metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­aqua­bis­{μ-N-[N-(4-meth­­oxy-2-oxido­benzyl­­idene)glyc­yl]glycinato(3−)}cadmium(II)dicopper(II) dihydrate

aCollege of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: liuwl@yzu.edu.cn

(Received 27 September 2009; accepted 28 September 2009; online 3 October 2009)

In the title compound, [CdCu2(C12H11N2O5)2(H2O)3]·2H2O, the CuII atoms are in a square plane of N2O2 atoms contributed by the tetra­dentate Schiff base trianion. The CuII atoms are coordinated by one phenolate O atom, one imine N atom, one amido N atom and one carboxyl­ate O atom. The CdII atom is connected via the carboxyl­ate groups, forming a heterotrinuclear CuII–CdII–CuII system. The CdII atom is seven-coordinate in a penta­gonal-bipyramidal geometry with four O atoms from two carboxyl­ate groups and three aqua ligands. The heterotrinuclear mol­ecules are linked to the uncoordinated water mol­ecules by O—H⋯O hydrogen bonds into a three-dimensional framework.

Related literature

For the magnetic properties of heteronuclear Schiff-base complexes, see: Liu et al. (2004[Liu, W. L., Song, Y., Li, Y. Z., Zou, Y., Dang, D. B., Ni, C. L. & Meng, Q. J. (2004). Chem. Commun. pp. 2946-2947.]); Zou et al. (2003[Zou, Y., Liu, W. L., Gao, S., Xi, J. L. & Meng, Q. J. (2003). Chem. Commun. pp. 2946-2947.]); Wu et al. (2007[Wu, G., Hewitt, I. J., Mameri, S., Lan, Y. H., Clérac, R., Anson, C. E., Qiu, S. L. & Powell, A. K. (2007). Inorg. Chem. 46, 7229-7231.]); Costes et al. (2006[Costes, J. P., Dahan, F. & Wernsdorfer, W. (2006). Inorg. Chem. 45, 5-7.]). For their optical properties; see: Akine et al. (2008[Akine, S., Taniguchi, T. & Nabeshima, T. (2008). Inorg. Chem. 47, 3255-3264.]). For the synthesis, see: Miyasaka et al. (1996[Miyasaka, H., Matsumoto, N., Okawa, H., Re, N., Gallo, E. & Floriani, C. (1996). J. Am. Chem. Soc. 118, 981-994.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCu2(C12H11N2O5)2(H2O)3]·2H2O

  • Mr = 856.02

  • Triclinic, [P \overline 1]

  • a = 9.813 (2) Å

  • b = 12.547 (3) Å

  • c = 12.598 (3) Å

  • α = 94.175 (4)°

  • β = 103.168 (3)°

  • γ = 90.148 (4)°

  • V = 1506.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.529, Tmax = 0.619

  • 7383 measured reflections

  • 5169 independent reflections

  • 4763 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.05

  • 5169 reflections

  • 417 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11D⋯O14 0.85 1.91 2.715 (4) 158
O13—H13A⋯O6 0.85 2.14 2.987 (4) 175
O13—H13C⋯O1 0.85 2.21 2.829 (4) 129
O14—H14B⋯O9 0.85 2.48 3.045 (4) 125
O11—H11C⋯O7i 0.85 1.91 2.722 (4) 159
O12—H12D⋯O2ii 0.85 2.11 2.667 (4) 123
O12—H12E⋯O15iii 0.85 2.13 2.737 (4) 129
O14—H14A⋯O7iv 0.85 2.17 2.791 (4) 130
O15—H15B⋯O4v 0.85 2.55 3.067 (4) 121
O15—H15C⋯O9iv 0.85 2.36 2.934 (4) 126
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x, y, z-1; (iv) -x, -y+1, -z+1; (v) x, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the design and synthesis of Schiff base heteronuclear complexes that provide catalyst, biological activity, optical, magnetic materials (Wu et al., 2007; Costes et al., 2006; Liu et al., 2004; Zou et al., 2003; Akine et al., 2008) caused an increasing interest in coordination chemistry. One of the best strategies to design heterometallic species is the 'complex as ligand' approach (Miyasaka et al., 1996). In this article, we present the synthesis and structure of the title heterotrinuclear Schiff base complex derived from 4-methoxy-salicylaldehyde and glycylglycine.

The complex (I) is a asymmetric trinuclear [(CuL)2Cd(H2O)3] unit with the the L3- bound to CuII and CdII atoms and crystallizes in the triclinic space group P1 (Fig. 1). Two [CuL]- groups are connected by CdII cation in cis form to constitute a trinuclear CuII–CdII–CuII unit with Cu···Cu distances of 7.541 Å. [CuL]- anions have approximately square-planar structures. The Schiff base ligand L3- acts as a triple negatively charged quadridentate ONNO chelate and coordinated to the CuII atom via one phenolic oxygen, one imino nitrogen atom, one deprotonated amide nitrogen atom and one carboxylato oxygen atom. The Cu—O and Cu—N bond distances are in the range of 1.882 (2)–1.985 (2) Å and 1.889 (3)–1.923 (3) Å, respectively. The phenyl ring [C(1)—C(6)] / [C(13)—C(18)] and the chelate ring [O(1), C(1), C(6), C(7), N(1), Cu(1)] / [O(6), C(13), C(18), C(19), N(3), Cu(2)] make a small dihedral angle of 7.5 (2) ° / 8.9 (2) °, suggesting a large π-electron delocalization. The chelate rings [O(1), C(1), C(6), C(7), N(1), Cu(1)] and [O(6), C(13), C(18), C(19), N(3), Cu(2)] in the trinuclear moiety is almost parallel, with a small dihedral angle of 3.1 (2)°. The CdII atom is in a distorted pentagonal bipyramid environment, ligated by four carboxylato oxygen atoms (O(3), O(4), O(8), O(9)) arising from two [CuL]- units and three aqua ligands (O(11), O(12), O(13)). The seven Cd—O bonds in the structure are in the range of 2.258 (3) - 2.545 (3) Å. In the crystal structure, the hydrogen bonds (Table 1), O(11)–O(14), O(7)–O(11) and O(7)–O(14) formed a hexagon ring (Fig. 2(a)). The hexagon rings are further connected by CdII ions and hydrogen bonds composing two-dimensional framework in ac-plane. The two-dimensional frameworks are further connected via the intermolecular hydrogen bonds O(12)–O(2), O(12)–O(15) and O(15)–O(9) to constitute a three-dimensional network (Fig. 2(b)).

Related literature top

For the magnetic properties of heteronuclear Schiff-base complexes, see: Liu et al. (2004); Zou et al. (2003); Wu et al. (2007); Costes et al. (2006). For their optical properties; see: Akine et al.(2008). For the synthesis, see: Miyasaka et al. (1996).

Experimental top

Glycylglycine (5 mmol), 4-methoxy-salicylaldehyde (5 mmol) and LiOH (10 mmol) were dissolved in MeOH/H2O (30 ml, v:v = 1:1) and refluxed for 30 min. Then Cu(ClO4)2.6H2O (5 mmol) was added to the solution and the resulting solution was adjusted to 9–11 by 5 mol/L NaOH solution. After stirring at room temperature for 1 h, CdCl2.2.5H2O (2.5 mmol) was added. A violet precipitate was obtained immediately. After stirring for another 30 min and then filtrated, the precipitate was recrystallized from water. The violet crystals suitable for X-ray diffraction were obtained after one week. (yield 45% based on Cu(ClO4)2.6H2O).

Refinement top

The water H atoms in (I) were located in a difference Fourier map with a distance restraint of O—H = 0.85 Å and Uiso(H) =1.5Ueq(O). All other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93–0.97 Å and Uiso(H) set to 1.2 or 1.5Ueq(C) of the parent atom.

Structure description top

In recent years, the design and synthesis of Schiff base heteronuclear complexes that provide catalyst, biological activity, optical, magnetic materials (Wu et al., 2007; Costes et al., 2006; Liu et al., 2004; Zou et al., 2003; Akine et al., 2008) caused an increasing interest in coordination chemistry. One of the best strategies to design heterometallic species is the 'complex as ligand' approach (Miyasaka et al., 1996). In this article, we present the synthesis and structure of the title heterotrinuclear Schiff base complex derived from 4-methoxy-salicylaldehyde and glycylglycine.

The complex (I) is a asymmetric trinuclear [(CuL)2Cd(H2O)3] unit with the the L3- bound to CuII and CdII atoms and crystallizes in the triclinic space group P1 (Fig. 1). Two [CuL]- groups are connected by CdII cation in cis form to constitute a trinuclear CuII–CdII–CuII unit with Cu···Cu distances of 7.541 Å. [CuL]- anions have approximately square-planar structures. The Schiff base ligand L3- acts as a triple negatively charged quadridentate ONNO chelate and coordinated to the CuII atom via one phenolic oxygen, one imino nitrogen atom, one deprotonated amide nitrogen atom and one carboxylato oxygen atom. The Cu—O and Cu—N bond distances are in the range of 1.882 (2)–1.985 (2) Å and 1.889 (3)–1.923 (3) Å, respectively. The phenyl ring [C(1)—C(6)] / [C(13)—C(18)] and the chelate ring [O(1), C(1), C(6), C(7), N(1), Cu(1)] / [O(6), C(13), C(18), C(19), N(3), Cu(2)] make a small dihedral angle of 7.5 (2) ° / 8.9 (2) °, suggesting a large π-electron delocalization. The chelate rings [O(1), C(1), C(6), C(7), N(1), Cu(1)] and [O(6), C(13), C(18), C(19), N(3), Cu(2)] in the trinuclear moiety is almost parallel, with a small dihedral angle of 3.1 (2)°. The CdII atom is in a distorted pentagonal bipyramid environment, ligated by four carboxylato oxygen atoms (O(3), O(4), O(8), O(9)) arising from two [CuL]- units and three aqua ligands (O(11), O(12), O(13)). The seven Cd—O bonds in the structure are in the range of 2.258 (3) - 2.545 (3) Å. In the crystal structure, the hydrogen bonds (Table 1), O(11)–O(14), O(7)–O(11) and O(7)–O(14) formed a hexagon ring (Fig. 2(a)). The hexagon rings are further connected by CdII ions and hydrogen bonds composing two-dimensional framework in ac-plane. The two-dimensional frameworks are further connected via the intermolecular hydrogen bonds O(12)–O(2), O(12)–O(15) and O(15)–O(9) to constitute a three-dimensional network (Fig. 2(b)).

For the magnetic properties of heteronuclear Schiff-base complexes, see: Liu et al. (2004); Zou et al. (2003); Wu et al. (2007); Costes et al. (2006). For their optical properties; see: Akine et al.(2008). For the synthesis, see: Miyasaka et al. (1996).

Computing details top

Data collection: SMART (Burker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick 2008); molecular graphics: SHELXTL (Sheldrick 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. (a) A schematic representation of the two-dimensional structure formed via hydrogen bonds, viewed from the ac-plane, showing the hydrogen bond hexagon rings. (b) A packing diagram for (I), viewed down the b-axis, showing a three-dimensional framework connected by O—H···O hydrogen bonds (dashed lines).
Triaquabis{µ-N-[N-(4-methoxy-2-oxidobenzylidene)glycyl]glycinato(3-)}cadmium(II)dicopper(II) dihydrate top
Crystal data top
[CdCu2(C12H11N2O5)2(H2O)3]·2H2OZ = 2
Mr = 856.02F(000) = 860
Triclinic, P1Dx = 1.888 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.813 (2) ÅCell parameters from 6310 reflections
b = 12.547 (3) Åθ = 2.4–27.8°
c = 12.598 (3) ŵ = 2.18 mm1
α = 94.175 (4)°T = 296 K
β = 103.168 (3)°Block, violet
γ = 90.148 (4)°0.30 × 0.25 × 0.22 mm
V = 1506.0 (6) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5169 independent reflections
Radiation source: fine-focus sealed tube4763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.529, Tmax = 0.619k = 1114
7383 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.7984P]
where P = (Fo2 + 2Fc2)/3
5169 reflections(Δ/σ)max = 0.001
417 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[CdCu2(C12H11N2O5)2(H2O)3]·2H2Oγ = 90.148 (4)°
Mr = 856.02V = 1506.0 (6) Å3
Triclinic, P1Z = 2
a = 9.813 (2) ÅMo Kα radiation
b = 12.547 (3) ŵ = 2.18 mm1
c = 12.598 (3) ÅT = 296 K
α = 94.175 (4)°0.30 × 0.25 × 0.22 mm
β = 103.168 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5169 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4763 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 0.619Rint = 0.072
7383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 1.00 e Å3
5169 reflectionsΔρmin = 1.13 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54611 (4)0.14993 (3)0.11223 (4)0.03071 (14)
Cu20.10904 (4)0.15156 (3)0.32980 (3)0.02996 (14)
Cd10.20503 (2)0.285718 (19)0.19598 (2)0.03119 (12)
C10.5331 (4)0.0578 (3)0.1873 (3)0.0314 (7)
C20.4838 (4)0.1279 (3)0.2518 (3)0.0352 (8)
H20.41400.10580.28700.042*
C30.5367 (4)0.2297 (3)0.2644 (3)0.0368 (8)
C40.6384 (4)0.2668 (3)0.2106 (3)0.0399 (9)
H40.66980.33650.21560.048*
C50.6902 (4)0.1979 (3)0.1506 (3)0.0379 (8)
H50.76020.22160.11620.046*
C60.6440 (4)0.0933 (3)0.1375 (3)0.0318 (7)
C120.5260 (5)0.3950 (3)0.3460 (4)0.0538 (11)
H12A0.50080.43420.27580.081*
H12B0.47960.42660.39570.081*
H12C0.62550.39720.37360.081*
C70.7203 (4)0.0258 (3)0.0834 (3)0.0340 (8)
H70.79100.05670.05400.041*
C80.7864 (4)0.1400 (3)0.0230 (3)0.0363 (8)
H8A0.77990.11310.05220.044*
H8B0.88330.13640.06240.044*
C90.7392 (4)0.2552 (3)0.0264 (3)0.0309 (7)
C100.5513 (4)0.3681 (3)0.0622 (3)0.0351 (8)
H10A0.51750.39100.01090.042*
H10B0.61510.42270.10480.042*
C110.4297 (4)0.3510 (3)0.1151 (3)0.0319 (8)
C130.0359 (4)0.0660 (3)0.3442 (3)0.0305 (7)
C180.1321 (4)0.0824 (3)0.4113 (3)0.0335 (8)
C170.1393 (4)0.1828 (3)0.4521 (3)0.0386 (8)
H170.19920.19220.49840.046*
C160.0620 (4)0.2677 (3)0.4267 (3)0.0410 (9)
H160.06760.33320.45590.049*
C150.0253 (4)0.2527 (3)0.3556 (3)0.0371 (8)
C140.0404 (4)0.1550 (3)0.3168 (3)0.0344 (8)
H180.10210.14720.27170.041*
C240.1580 (5)0.3390 (3)0.2383 (4)0.0483 (10)
H24A0.09580.30780.17890.072*
H24B0.17930.41040.21520.072*
H24C0.24290.29680.26010.072*
C190.2290 (4)0.0041 (3)0.4348 (3)0.0347 (8)
H190.28870.02330.47820.042*
C200.3461 (4)0.1646 (3)0.4241 (3)0.0378 (8)
H20A0.34500.16840.50150.045*
H20B0.43830.13950.38380.045*
C210.3162 (4)0.2750 (3)0.3911 (3)0.0321 (7)
C220.1562 (4)0.3748 (3)0.3139 (3)0.0363 (8)
H22A0.13000.42710.37590.044*
H22B0.22780.40510.25860.044*
C230.0309 (4)0.3470 (3)0.2686 (3)0.0281 (7)
N10.6983 (3)0.0738 (2)0.0726 (2)0.0318 (6)
N20.6222 (3)0.2672 (2)0.0577 (3)0.0342 (7)
N30.2407 (3)0.0901 (2)0.4011 (2)0.0339 (7)
N40.2090 (3)0.2785 (2)0.3474 (3)0.0342 (7)
O10.4761 (3)0.03723 (19)0.1772 (2)0.0352 (6)
O20.8121 (3)0.3263 (2)0.0003 (2)0.0445 (7)
O30.4089 (3)0.2550 (2)0.1407 (2)0.0348 (6)
O40.3531 (3)0.4239 (2)0.1324 (2)0.0419 (6)
O50.4843 (3)0.2862 (2)0.3354 (2)0.0467 (7)
O60.0138 (3)0.02539 (18)0.3055 (2)0.0348 (6)
O70.3929 (3)0.3516 (2)0.4086 (2)0.0435 (7)
O80.0039 (3)0.24752 (19)0.2634 (2)0.0327 (5)
O90.0383 (3)0.41583 (19)0.2384 (2)0.0352 (6)
O100.0928 (3)0.3418 (2)0.3282 (2)0.0483 (7)
O110.3254 (3)0.3184 (2)0.3709 (2)0.0412 (6)
H11C0.41250.31350.37390.062*
H11D0.30800.38100.39420.062*
O120.0844 (3)0.2909 (2)0.0208 (2)0.0377 (6)
H12D0.00860.25480.01130.057*
H12E0.06570.35530.00740.057*
O130.2045 (3)0.0988 (2)0.1947 (3)0.0557 (8)
H13A0.13890.07840.22290.084*
H13C0.28250.07880.23180.084*
O140.2161 (3)0.4906 (2)0.4629 (2)0.0426 (6)
H14A0.25560.55060.46120.064*
H14B0.13090.49220.42860.064*
O150.1553 (3)0.4549 (2)0.9108 (3)0.0534 (8)
H15B0.23210.48410.94610.080*
H15C0.08890.49790.91220.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0256 (2)0.0291 (2)0.0397 (3)0.00437 (17)0.01238 (18)0.00152 (17)
Cu20.0280 (2)0.0263 (2)0.0380 (3)0.00544 (17)0.01270 (18)0.00209 (17)
Cd10.02616 (17)0.03008 (17)0.03877 (18)0.00474 (11)0.01123 (11)0.00016 (11)
C10.0277 (17)0.0302 (17)0.0338 (18)0.0049 (14)0.0037 (14)0.0031 (14)
C20.0284 (18)0.0325 (18)0.044 (2)0.0067 (14)0.0072 (15)0.0018 (15)
C30.0324 (19)0.0315 (18)0.042 (2)0.0008 (15)0.0007 (16)0.0022 (15)
C40.043 (2)0.0287 (18)0.041 (2)0.0074 (16)0.0050 (17)0.0007 (15)
C50.0335 (19)0.0363 (19)0.040 (2)0.0089 (15)0.0029 (16)0.0068 (15)
C60.0276 (17)0.0320 (18)0.0331 (18)0.0035 (14)0.0032 (14)0.0040 (14)
C120.064 (3)0.036 (2)0.059 (3)0.004 (2)0.006 (2)0.0156 (19)
C70.0263 (17)0.039 (2)0.0357 (19)0.0067 (14)0.0072 (14)0.0068 (15)
C80.0267 (18)0.044 (2)0.041 (2)0.0026 (15)0.0142 (15)0.0037 (16)
C90.0232 (17)0.041 (2)0.0287 (17)0.0014 (14)0.0068 (13)0.0010 (14)
C100.0295 (18)0.0327 (18)0.044 (2)0.0005 (15)0.0091 (15)0.0044 (15)
C110.0260 (18)0.0343 (19)0.0328 (18)0.0010 (15)0.0021 (14)0.0006 (14)
C130.0312 (18)0.0292 (17)0.0288 (17)0.0023 (14)0.0021 (14)0.0033 (13)
C180.0325 (19)0.0351 (19)0.0301 (18)0.0005 (15)0.0020 (14)0.0003 (14)
C170.042 (2)0.036 (2)0.0361 (19)0.0030 (16)0.0065 (16)0.0047 (15)
C160.047 (2)0.0324 (19)0.040 (2)0.0014 (16)0.0001 (17)0.0103 (15)
C150.041 (2)0.0307 (18)0.0338 (19)0.0055 (15)0.0017 (16)0.0005 (14)
C140.0355 (19)0.0317 (18)0.0347 (18)0.0034 (15)0.0049 (15)0.0027 (14)
C240.047 (2)0.034 (2)0.065 (3)0.0058 (17)0.017 (2)0.0012 (18)
C190.0321 (19)0.038 (2)0.0352 (19)0.0047 (15)0.0110 (15)0.0008 (15)
C200.0291 (19)0.040 (2)0.046 (2)0.0027 (15)0.0148 (16)0.0004 (16)
C210.0223 (17)0.0376 (19)0.0341 (18)0.0021 (14)0.0051 (14)0.0071 (14)
C220.0350 (19)0.0316 (18)0.043 (2)0.0064 (15)0.0115 (16)0.0000 (15)
C230.0285 (17)0.0270 (17)0.0263 (16)0.0073 (14)0.0022 (13)0.0016 (13)
N10.0251 (15)0.0350 (16)0.0362 (16)0.0046 (12)0.0101 (12)0.0006 (12)
N20.0273 (15)0.0343 (16)0.0435 (17)0.0026 (12)0.0125 (13)0.0047 (13)
N30.0316 (16)0.0325 (16)0.0398 (16)0.0005 (12)0.0136 (13)0.0008 (12)
N40.0304 (16)0.0314 (15)0.0434 (17)0.0078 (12)0.0140 (13)0.0022 (12)
O10.0319 (13)0.0284 (13)0.0490 (15)0.0075 (10)0.0160 (11)0.0050 (11)
O20.0309 (14)0.0480 (16)0.0585 (17)0.0004 (12)0.0160 (13)0.0110 (13)
O30.0306 (13)0.0312 (13)0.0480 (15)0.0059 (10)0.0198 (11)0.0047 (11)
O40.0326 (14)0.0335 (14)0.0608 (18)0.0093 (11)0.0144 (12)0.0000 (12)
O50.0508 (17)0.0351 (14)0.0559 (17)0.0065 (12)0.0130 (14)0.0120 (12)
O60.0366 (14)0.0241 (12)0.0479 (15)0.0053 (10)0.0172 (11)0.0054 (10)
O70.0290 (14)0.0411 (15)0.0608 (17)0.0061 (11)0.0156 (12)0.0093 (13)
O80.0304 (13)0.0287 (12)0.0420 (14)0.0065 (10)0.0141 (11)0.0045 (10)
O90.0332 (14)0.0265 (12)0.0469 (15)0.0008 (10)0.0112 (11)0.0030 (10)
O100.0637 (19)0.0301 (14)0.0515 (17)0.0137 (13)0.0121 (14)0.0079 (12)
O110.0296 (13)0.0465 (15)0.0452 (15)0.0062 (11)0.0071 (11)0.0082 (12)
O120.0313 (13)0.0406 (14)0.0419 (14)0.0023 (11)0.0088 (11)0.0053 (11)
O130.0466 (17)0.0364 (15)0.093 (2)0.0109 (13)0.0331 (17)0.0098 (15)
O140.0462 (16)0.0375 (14)0.0413 (15)0.0083 (12)0.0054 (12)0.0002 (11)
O150.0424 (17)0.0470 (17)0.070 (2)0.0006 (13)0.0068 (15)0.0164 (15)
Geometric parameters (Å, º) top
Cu1—O11.887 (3)C11—O41.224 (5)
Cu1—N21.889 (3)C11—O31.296 (4)
Cu1—N11.916 (3)C13—O61.315 (4)
Cu1—O31.960 (2)C13—C141.411 (5)
Cu2—O61.882 (2)C13—C181.427 (5)
Cu2—N41.898 (3)C18—C171.402 (5)
Cu2—N31.922 (3)C18—C191.431 (5)
Cu2—O81.985 (2)C17—C161.370 (6)
Cd1—O112.258 (3)C17—H170.9300
Cd1—O122.260 (3)C16—C151.395 (6)
Cd1—O32.288 (2)C16—H160.9300
Cd1—O132.345 (3)C15—O101.364 (5)
Cd1—O82.380 (2)C15—C141.372 (5)
Cd1—O92.432 (3)C14—H180.9300
Cd1—O42.545 (3)C24—O101.425 (5)
C1—O11.320 (4)C24—H24A0.9600
C1—C21.396 (5)C24—H24B0.9600
C1—C61.431 (5)C24—H24C0.9600
C2—C31.387 (5)C19—N31.282 (5)
C2—H20.9300C19—H190.9300
C3—O51.366 (5)C20—N31.459 (5)
C3—C41.391 (6)C20—C211.522 (5)
C4—C51.359 (6)C20—H20A0.9700
C4—H40.9300C20—H20B0.9700
C5—C61.399 (5)C21—O71.260 (4)
C5—H50.9300C21—N41.296 (5)
C6—C71.434 (5)C22—N41.440 (5)
C12—O51.433 (5)C22—C231.501 (5)
C12—H12A0.9600C22—H22A0.9700
C12—H12B0.9600C22—H22B0.9700
C12—H12C0.9600C23—O91.230 (4)
C7—N11.281 (5)C23—O81.296 (4)
C7—H70.9300O11—H11C0.8502
C8—N11.464 (5)O11—H11D0.8500
C8—C91.520 (5)O12—H12D0.8499
C8—H8A0.9700O12—H12E0.8500
C8—H8B0.9700O13—H13A0.8499
C9—O21.249 (5)O13—H13C0.8500
C9—N21.302 (5)O14—H14A0.8500
C10—N21.450 (5)O14—H14B0.8500
C10—C111.515 (5)O15—H15B0.8500
C10—H10A0.9700O15—H15C0.8499
C10—H10B0.9700
O1—Cu1—N2175.76 (13)O6—C13—C18125.0 (3)
O1—Cu1—N196.85 (12)C14—C13—C18117.3 (3)
N2—Cu1—N184.08 (13)C17—C18—C13118.9 (3)
O1—Cu1—O395.95 (11)C17—C18—C19117.1 (3)
N2—Cu1—O383.07 (12)C13—C18—C19123.9 (3)
N1—Cu1—O3167.14 (12)C16—C17—C18122.9 (4)
O6—Cu2—N4177.36 (13)C16—C17—H17118.6
O6—Cu2—N397.34 (12)C18—C17—H17118.6
N4—Cu2—N383.47 (13)C17—C16—C15117.7 (3)
O6—Cu2—O896.54 (11)C17—C16—H16121.1
N4—Cu2—O882.68 (12)C15—C16—H16121.1
N3—Cu2—O8166.11 (12)O10—C15—C14123.4 (4)
O11—Cd1—O12167.94 (10)O10—C15—C16114.9 (3)
O11—Cd1—O390.74 (10)C14—C15—C16121.7 (4)
O12—Cd1—O391.08 (9)C15—C14—C13121.3 (4)
O11—Cd1—O1396.65 (11)C15—C14—H18119.4
O12—Cd1—O1395.42 (11)C13—C14—H18119.4
O3—Cd1—O1381.39 (10)O10—C24—H24A109.5
O11—Cd1—O888.27 (9)O10—C24—H24B109.5
O12—Cd1—O894.42 (9)H24A—C24—H24B109.5
O3—Cd1—O8158.18 (9)O10—C24—H24C109.5
O13—Cd1—O877.08 (10)H24A—C24—H24C109.5
O11—Cd1—O986.73 (9)H24B—C24—H24C109.5
O12—Cd1—O985.32 (9)N3—C19—C18125.7 (3)
O3—Cd1—O9147.44 (9)N3—C19—H19117.2
O13—Cd1—O9131.15 (10)C18—C19—H19117.2
O8—Cd1—O954.25 (8)N3—C20—C21109.8 (3)
O11—Cd1—O491.13 (10)N3—C20—H20A109.7
O12—Cd1—O480.39 (9)C21—C20—H20A109.7
O3—Cd1—O453.67 (9)N3—C20—H20B109.7
O13—Cd1—O4134.52 (10)C21—C20—H20B109.7
O8—Cd1—O4148.13 (8)H20A—C20—H20B108.2
O9—Cd1—O493.90 (8)O7—C21—N4127.0 (4)
O1—C1—C2118.2 (3)O7—C21—C20119.4 (3)
O1—C1—C6124.2 (3)N4—C21—C20113.6 (3)
C2—C1—C6117.6 (3)N4—C22—C23108.3 (3)
C3—C2—C1121.4 (4)N4—C22—H22A110.0
C3—C2—H2119.3C23—C22—H22A110.0
C1—C2—H2119.3N4—C22—H22B110.0
O5—C3—C2114.5 (4)C23—C22—H22B110.0
O5—C3—C4124.5 (3)H22A—C22—H22B108.4
C2—C3—C4121.0 (4)O9—C23—O8120.6 (3)
C5—C4—C3117.9 (4)O9—C23—C22121.7 (3)
C5—C4—H4121.1O8—C23—C22117.7 (3)
C3—C4—H4121.1C7—N1—C8122.0 (3)
C4—C5—C6123.6 (4)C7—N1—Cu1124.7 (3)
C4—C5—H5118.2C8—N1—Cu1113.2 (2)
C6—C5—H5118.2C9—N2—C10124.0 (3)
C5—C6—C1118.3 (3)C9—N2—Cu1118.8 (3)
C5—C6—C7117.1 (3)C10—N2—Cu1117.0 (2)
C1—C6—C7124.3 (3)C19—N3—C20122.9 (3)
O5—C12—H12A109.5C19—N3—Cu2123.0 (3)
O5—C12—H12B109.5C20—N3—Cu2113.8 (2)
H12A—C12—H12B109.5C21—N4—C22124.0 (3)
O5—C12—H12C109.5C21—N4—Cu2119.2 (3)
H12A—C12—H12C109.5C22—N4—Cu2116.8 (2)
H12B—C12—H12C109.5C1—O1—Cu1124.3 (2)
N1—C7—C6124.8 (3)C11—O3—Cu1115.3 (2)
N1—C7—H7117.6C11—O3—Cd197.6 (2)
C6—C7—H7117.6Cu1—O3—Cd1146.97 (13)
N1—C8—C9110.0 (3)C11—O4—Cd187.5 (2)
N1—C8—H8A109.7C3—O5—C12117.5 (3)
C9—C8—H8A109.7C13—O6—Cu2123.8 (2)
N1—C8—H8B109.7C23—O8—Cu2114.2 (2)
C9—C8—H8B109.7C23—O8—Cd192.9 (2)
H8A—C8—H8B108.2Cu2—O8—Cd1151.75 (12)
O2—C9—N2127.3 (4)C23—O9—Cd192.2 (2)
O2—C9—C8119.4 (3)C15—O10—C24117.8 (3)
N2—C9—C8113.2 (3)Cd1—O11—H11C109.4
N2—C10—C11107.5 (3)Cd1—O11—H11D109.4
N2—C10—H10A110.2H11C—O11—H11D109.5
C11—C10—H10A110.2Cd1—O12—H12D109.3
N2—C10—H10B110.2Cd1—O12—H12E109.4
C11—C10—H10B110.2H12D—O12—H12E109.5
H10A—C10—H10B108.5Cd1—O13—H13A109.1
O4—C11—O3121.0 (3)Cd1—O13—H13C109.4
O4—C11—C10121.9 (3)H13A—O13—H13C109.5
O3—C11—C10117.1 (3)H14A—O14—H14B109.5
O6—C13—C14117.7 (3)H15B—O15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11D···O140.851.912.715 (4)158
O13—H13A···O60.852.142.987 (4)175
O13—H13C···O10.852.212.829 (4)129
O14—H14B···O90.852.483.045 (4)125
O11—H11C···O7i0.851.912.722 (4)159
O12—H12D···O2ii0.852.112.667 (4)123
O12—H12E···O15iii0.852.132.737 (4)129
O14—H14A···O7iv0.852.172.791 (4)130
O15—H15B···O4v0.852.553.067 (4)121
O15—H15C···O9iv0.852.362.934 (4)126
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z1; (iv) x, y+1, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[CdCu2(C12H11N2O5)2(H2O)3]·2H2O
Mr856.02
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.813 (2), 12.547 (3), 12.598 (3)
α, β, γ (°)94.175 (4), 103.168 (3), 90.148 (4)
V3)1506.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.529, 0.619
No. of measured, independent and
observed [I > 2σ(I)] reflections
7383, 5169, 4763
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.05
No. of reflections5169
No. of parameters417
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 1.13

Computer programs: SMART (Burker, 2002), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick 2008), SHELXTL (Sheldrick 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11D···O140.851.912.715 (4)158.1
O13—H13A···O60.852.142.987 (4)175.4
O13—H13C···O10.852.212.829 (4)129.1
O14—H14B···O90.852.483.045 (4)124.7
O11—H11C···O7i0.851.912.722 (4)159.3
O12—H12D···O2ii0.852.112.667 (4)122.8
O12—H12E···O15iii0.852.132.737 (4)128.5
O14—H14A···O7iv0.852.172.791 (4)129.9
O15—H15B···O4v0.852.553.067 (4)120.6
O15—H15C···O9iv0.852.362.934 (4)125.6
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z1; (iv) x, y+1, z+1; (v) x, y, z+1.
 

Acknowledgements

This work was supported by SRF for ROCS, SEM and Yangzhou University.

References

First citationAkine, S., Taniguchi, T. & Nabeshima, T. (2008). Inorg. Chem. 47, 3255–3264.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCostes, J. P., Dahan, F. & Wernsdorfer, W. (2006). Inorg. Chem. 45, 5–7.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, W. L., Song, Y., Li, Y. Z., Zou, Y., Dang, D. B., Ni, C. L. & Meng, Q. J. (2004). Chem. Commun. pp. 2946–2947.  Google Scholar
First citationMiyasaka, H., Matsumoto, N., Okawa, H., Re, N., Gallo, E. & Floriani, C. (1996). J. Am. Chem. Soc. 118, 981–994.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, G., Hewitt, I. J., Mameri, S., Lan, Y. H., Clérac, R., Anson, C. E., Qiu, S. L. & Powell, A. K. (2007). Inorg. Chem. 46, 7229–7231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZou, Y., Liu, W. L., Gao, S., Xi, J. L. & Meng, Q. J. (2003). Chem. Commun. pp. 2946–2947.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds