organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(9-Anthr­yl)-1-(4-fluoro­phen­yl)-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China, and bCollege of Pharmacy, The Third Military Medical University, Chongqing 400038, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 26 September 2009; accepted 26 September 2009; online 3 October 2009)

The C=C double-bond in the title compound, C25H16FN3O, has an E configuration. The dihedral angle between the fluoro­phenyl and triazole rings is 80.57 (2)°.

Related literature

For the synthesis, see: Erhardt et al. (1985[Erhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.]); Kranz et al. (1980[Kranz, E., Krämer, W., Büchel, K.-H., Brandes, W. & Forhberger, P.-E. (1980). German Patent No. DE2832233.]). For the pharmacological activity of azoles including imidazole and triazole derivatives, see: Luo et al. (2009[Luo, Y., Lu, Y.-H., Gan, L.-L., Zhou, C.-H., Wu, J., Geng, R.-X. & Zhang, Y.-Y. (2009). Arch. Pharm. Chem. Life Sci. 342, 386-393.]); Zhou et al. (2009[Zhou, C.-H., Gan, L.-L., Zhang, Y.-Y., Zhang, F.-F., Wang, G.-Z., Jin, L. & Geng, R.-X. (2009). Sci. China Ser. Chem. 52, 415-458.]). For related structures, see: Lu et al. (2009[Lu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396.]); Wang et al. (2009[Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.]); Yan et al. (2009[Yan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.]).

[Scheme 1]

Experimental

Crystal data
  • C25H16FN3O

  • Mr = 393.41

  • Orthorhombic, P b c a

  • a = 13.1115 (8) Å

  • b = 13.4737 (8) Å

  • c = 21.7019 (14) Å

  • V = 3833.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.991

  • 16309 measured reflections

  • 4187 independent reflections

  • 3550 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.152

  • S = 1.14

  • 4187 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones have been investigated for a long time due to important biological activities. We have already synthesized and reported several related structures of chalcones (Lu et al., 2009; Wang et al., 2009; Yan et al., 2009). Azole compounds including imidazole and triazole derivatives are important types of antimicrobial drugs in clinical use, and are excellent ligands with several N-atoms which could coordinate with many kinds of metals (Luo et al., 2009; Zhou et al., 2009). The anthracene moiety is well known for its high absorption co-efficient as well as high fluorescence yields. These interesting properties lead us to develop the title anthryl-triazole chalcone derivatives containing the pharmacophore (triazole) and fluorophore (anthracene), and these compounds exhibit good antimicrobial, antitumor and fluorescent properties. Here we present the title compound (I) crystal structure.

The structure of title compound, C25H16FN3O, has orthorhombic (Pbca) symmetry. It is of interest with respect to biological activity. In the structure, the dihedral angle between the benzene and triazole ring is 80.57 (2)°. Weak intermolecular C—H···O and C—H···N interactions contribute to the crystal packing.

Related literature top

For the synthesis, see: Erhardt et al. (1985); Kranz et al. (1980). For the pharmacological activity of azoles including imidazole and triazole derivatives, see: Luo et al. (2009); Zhou et al. (2009). For related structures, see: Lu et al. (2009); Wang et al. (2009); Yan et al. (2009).

Experimental top

Compound (I) was synthesized according to the procedure of Erhardt et al. (1985) and Kranz et al. (1980). Single crystals used in X-ray diffraction studies were grown in dichlormethane by slow evaporation at room temperature.

Refinement top

All the hydrogen atoms were placed at their geometrical positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Chalcones have been investigated for a long time due to important biological activities. We have already synthesized and reported several related structures of chalcones (Lu et al., 2009; Wang et al., 2009; Yan et al., 2009). Azole compounds including imidazole and triazole derivatives are important types of antimicrobial drugs in clinical use, and are excellent ligands with several N-atoms which could coordinate with many kinds of metals (Luo et al., 2009; Zhou et al., 2009). The anthracene moiety is well known for its high absorption co-efficient as well as high fluorescence yields. These interesting properties lead us to develop the title anthryl-triazole chalcone derivatives containing the pharmacophore (triazole) and fluorophore (anthracene), and these compounds exhibit good antimicrobial, antitumor and fluorescent properties. Here we present the title compound (I) crystal structure.

The structure of title compound, C25H16FN3O, has orthorhombic (Pbca) symmetry. It is of interest with respect to biological activity. In the structure, the dihedral angle between the benzene and triazole ring is 80.57 (2)°. Weak intermolecular C—H···O and C—H···N interactions contribute to the crystal packing.

For the synthesis, see: Erhardt et al. (1985); Kranz et al. (1980). For the pharmacological activity of azoles including imidazole and triazole derivatives, see: Luo et al. (2009); Zhou et al. (2009). For related structures, see: Lu et al. (2009); Wang et al. (2009); Yan et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
(E)-3-(9-Anthryl)-1-(4-fluorophenyl)-2-(1H-1,2,4-triazol-1- yl)prop-2-en-1-one top
Crystal data top
C25H16FN3OF(000) = 1632
Mr = 393.41Dx = 1.363 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5206 reflections
a = 13.1115 (8) Åθ = 2.4–27.6°
b = 13.4737 (8) ŵ = 0.09 mm1
c = 21.7019 (14) ÅT = 298 K
V = 3833.9 (4) Å3Block, yellow
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART
diffractometer
4187 independent reflections
Radiation source: fine-focus sealed tube3550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 166
Tmin = 0.982, Tmax = 0.991k = 1217
16309 measured reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0581P)2 + 1.3538P]
where P = (Fo2 + 2Fc2)/3
4187 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C25H16FN3OV = 3833.9 (4) Å3
Mr = 393.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.1115 (8) ŵ = 0.09 mm1
b = 13.4737 (8) ÅT = 298 K
c = 21.7019 (14) Å0.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART
diffractometer
4187 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3550 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.991Rint = 0.041
16309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.14Δρmax = 0.24 e Å3
4187 reflectionsΔρmin = 0.19 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33997 (13)0.03462 (14)0.19230 (8)0.0395 (4)
C20.28391 (14)0.00708 (17)0.14089 (9)0.0471 (5)
H20.25860.05720.13770.057*
C30.26557 (17)0.0751 (2)0.09435 (10)0.0613 (6)
H30.22960.05690.05920.074*
C40.30156 (18)0.1692 (2)0.10137 (12)0.0676 (7)
C50.35496 (19)0.19944 (19)0.15162 (13)0.0710 (7)
H50.37710.26480.15510.085*
C60.37565 (16)0.13104 (16)0.19739 (11)0.0544 (5)
H60.41360.14980.23170.065*
C70.35581 (14)0.03737 (14)0.24300 (8)0.0385 (4)
C80.45641 (13)0.03523 (13)0.27672 (8)0.0360 (4)
C90.37480 (17)0.02786 (19)0.38130 (9)0.0587 (6)
H90.31000.00690.36970.070*
C100.50043 (18)0.07070 (17)0.43119 (9)0.0542 (5)
H100.54150.08670.46470.065*
C110.54642 (14)0.03428 (14)0.24860 (8)0.0394 (4)
H110.60440.03100.27320.047*
C120.56121 (13)0.03800 (14)0.18104 (8)0.0376 (4)
C130.53007 (13)0.12230 (14)0.14735 (8)0.0392 (4)
C140.48685 (16)0.20863 (15)0.17516 (9)0.0475 (5)
H140.47830.21040.21770.057*
C150.45807 (18)0.28783 (18)0.14105 (11)0.0589 (6)
H150.43010.34300.16050.071*
C160.46980 (19)0.28793 (19)0.07665 (11)0.0634 (6)
H160.44850.34240.05370.076*
C170.51180 (17)0.20924 (18)0.04815 (10)0.0576 (6)
H170.51980.21050.00560.069*
C180.54443 (14)0.12368 (16)0.08176 (8)0.0437 (5)
C190.58943 (16)0.04302 (16)0.05307 (9)0.0488 (5)
H190.59680.04390.01050.059*
C200.62388 (14)0.03901 (15)0.08563 (9)0.0437 (5)
C210.67370 (18)0.12021 (18)0.05638 (10)0.0583 (6)
H210.68210.11950.01380.070*
C220.7087 (2)0.19767 (19)0.08895 (12)0.0696 (7)
H220.74120.24980.06890.083*
C230.6965 (2)0.20059 (18)0.15352 (12)0.0667 (7)
H230.72140.25450.17570.080*
C240.64870 (17)0.12541 (16)0.18361 (10)0.0532 (5)
H240.64080.12880.22610.064*
C250.61067 (14)0.04183 (14)0.15128 (8)0.0405 (4)
F10.28332 (14)0.23601 (15)0.05633 (9)0.1089 (7)
N10.45059 (11)0.04595 (11)0.34187 (7)0.0386 (4)
N20.40276 (16)0.04324 (16)0.43811 (8)0.0624 (5)
N30.53431 (13)0.07357 (14)0.37481 (7)0.0507 (4)
O10.29069 (10)0.09647 (12)0.25734 (7)0.0580 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0319 (9)0.0475 (11)0.0392 (9)0.0033 (8)0.0027 (7)0.0032 (8)
C20.0384 (10)0.0588 (12)0.0442 (11)0.0026 (9)0.0005 (8)0.0006 (9)
C30.0460 (11)0.0943 (19)0.0437 (11)0.0103 (12)0.0051 (9)0.0090 (12)
C40.0497 (12)0.0877 (19)0.0653 (15)0.0100 (13)0.0023 (11)0.0383 (14)
C50.0600 (14)0.0563 (14)0.097 (2)0.0019 (12)0.0040 (14)0.0270 (14)
C60.0499 (12)0.0502 (12)0.0632 (13)0.0028 (10)0.0088 (10)0.0064 (10)
C70.0342 (9)0.0441 (10)0.0372 (9)0.0024 (8)0.0023 (7)0.0008 (8)
C80.0386 (9)0.0398 (10)0.0297 (8)0.0014 (7)0.0009 (7)0.0012 (7)
C90.0463 (11)0.0879 (17)0.0418 (11)0.0146 (11)0.0088 (9)0.0002 (11)
C100.0641 (13)0.0643 (14)0.0343 (10)0.0054 (11)0.0020 (9)0.0053 (9)
C110.0350 (9)0.0499 (11)0.0334 (9)0.0006 (8)0.0030 (7)0.0003 (8)
C120.0307 (8)0.0506 (11)0.0315 (9)0.0065 (8)0.0011 (7)0.0026 (8)
C130.0324 (8)0.0494 (11)0.0358 (9)0.0089 (8)0.0008 (7)0.0002 (8)
C140.0499 (11)0.0516 (12)0.0411 (10)0.0046 (9)0.0025 (9)0.0013 (9)
C150.0624 (14)0.0503 (13)0.0641 (14)0.0032 (10)0.0060 (11)0.0028 (11)
C160.0622 (14)0.0642 (15)0.0637 (14)0.0088 (12)0.0056 (11)0.0229 (12)
C170.0559 (13)0.0763 (16)0.0405 (11)0.0025 (12)0.0027 (9)0.0155 (11)
C180.0378 (9)0.0573 (12)0.0360 (10)0.0068 (9)0.0002 (8)0.0032 (9)
C190.0485 (11)0.0691 (14)0.0288 (9)0.0086 (10)0.0025 (8)0.0007 (9)
C200.0389 (10)0.0542 (12)0.0381 (10)0.0091 (8)0.0022 (8)0.0093 (9)
C210.0662 (14)0.0628 (15)0.0460 (12)0.0052 (12)0.0095 (10)0.0147 (11)
C220.0804 (17)0.0574 (15)0.0710 (16)0.0056 (13)0.0183 (13)0.0151 (13)
C230.0755 (16)0.0506 (13)0.0741 (16)0.0068 (12)0.0109 (13)0.0064 (12)
C240.0554 (12)0.0562 (13)0.0481 (12)0.0005 (10)0.0085 (10)0.0039 (10)
C250.0355 (9)0.0472 (11)0.0389 (10)0.0084 (8)0.0027 (7)0.0014 (8)
F10.0917 (12)0.1308 (15)0.1043 (13)0.0117 (11)0.0058 (10)0.0780 (12)
N10.0392 (8)0.0445 (9)0.0321 (8)0.0036 (7)0.0021 (6)0.0009 (6)
N20.0652 (12)0.0856 (14)0.0365 (9)0.0080 (11)0.0098 (8)0.0014 (9)
N30.0491 (9)0.0681 (12)0.0350 (8)0.0111 (8)0.0023 (7)0.0072 (8)
O10.0419 (8)0.0665 (10)0.0657 (10)0.0116 (7)0.0041 (7)0.0224 (8)
Geometric parameters (Å, º) top
C1—C61.385 (3)C12—C251.412 (3)
C1—C21.387 (3)C13—C141.428 (3)
C1—C71.481 (3)C13—C181.436 (3)
C2—C31.385 (3)C14—C151.352 (3)
C2—H20.9300C14—H140.9300
C3—C41.362 (4)C15—C161.406 (3)
C3—H30.9300C15—H150.9300
C4—F11.350 (3)C16—C171.345 (3)
C4—C51.358 (4)C16—H160.9300
C5—C61.382 (3)C17—C181.430 (3)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—C191.385 (3)
C7—O11.208 (2)C19—C201.387 (3)
C7—C81.509 (2)C19—H190.9300
C8—C111.329 (2)C20—C211.424 (3)
C8—N11.423 (2)C20—C251.436 (3)
C9—N21.303 (3)C21—C221.342 (3)
C9—N11.334 (2)C21—H210.9300
C9—H90.9300C22—C231.411 (4)
C10—N31.302 (3)C22—H220.9300
C10—N21.341 (3)C23—C241.358 (3)
C10—H100.9300C23—H230.9300
C11—C121.480 (2)C24—C251.417 (3)
C11—H110.9300C24—H240.9300
C12—C131.411 (3)N1—N31.362 (2)
C6—C1—C2119.61 (18)C15—C14—H14119.3
C6—C1—C7120.50 (17)C13—C14—H14119.3
C2—C1—C7119.78 (18)C14—C15—C16120.9 (2)
C3—C2—C1120.1 (2)C14—C15—H15119.5
C3—C2—H2119.9C16—C15—H15119.5
C1—C2—H2119.9C17—C16—C15120.1 (2)
C4—C3—C2118.3 (2)C17—C16—H16120.0
C4—C3—H3120.8C15—C16—H16120.0
C2—C3—H3120.8C16—C17—C18121.6 (2)
F1—C4—C5118.2 (3)C16—C17—H17119.2
F1—C4—C3118.6 (3)C18—C17—H17119.2
C5—C4—C3123.2 (2)C19—C18—C17122.07 (18)
C4—C5—C6118.6 (2)C19—C18—C13119.44 (18)
C4—C5—H5120.7C17—C18—C13118.49 (19)
C6—C5—H5120.7C18—C19—C20122.34 (17)
C5—C6—C1120.1 (2)C18—C19—H19118.8
C5—C6—H6119.9C20—C19—H19118.8
C1—C6—H6119.9C19—C20—C21122.31 (19)
O1—C7—C1121.59 (17)C19—C20—C25119.16 (18)
O1—C7—C8120.36 (17)C21—C20—C25118.53 (19)
C1—C7—C8118.06 (16)C22—C21—C20121.3 (2)
C11—C8—N1120.33 (16)C22—C21—H21119.3
C11—C8—C7123.64 (16)C20—C21—H21119.3
N1—C8—C7115.66 (15)C21—C22—C23120.4 (2)
N2—C9—N1111.61 (19)C21—C22—H22119.8
N2—C9—H9124.2C23—C22—H22119.8
N1—C9—H9124.2C24—C23—C22120.6 (2)
N3—C10—N2116.04 (19)C24—C23—H23119.7
N3—C10—H10122.0C22—C23—H23119.7
N2—C10—H10122.0C23—C24—C25121.1 (2)
C8—C11—C12124.83 (16)C23—C24—H24119.4
C8—C11—H11117.6C25—C24—H24119.4
C12—C11—H11117.6C12—C25—C24122.70 (17)
C13—C12—C25120.59 (16)C12—C25—C20119.28 (17)
C13—C12—C11120.18 (17)C24—C25—C20118.02 (18)
C25—C12—C11119.17 (17)C9—N1—N3108.28 (15)
C12—C13—C14123.48 (17)C9—N1—C8131.20 (16)
C12—C13—C18119.09 (17)N3—N1—C8120.40 (14)
C14—C13—C18117.41 (17)C9—N2—C10101.93 (17)
C15—C14—C13121.49 (19)C10—N3—N1102.13 (16)
C6—C1—C2—C31.3 (3)C14—C13—C18—C19177.72 (18)
C7—C1—C2—C3177.61 (18)C12—C13—C18—C17179.52 (17)
C1—C2—C3—C41.7 (3)C14—C13—C18—C172.0 (3)
C2—C3—C4—F1179.6 (2)C17—C18—C19—C20178.12 (19)
C2—C3—C4—C50.3 (4)C13—C18—C19—C201.6 (3)
F1—C4—C5—C6178.8 (2)C18—C19—C20—C21177.50 (19)
C3—C4—C5—C61.3 (4)C18—C19—C20—C251.4 (3)
C4—C5—C6—C11.6 (4)C19—C20—C21—C22178.3 (2)
C2—C1—C6—C50.4 (3)C25—C20—C21—C220.6 (3)
C7—C1—C6—C5175.9 (2)C20—C21—C22—C230.2 (4)
C6—C1—C7—O1141.0 (2)C21—C22—C23—C240.3 (4)
C2—C1—C7—O135.2 (3)C22—C23—C24—C250.5 (4)
C6—C1—C7—C839.1 (2)C13—C12—C25—C24176.20 (17)
C2—C1—C7—C8144.71 (18)C11—C12—C25—C241.1 (3)
O1—C7—C8—C11131.1 (2)C13—C12—C25—C203.5 (3)
C1—C7—C8—C1148.8 (3)C11—C12—C25—C20179.16 (16)
O1—C7—C8—N141.8 (3)C23—C24—C25—C12179.6 (2)
C1—C7—C8—N1138.21 (17)C23—C24—C25—C200.2 (3)
N1—C8—C11—C12170.82 (17)C19—C20—C25—C121.2 (3)
C7—C8—C11—C121.8 (3)C21—C20—C25—C12179.87 (18)
C8—C11—C12—C1363.7 (3)C19—C20—C25—C24178.53 (18)
C8—C11—C12—C25118.9 (2)C21—C20—C25—C240.4 (3)
C25—C12—C13—C14175.05 (17)N2—C9—N1—N31.0 (3)
C11—C12—C13—C142.2 (3)N2—C9—N1—C8176.88 (19)
C25—C12—C13—C183.3 (3)C11—C8—N1—C9163.3 (2)
C11—C12—C13—C18179.43 (16)C7—C8—N1—C923.5 (3)
C12—C13—C14—C15179.98 (19)C11—C8—N1—N312.2 (3)
C18—C13—C14—C151.6 (3)C7—C8—N1—N3160.99 (17)
C13—C14—C15—C160.0 (3)N1—C9—N2—C100.7 (3)
C14—C15—C16—C171.2 (4)N3—C10—N2—C90.2 (3)
C15—C16—C17—C180.7 (4)N2—C10—N3—N10.4 (3)
C16—C17—C18—C19178.8 (2)C9—N1—N3—C100.8 (2)
C16—C17—C18—C130.9 (3)C8—N1—N3—C10177.23 (17)
C12—C13—C18—C190.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O1i0.932.483.354 (3)156
C5—H5···N3i0.932.553.434 (3)158
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H16FN3O
Mr393.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.1115 (8), 13.4737 (8), 21.7019 (14)
V3)3833.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
16309, 4187, 3550
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.152, 1.14
No. of reflections4187
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErhardt, H., Mildenberger, H., Handte, R., Sachse, B., Hartz, P. & Bürstell, H. (1985). German Patent No. DE3406908.  Google Scholar
First citationKranz, E., Krämer, W., Büchel, K.-H., Brandes, W. & Forhberger, P.-E. (1980). German Patent No. DE2832233.  Google Scholar
First citationLu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuo, Y., Lu, Y.-H., Gan, L.-L., Zhou, C.-H., Wu, J., Geng, R.-X. & Zhang, Y.-Y. (2009). Arch. Pharm. Chem. Life Sci. 342, 386–393.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, C.-H., Gan, L.-L., Zhang, Y.-Y., Zhang, F.-F., Wang, G.-Z., Jin, L. & Geng, R.-X. (2009). Sci. China Ser. Chem. 52, 415–458.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds