122.1 (2)C19—C20—C25119.2 (2)
O1—C7—C8120.4 (2)C21—C20—C25118.3 (2)
C4—C7—C8117.53 (18)C22—C21—C20121.8 (2)
C11—C8—N6120.60 (18)C22—C21—H21119.1
C11—C8—C7123.04 (19)C20—C21—H21119.1
N6—C8—C7116.10 (17)C21—C22—C23120.0 (3)
N4—C9—N6111.1 (2)C21—C22—H22120.0
N4—C9—H9124.5C23—C22—H22120.0
N6—C9—H9124.5C24—C23—C22120.5 (3)
N5—C10—N4116.1 (2)C24—C23—H23119.8
N5—C10—H10121.9C22—C23—H23119.8
N4—C10—H10121.9C23—C24—C25121.5 (2)
C8—C11—C12124.43 (19)C23—C24—H24119.3
C8—C11—H11117.8C25—C24—H24119.3
C12—C11—H11117.8C12—C25—C24122.7 (2)
C25—C12—C13120.81 (19)C12—C25—C20119.4 (2)
C25—C12—C11119.0 (2)C24—C25—C20117.9 (2)
C13—C12—C11120.2 (2)C9—N4—C10102.0 (2)
C12—C13—C14123.8 (2)C10—N5—N6102.22 (19)
C12—C13—C18118.9 (2)C9—N6—N5108.56 (19)
C14—C13—C18117.2 (2)C9—N6—C8130.66 (19)
C15—C14—C13121.5 (2)N5—N6—C8120.59 (17)
C6—C1—C2—C30.6 (4)C14—C13—C18—C19178.7 (2)
Cl1—C1—C2—C3178.79 (19)C12—C13—C18—C17179.7 (2)
C1—C2—C3—C42.3 (4)C14—C13—C18—C170.9 (3)
C2—C3—C4—C52.0 (3)C17—C18—C19—C20177.7 (2)
C2—C3—C4—C7178.6 (2)C13—C18—C19—C201.9 (3)
C3—C4—C5—C60.1 (4)C18—C19—C20—C21178.8 (2)
C7—C4—C5—C6176.6 (2)C18—C19—C20—C251.0 (3)
C4—C5—C6—C11.6 (4)C19—C20—C21—C22178.3 (3)
C2—C1—C6—C51.4 (4)C25—C20—C21—C221.5 (4)
Cl1—C1—C6—C5179.2 (2)C20—C21—C22—C230.1 (5)
C5—C4—C7—O1138.9 (2)C21—C22—C23—C241.5 (5)
C3—C4—C7—O137.7 (3)C22—C23—C24—C251.2 (5)
C5—C4—C7—C841.5 (3)C13—C12—C25—C24176.2 (2)
C3—C4—C7—C8142.0 (2)C11—C12—C25—C242.1 (3)
O1—C7—C8—C11129.5 (2)C13—C12—C25—C203.9 (3)
C4—C7—C8—C1150.1 (3)C11—C12—C25—C20177.82 (19)
O1—C7—C8—N644.7 (3)C23—C24—C25—C12179.6 (2)
C4—C7—C8—N6135.7 (2)C23—C24—C25—C200.4 (4)
N6—C8—C11—C12173.0 (2)C19—C20—C25—C121.9 (3)
C7—C8—C11—C121.0 (4)C21—C20—C25—C12178.2 (2)
C8—C11—C12—C25115.3 (3)C19—C20—C25—C24178.1 (2)
C8—C11—C12—C1366.4 (3)C21—C20—C25—C241.7 (3)
C25—C12—C13—C14175.7 (2)N6—C9—N4—C100.8 (3)
C11—C12—C13—C142.5 (3)N5—C10—N4—C90.4 (4)
C25—C12—C13—C183.0 (3)N4—C10—N5—N60.1 (3)
C11—C12—C13—C18178.76 (19)N4—C9—N6—N50.9 (3)
C12—C13—C14—C15178.8 (2)N4—C9—N6—C8175.9 (2)
C18—C13—C14—C150.1 (3)C10—N5—N6—C90.6 (3)
C13—C14—C15—C160.6 (4)C10—N5—N6—C8176.1 (2)
C14—C15—C16—C170.5 (4)C11—C8—N6—C9162.8 (3)
C15—C16—C17—C180.4 (4)C7—C8—N6—C922.9 (4)
C16—C17—C18—C19178.6 (2)C11—C8—N6—N511.6 (3)
C16—C17—C18—C131.1 (4)C7—C8—N6—N5162.7 (2)
C12—C13—C18—C190.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O1i0.932.483.381 (3)162
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H16ClN3O
Mr409.86
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.1464 (11), 13.5485 (12), 22.0974 (19)
V3)3935.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.26 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
19759, 3859, 3430
Rint0.119
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.162, 1.12
No. of reflections3859
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorréa, R., Pereira, M. A. S., Buffon, D., Santos, L., Filho, V. C., Santos, A. R. S. & Nunes, R. J. (2001). Arch. Pharm. Med. Chem. 334, 332–334.  Google Scholar
First citationErhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.  Google Scholar
First citationKranz, E., Krämer, W., Büchel, K. H., Brandes, W. & Forhberger, P. E. (1980). German Patent No. DE2832233.  Google Scholar
First citationLu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds