metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(3-Methylphenyl)(tri­phenylphosphonio)methanide-κC]tri­phenyl­phospho­rane}(penta­fluoro­phenyl-κC)gold(I) di­ethyl ether solvate

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: hgr@sun.ac.za

(Received 5 October 2009; accepted 11 October 2009; online 17 October 2009)

The metal atom in the title ylid–gold(I) adduct, [Au(C6F5)(C26H23P)]·C4H10O, exists in a linear coordination environment [C—Au—C = 174.1 (2)°]. The mol­ecule has a short intra­molecular contact involving an aromatic H atom (Au⋯H = 2.64 Å); two adjacent mol­ecules are linked by an Au⋯Hylid inter­action (Au⋯H = 3.14 Å).

Related literature

For Au⋯H inter­actions, see: Baukova et al. (1995[Baukova, T. V., Kuz'mina, L. G., Oleinikova, N. A. & Lemenovskii, D. A. (1995). Izv. Akad. Nauk. Ser. Khim. pp. 2032-2034.], 1997[Baukova, T. V., Kuz'mina, L. G., Oleinikova, N. A., Lemenovskii, D. A. & Blumenfel'd, A. L. (1997). J. Organomet. Chem. 530, 27-38.]), Friedrichs & Jones (2004a[Friedrichs, S. & Jones, P. G. (2004a). Z. Naturforsch. Teil B, 59, 49-57.], 2004b[Friedrichs, S. & Jones, P. G. (2004b). Z. Naturforsch. Teil B, 59, 793-801.], 2004c[Friedrichs, S. & Jones, P. G. (2004c). Z. Naturforsch. Teil B, 59, 1429-1437.]); Räisänen et al. (2007[Räisänen, M. T., Runeberg, N., Klinga, M., Nieger, M., Bolte, M., Pyykkö, P., Leskelä, M. & Repo, T. (2007). Inorg. Chem. 46, 9954-9960.]) (Au⋯H inter­actions). For related crystal structures; see: Usón et al. (1986[Usón, R., Laguna, A., Laguna, M., Lázaro, I., Morata, A., Jones, P. G. & Sheldrick, G. M. (1986). J. Chem. Soc. Dalton Trans. pp. 669-675.], 1987[Usón, R., Laguna, A., Laguna, M., Lázaro, I. & Jones, P. G. (1987). Organometallics, 6, 2326-2321.], 1990[Usón, R., Laguna, A., Laguna, M., Fraila, M. N., Lázaro, I., Gimeno, M. C., Jones, P. G., Reihs, C. & Sheldrick, G. M. (1990). J. Chem. Soc. Dalton Trans. pp. 333-338.]). For the synthesis of the phospho­rane, see: Friedrich & Henning (1959[Friedrich, K. & Henning, H. (1959). Chem. Ber. 92, 2756-2760.]); Horner et al. (1962[Horner, L., Hoffmann, H., Klink, W., Ertel, H. & Toscano, V. G. (1962). Chem. Ber. 95, 581-601.]). For the synthesis of the gold reactant and a side-product, see: Usón et al. (1989[Usón, R., Laguna, A. & Laguna, M. (1989). Inorg. Synth. 26, 85-91.]); Coetzee et al. (2007[Coetzee, J., Gabrielli, W. F., Coetzee, K., Schuster, O., Nogai, S. D., Cronje, S. & Raubenheimer, H. G. (2007). Angew. Chem. Int. Ed. 46, 2497-2500.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C6F5)(C26H23P)]·C4H10O

  • Mr = 804.56

  • Orthorhombic, P b c a

  • a = 21.4958 (10) Å

  • b = 12.4634 (6) Å

  • c = 23.3126 (11) Å

  • V = 6245.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.82 mm−1

  • T = 100 K

  • 0.24 × 0.21 × 0.19 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.328, Tmax = 0.400

  • 37154 measured reflections

  • 7453 independent reflections

  • 5638 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.080

  • S = 1.03

  • 7453 reflections

  • 398 parameters

  • H-atom parameters constrained

  • Δρmax = 1.85 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]; Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The hydrogen atom H132 of a PPh3 phenyl group approaches the gold centre quite closely, the distance of 2.64 Å is at the lower end of the range for Au···H interactions, 2.60 to 3.07 Å, as described by Baukova et al. (1995, 1997), Friedrichs & Jones (2004a, b, c) and Räisänen et al. (2007). The proton at the ylide carbon atom furthermore links two formula units together that are related by a centre of inversion (symmetry code i = –x, –y+1, –z+1). Another Au···H contact is formed by H23A of the diethyl ether solvent which approaches the gold centre at about 3.04 Å.

Gold(I) ylide complexes thus could represent an interesting field to study Au···H interactions also with other techniques e.g. NMR, which has been reported by Baukova et al. (1997).

Related compounds to (I) exhibiting similar geometric properties were reported by Usón et al. (1986, 1987, 1990). The compound reported in the latest publication also exhibits a Au···H interaction with a separation of 3.08 Å; the molecules are linked to form chains related by 21 screw operations instead of the dimers found in (I).

Related literature top

For Au···H interactions, see: Baukova et al. (1995, 1997), Friedrichs & Jones (2004a, 2004b, 2004c); Räisänen et al. (2007) (Au···H interactions). For related crystal structures; see: Usón et al. (1986, 1987, 1990). For the synthesis of the phosphorane, see: Friedrich & Henning (1959); Horner et al. (1962). For the synthesis of the gold reactant and a side-product, see: Usón et al. (1989); Coetzee et al. (2007).

Experimental top

1,3-Bis[(triphenyl-λ5-phosphoranyl)methyl]benzene was prepared according to a modified literature procedure (Friedrich & Henning, 1959; Horner et al., 1962). A suspension of 1,3-bis[(triphenylphosphonio)methyl]benzene(2+) dibromide (0.790 g, 1.00 mmol) and Ag2O in a 1:1 ethanol/dichloromethane solvent mixture (60 ml) was stirred for 2 h at room temperature. A suspension of [Au(C6F5)(tht)] (tht = tetrahydrothiophene; 0.640 g, 1.40 mmol; Usón et al., 1989) in 10 ml of dichloromethane was added to this mixture and stirred for 2 h. The grey suspension was filtered through MgSO4 to give a clear, colourless solution. The filtrate was concentrated to dryness yielding a colourless crystalline powder (0.380 g). Crystals of (I) and [Au(C6F5)(tht)] (Coetzee et al., 2007) suitable for single-crystal X-ray diffraction studies were obtained from a solution of the crude mixture in diethyl ether stored at -10 °C for six days.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95, 1.00 and 0.98 Å for aromatic and aliphatic CH and CH3 groups, respectively) and constrained to ride on their parent atoms; Uiso(H) values were set at 1.2 times Ueq(C) for CH groups and 1.5 times Ueq(C) for CH3 groups.

The maximum residual electron density of 1.85 e Å-3 is located 0.91 Å next to Au1.

Structure description top

The hydrogen atom H132 of a PPh3 phenyl group approaches the gold centre quite closely, the distance of 2.64 Å is at the lower end of the range for Au···H interactions, 2.60 to 3.07 Å, as described by Baukova et al. (1995, 1997), Friedrichs & Jones (2004a, b, c) and Räisänen et al. (2007). The proton at the ylide carbon atom furthermore links two formula units together that are related by a centre of inversion (symmetry code i = –x, –y+1, –z+1). Another Au···H contact is formed by H23A of the diethyl ether solvent which approaches the gold centre at about 3.04 Å.

Gold(I) ylide complexes thus could represent an interesting field to study Au···H interactions also with other techniques e.g. NMR, which has been reported by Baukova et al. (1997).

Related compounds to (I) exhibiting similar geometric properties were reported by Usón et al. (1986, 1987, 1990). The compound reported in the latest publication also exhibits a Au···H interaction with a separation of 3.08 Å; the molecules are linked to form chains related by 21 screw operations instead of the dimers found in (I).

For Au···H interactions, see: Baukova et al. (1995, 1997), Friedrichs & Jones (2004a, 2004b, 2004c); Räisänen et al. (2007) (Au···H interactions). For related crystal structures; see: Usón et al. (1986, 1987, 1990). For the synthesis of the phosphorane, see: Friedrich & Henning (1959); Horner et al. (1962). For the synthesis of the gold reactant and a side-product, see: Usón et al. (1989); Coetzee et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Atwood & Barbour, 2003; Barbour, 2001); software used to prepare material for publication: X-SEED (Atwood & Barbour, 2003; Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), ellipsoids are drawn at the 50% probability level, hydrogen atoms are omitted for clarity.
[(3-Methylphenyl)(triphenylphosphonio)methanide- κC](pentafluorophenyl-κC)gold(I) diethyl ether solvate top
Crystal data top
[Au(C6F5)(C26H23P)]·C4H10OF(000) = 3168
Mr = 804.56Dx = 1.711 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6992 reflections
a = 21.4958 (10) Åθ = 2.5–27.5°
b = 12.4634 (6) ŵ = 4.82 mm1
c = 23.3126 (11) ÅT = 100 K
V = 6245.7 (5) Å3Block, colourless
Z = 80.24 × 0.21 × 0.19 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
7453 independent reflections
Radiation source: fine-focus sealed tube5638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2824
Tmin = 0.328, Tmax = 0.400k = 1611
37154 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0346P)2 + 6.9717P]
where P = (Fo2 + 2Fc2)/3
7453 reflections(Δ/σ)max = 0.002
398 parametersΔρmax = 1.85 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Au(C6F5)(C26H23P)]·C4H10OV = 6245.7 (5) Å3
Mr = 804.56Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 21.4958 (10) ŵ = 4.82 mm1
b = 12.4634 (6) ÅT = 100 K
c = 23.3126 (11) Å0.24 × 0.21 × 0.19 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
7453 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5638 reflections with I > 2σ(I)
Tmin = 0.328, Tmax = 0.400Rint = 0.053
37154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.03Δρmax = 1.85 e Å3
7453 reflectionsΔρmin = 0.67 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.096503 (7)0.573244 (13)0.454691 (7)0.01725 (6)
P10.14663 (5)0.42332 (9)0.55425 (4)0.0171 (2)
F120.21626 (11)0.7003 (2)0.40628 (11)0.0292 (6)
F130.22767 (12)0.8617 (2)0.33206 (12)0.0335 (7)
F140.12514 (12)0.9566 (2)0.28610 (11)0.0249 (6)
F150.01023 (12)0.8856 (2)0.31645 (12)0.0330 (7)
F160.00304 (11)0.7257 (2)0.39183 (11)0.0310 (6)
O10.11904 (14)0.5774 (2)0.26772 (13)0.0227 (7)
C10.08815 (19)0.4286 (4)0.49980 (19)0.0203 (9)
H10.04690.42960.51960.024*
C20.0881 (2)0.3335 (4)0.45888 (19)0.0249 (10)
C30.0413 (2)0.2581 (4)0.4614 (2)0.0320 (12)
H30.01010.26320.49020.038*
C40.0397 (2)0.1714 (4)0.4205 (2)0.0365 (13)
C50.0861 (2)0.1670 (5)0.3799 (2)0.0372 (13)
H50.08510.11060.35250.045*
C60.1326 (2)0.2381 (4)0.3770 (2)0.0353 (13)
H60.16420.23140.34870.042*
C70.1340 (2)0.3227 (4)0.41656 (19)0.0303 (11)
H70.16670.37390.41460.036*
C80.0120 (3)0.0927 (5)0.4248 (3)0.0498 (16)
H8A0.04910.12190.40600.075*
H8B0.02110.07880.46530.075*
H8C0.00020.02560.40600.075*
C110.10611 (19)0.7047 (3)0.40330 (17)0.0172 (9)
C120.16270 (19)0.7447 (4)0.38523 (18)0.0195 (9)
C130.1703 (2)0.8267 (4)0.34713 (18)0.0205 (9)
C140.1191 (2)0.8752 (4)0.32374 (18)0.0206 (9)
C150.0609 (2)0.8402 (4)0.33975 (19)0.0216 (10)
C160.05562 (19)0.7576 (4)0.37831 (18)0.0207 (9)
C210.2296 (2)0.5865 (4)0.2633 (2)0.0350 (12)
H21C0.26830.55570.27820.052*
H21A0.22800.66320.27240.052*
H21B0.22800.57690.22160.052*
C220.1742 (2)0.5300 (4)0.29069 (19)0.0245 (10)
H22B0.17530.45230.28180.029*
H22A0.17530.53890.33290.029*
C230.0638 (2)0.5271 (4)0.28810 (19)0.0248 (10)
H23A0.06220.53010.33050.030*
H23B0.06290.45090.27610.030*
C240.0090 (2)0.5867 (4)0.2628 (2)0.0293 (11)
H24C0.02980.55370.27610.044*
H24B0.01100.58310.22080.044*
H24A0.01040.66190.27510.044*
C1110.14231 (19)0.3051 (3)0.59881 (18)0.0178 (9)
C1120.14187 (19)0.2042 (4)0.57311 (18)0.0201 (9)
H1120.14410.19830.53250.024*
C1130.1381 (2)0.1128 (4)0.6065 (2)0.0230 (10)
H1130.13860.04420.58870.028*
C1140.1338 (2)0.1205 (4)0.6654 (2)0.0248 (10)
H1140.13020.05750.68810.030*
C1150.1346 (2)0.2208 (4)0.69140 (19)0.0264 (10)
H1150.13220.22630.73200.032*
C1160.1388 (2)0.3131 (4)0.65806 (19)0.0237 (10)
H1160.13940.38160.67590.028*
C1210.1370 (2)0.5378 (4)0.60048 (18)0.0184 (9)
C1220.0777 (2)0.5769 (4)0.61363 (19)0.0244 (10)
H1220.04210.54510.59660.029*
C1230.0709 (2)0.6616 (4)0.65137 (19)0.0276 (11)
H1230.03050.68760.66030.033*
C1240.1227 (2)0.7089 (4)0.67619 (19)0.0294 (11)
H1240.11810.76790.70160.035*
C1250.1811 (2)0.6696 (4)0.66366 (19)0.0277 (11)
H1250.21670.70140.68100.033*
C1260.1887 (2)0.5845 (4)0.62621 (18)0.0226 (10)
H1260.22920.55790.61810.027*
C1310.22506 (19)0.4264 (4)0.52592 (17)0.0192 (9)
C1320.2439 (2)0.5107 (4)0.49073 (18)0.0231 (10)
H1320.21560.56700.48190.028*
C1330.3034 (2)0.5126 (4)0.46867 (19)0.0258 (11)
H1330.31560.56950.44400.031*
C1340.3454 (2)0.4325 (4)0.4821 (2)0.0259 (10)
H1340.38630.43450.46670.031*
C1350.3276 (2)0.3490 (4)0.5181 (2)0.0268 (11)
H1350.35640.29420.52790.032*
C1360.2679 (2)0.3461 (4)0.53952 (18)0.0228 (10)
H1360.25570.28880.56390.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01701 (9)0.01638 (9)0.01837 (9)0.00076 (7)0.00176 (6)0.00163 (7)
P10.0167 (5)0.0165 (5)0.0182 (5)0.0004 (4)0.0008 (4)0.0008 (5)
F120.0152 (13)0.0308 (16)0.0415 (16)0.0013 (11)0.0021 (11)0.0149 (13)
F130.0204 (14)0.0361 (17)0.0440 (17)0.0037 (12)0.0033 (12)0.0152 (14)
F140.0281 (14)0.0190 (14)0.0276 (14)0.0012 (11)0.0025 (11)0.0099 (11)
F150.0203 (14)0.0330 (16)0.0457 (17)0.0007 (12)0.0079 (12)0.0189 (14)
F160.0161 (13)0.0355 (16)0.0415 (16)0.0047 (12)0.0013 (11)0.0166 (14)
O10.0248 (16)0.0184 (16)0.0249 (16)0.0031 (13)0.0042 (13)0.0023 (14)
C10.018 (2)0.021 (2)0.023 (2)0.0021 (19)0.0045 (16)0.0004 (19)
C20.038 (3)0.013 (2)0.023 (2)0.0031 (19)0.013 (2)0.0001 (19)
C30.035 (3)0.023 (3)0.039 (3)0.008 (2)0.014 (2)0.001 (2)
C40.033 (3)0.023 (3)0.053 (3)0.005 (2)0.026 (3)0.005 (3)
C50.038 (3)0.044 (3)0.030 (3)0.016 (3)0.008 (2)0.003 (2)
C60.034 (3)0.040 (3)0.032 (3)0.014 (3)0.008 (2)0.003 (2)
C70.038 (3)0.029 (3)0.023 (2)0.011 (2)0.008 (2)0.002 (2)
C80.045 (4)0.045 (4)0.060 (4)0.010 (3)0.000 (3)0.000 (3)
C110.019 (2)0.015 (2)0.018 (2)0.0028 (17)0.0018 (16)0.0026 (17)
C120.017 (2)0.019 (2)0.022 (2)0.0065 (18)0.0032 (17)0.0010 (18)
C130.015 (2)0.021 (2)0.025 (2)0.0046 (18)0.0034 (17)0.0007 (19)
C140.028 (2)0.013 (2)0.020 (2)0.0008 (19)0.0007 (18)0.0010 (18)
C150.018 (2)0.019 (2)0.028 (2)0.0034 (18)0.0064 (18)0.0010 (19)
C160.016 (2)0.020 (2)0.025 (2)0.0031 (18)0.0018 (17)0.0019 (19)
C210.024 (3)0.028 (3)0.053 (3)0.005 (2)0.002 (2)0.009 (3)
C220.026 (2)0.019 (2)0.028 (2)0.006 (2)0.004 (2)0.002 (2)
C230.027 (3)0.022 (2)0.024 (2)0.007 (2)0.0041 (19)0.003 (2)
C240.022 (2)0.031 (3)0.035 (3)0.001 (2)0.004 (2)0.005 (2)
C1110.016 (2)0.015 (2)0.022 (2)0.0023 (17)0.0001 (17)0.0072 (18)
C1120.018 (2)0.023 (2)0.020 (2)0.0008 (19)0.0009 (17)0.0016 (19)
C1130.017 (2)0.020 (2)0.032 (3)0.0004 (18)0.0015 (18)0.002 (2)
C1140.019 (2)0.020 (2)0.035 (3)0.0006 (19)0.0027 (19)0.012 (2)
C1150.028 (3)0.029 (3)0.022 (2)0.001 (2)0.0016 (19)0.006 (2)
C1160.023 (2)0.022 (2)0.026 (2)0.0012 (19)0.0022 (18)0.0012 (19)
C1210.020 (2)0.018 (2)0.017 (2)0.0005 (18)0.0006 (17)0.0026 (17)
C1220.019 (2)0.027 (3)0.027 (2)0.002 (2)0.0063 (18)0.003 (2)
C1230.032 (3)0.023 (3)0.028 (3)0.009 (2)0.004 (2)0.001 (2)
C1240.046 (3)0.019 (3)0.023 (2)0.001 (2)0.004 (2)0.003 (2)
C1250.033 (3)0.025 (3)0.025 (2)0.008 (2)0.001 (2)0.004 (2)
C1260.019 (2)0.022 (2)0.026 (2)0.0018 (19)0.0013 (17)0.003 (2)
C1310.021 (2)0.020 (2)0.0165 (19)0.0008 (19)0.0022 (16)0.0042 (19)
C1320.018 (2)0.027 (3)0.024 (2)0.0000 (19)0.0022 (18)0.005 (2)
C1330.022 (2)0.032 (3)0.024 (2)0.005 (2)0.0027 (18)0.003 (2)
C1340.019 (2)0.029 (3)0.030 (2)0.003 (2)0.0031 (18)0.008 (2)
C1350.020 (2)0.025 (3)0.035 (3)0.007 (2)0.002 (2)0.007 (2)
C1360.021 (2)0.023 (2)0.024 (2)0.0021 (18)0.0013 (18)0.003 (2)
Geometric parameters (Å, º) top
Au1—C112.040 (4)C22—H22B0.9900
Au1—C12.094 (4)C22—H22A0.9900
Au1—H1322.6396C23—C241.511 (6)
Au1—H1i3.1400C23—H23A0.9900
P1—C11.788 (4)C23—H23B0.9900
P1—C1211.800 (5)C24—H24C0.9800
P1—C1111.805 (4)C24—H24B0.9800
P1—C1311.811 (4)C24—H24A0.9800
F12—C121.368 (5)C111—C1161.387 (6)
F13—C131.355 (5)C111—C1121.392 (6)
F14—C141.348 (5)C112—C1131.382 (6)
F15—C151.342 (5)C112—H1120.9500
F16—C161.359 (5)C113—C1141.381 (6)
O1—C231.425 (5)C113—H1130.9500
O1—C221.430 (5)C114—C1151.388 (6)
C1—C21.522 (6)C114—H1140.9500
C1—H11.0000C115—C1161.392 (6)
C2—C31.378 (7)C115—H1150.9500
C2—C71.401 (7)C116—H1160.9500
C3—C41.442 (7)C121—C1261.390 (6)
C3—H30.9500C121—C1221.399 (6)
C4—C51.375 (7)C122—C1231.382 (6)
C4—C81.486 (7)C122—H1220.9500
C5—C61.337 (8)C123—C1241.387 (7)
C5—H50.9500C123—H1230.9500
C6—C71.401 (7)C124—C1251.379 (7)
C6—H60.9500C124—H1240.9500
C7—H70.9500C125—C1261.383 (6)
C8—H8A0.9800C125—H1250.9500
C8—H8B0.9800C126—H1260.9500
C8—H8C0.9800C131—C1321.393 (6)
C11—C121.380 (6)C131—C1361.396 (6)
C11—C161.397 (6)C132—C1331.379 (6)
C12—C131.364 (6)C132—H1320.9500
C13—C141.368 (6)C133—C1341.382 (7)
C14—C151.377 (6)C133—H1330.9500
C15—C161.371 (6)C134—C1351.391 (7)
C21—C221.522 (6)C134—H1340.9500
C21—H21C0.9800C135—C1361.376 (6)
C21—H21A0.9800C135—H1350.9500
C21—H21B0.9800C136—H1360.9500
C11—Au1—C1174.05 (16)O1—C22—H22A110.2
C11—Au1—H13293.8C21—C22—H22A110.2
C1—Au1—H13286.4H22B—C22—H22A108.5
C11—Au1—H1i102.7O1—C23—C24107.6 (4)
C1—Au1—H1i79.1O1—C23—H23A110.2
H132—Au1—H1i155.0C24—C23—H23A110.2
C1—P1—C121108.4 (2)O1—C23—H23B110.2
C1—P1—C111113.7 (2)C24—C23—H23B110.2
C121—P1—C111107.3 (2)H23A—C23—H23B108.5
C1—P1—C131113.3 (2)C23—C24—H24C109.5
C121—P1—C131108.0 (2)C23—C24—H24B109.5
C111—P1—C131106.0 (2)H24C—C24—H24B109.5
C23—O1—C22112.6 (3)C23—C24—H24A109.5
C2—C1—P1114.6 (3)H24C—C24—H24A109.5
C2—C1—Au1110.8 (3)H24B—C24—H24A109.5
P1—C1—Au1109.2 (2)C116—C111—C112119.6 (4)
C2—C1—H1107.3C116—C111—P1121.1 (3)
P1—C1—H1107.3C112—C111—P1119.3 (3)
Au1—C1—H1107.3C113—C112—C111120.2 (4)
C3—C2—C7118.6 (4)C113—C112—H112119.9
C3—C2—C1120.3 (4)C111—C112—H112119.9
C7—C2—C1121.0 (4)C114—C113—C112120.4 (4)
C2—C3—C4120.0 (5)C114—C113—H113119.8
C2—C3—H3120.0C112—C113—H113119.8
C4—C3—H3120.0C113—C114—C115119.7 (4)
C5—C4—C3117.9 (5)C113—C114—H114120.1
C5—C4—C8124.3 (5)C115—C114—H114120.1
C3—C4—C8117.8 (5)C114—C115—C116120.1 (4)
C6—C5—C4123.4 (5)C114—C115—H115120.0
C6—C5—H5118.3C116—C115—H115120.0
C4—C5—H5118.3C111—C116—C115120.0 (4)
C5—C6—C7118.8 (5)C111—C116—H116120.0
C5—C6—H6120.6C115—C116—H116120.0
C7—C6—H6120.6C126—C121—C122119.2 (4)
C6—C7—C2121.4 (5)C126—C121—P1119.9 (3)
C6—C7—H7119.3C122—C121—P1120.8 (3)
C2—C7—H7119.3C123—C122—C121120.2 (4)
C4—C8—H8A109.5C123—C122—H122119.9
C4—C8—H8B109.5C121—C122—H122119.9
H8A—C8—H8B109.5C122—C123—C124120.3 (5)
C4—C8—H8C109.5C122—C123—H123119.9
H8A—C8—H8C109.5C124—C123—H123119.9
H8B—C8—H8C109.5C125—C124—C123119.5 (4)
C12—C11—C16112.8 (4)C125—C124—H124120.3
C12—C11—Au1123.9 (3)C123—C124—H124120.3
C16—C11—Au1123.0 (3)C124—C125—C126120.9 (4)
C13—C12—F12115.9 (4)C124—C125—H125119.6
C13—C12—C11125.0 (4)C126—C125—H125119.6
F12—C12—C11119.1 (4)C125—C126—C121120.0 (4)
F13—C13—C12121.2 (4)C125—C126—H126120.0
F13—C13—C14119.1 (4)C121—C126—H126120.0
C12—C13—C14119.7 (4)C132—C131—C136118.9 (4)
F14—C14—C13121.0 (4)C132—C131—P1120.1 (3)
F14—C14—C15120.2 (4)C136—C131—P1121.1 (3)
C13—C14—C15118.9 (4)C133—C132—C131120.1 (4)
F15—C15—C16121.0 (4)C133—C132—H132120.0
F15—C15—C14119.6 (4)C131—C132—H132120.0
C16—C15—C14119.4 (4)C132—C133—C134120.7 (4)
F16—C16—C15116.6 (4)C132—C133—H133119.7
F16—C16—C11119.1 (4)C134—C133—H133119.7
C15—C16—C11124.3 (4)C133—C134—C135119.8 (4)
C22—C21—H21C109.5C133—C134—H134120.1
C22—C21—H21A109.5C135—C134—H134120.1
H21C—C21—H21A109.5C136—C135—C134119.7 (4)
C22—C21—H21B109.5C136—C135—H135120.2
H21C—C21—H21B109.5C134—C135—H135120.2
H21A—C21—H21B109.5C135—C136—C131120.9 (4)
O1—C22—C21107.4 (4)C135—C136—H136119.5
O1—C22—H22B110.2C131—C136—H136119.5
C21—C22—H22B110.2
C121—P1—C1—C2177.0 (3)C12—C11—C16—F16179.3 (4)
C111—P1—C1—C257.8 (4)Au1—C11—C16—F165.0 (6)
C131—P1—C1—C263.2 (4)C12—C11—C16—C150.3 (6)
C121—P1—C1—Au158.0 (3)Au1—C11—C16—C15174.1 (3)
C111—P1—C1—Au1177.18 (19)C23—O1—C22—C21177.0 (4)
C131—P1—C1—Au161.8 (3)C22—O1—C23—C24177.8 (4)
H132—Au1—C1—C299.3C1—P1—C111—C116125.8 (4)
H1i—Au1—C1—C2101.2C121—P1—C111—C1166.0 (4)
H132—Au1—C1—P127.9C131—P1—C111—C116109.1 (4)
H1i—Au1—C1—P1131.6C1—P1—C111—C11253.6 (4)
P1—C1—C2—C3108.3 (4)C121—P1—C111—C112173.4 (3)
Au1—C1—C2—C3127.6 (4)C131—P1—C111—C11271.5 (4)
P1—C1—C2—C774.1 (5)C116—C111—C112—C1130.1 (6)
Au1—C1—C2—C750.0 (5)P1—C111—C112—C113179.5 (3)
C7—C2—C3—C41.0 (7)C111—C112—C113—C1141.1 (6)
C1—C2—C3—C4176.6 (4)C112—C113—C114—C1151.5 (7)
C2—C3—C4—C50.4 (7)C113—C114—C115—C1161.0 (7)
C2—C3—C4—C8179.5 (5)C112—C111—C116—C1150.4 (6)
C3—C4—C5—C60.7 (8)P1—C111—C116—C115179.0 (3)
C8—C4—C5—C6179.4 (5)C114—C115—C116—C1110.0 (7)
C4—C5—C6—C71.1 (8)C1—P1—C121—C126147.8 (4)
C5—C6—C7—C20.5 (7)C111—P1—C121—C12689.0 (4)
C3—C2—C7—C60.6 (7)C131—P1—C121—C12624.7 (4)
C1—C2—C7—C6177.0 (4)C1—P1—C121—C12236.0 (4)
H132—Au1—C11—C1212.5C111—P1—C121—C12287.2 (4)
H1i—Au1—C11—C12173.6C131—P1—C121—C122159.1 (4)
H132—Au1—C11—C16173.8C126—C121—C122—C1230.7 (7)
H1i—Au1—C11—C1612.7P1—C121—C122—C123176.9 (4)
C16—C11—C12—C130.1 (6)C121—C122—C123—C1240.4 (7)
Au1—C11—C12—C13174.2 (3)C122—C123—C124—C1251.0 (7)
C16—C11—C12—F12180.0 (4)C123—C124—C125—C1260.7 (7)
Au1—C11—C12—F125.7 (6)C124—C125—C126—C1210.3 (7)
F12—C12—C13—F130.7 (6)C122—C121—C126—C1251.0 (6)
C11—C12—C13—F13179.4 (4)P1—C121—C126—C125177.3 (3)
F12—C12—C13—C14179.6 (4)C1—P1—C131—C13256.4 (4)
C11—C12—C13—C140.3 (7)C121—P1—C131—C13263.6 (4)
F13—C13—C14—F140.1 (6)C111—P1—C131—C132178.2 (3)
C12—C13—C14—F14179.8 (4)C1—P1—C131—C136124.7 (4)
F13—C13—C14—C15179.2 (4)C121—P1—C131—C136115.3 (4)
C12—C13—C14—C150.5 (7)C111—P1—C131—C1360.7 (4)
F14—C14—C15—F151.9 (6)C136—C131—C132—C1331.7 (6)
C13—C14—C15—F15178.8 (4)P1—C131—C132—C133179.4 (3)
F14—C14—C15—C16179.7 (4)C131—C132—C133—C1341.4 (7)
C13—C14—C15—C160.4 (7)C132—C133—C134—C1350.1 (7)
F15—C15—C16—F160.7 (6)C133—C134—C135—C1360.8 (7)
C14—C15—C16—F16179.1 (4)C134—C135—C136—C1310.5 (7)
F15—C15—C16—C11178.4 (4)C132—C131—C136—C1350.8 (6)
C14—C15—C16—C110.0 (7)P1—C131—C136—C135179.7 (3)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Au(C6F5)(C26H23P)]·C4H10O
Mr804.56
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)21.4958 (10), 12.4634 (6), 23.3126 (11)
V3)6245.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)4.82
Crystal size (mm)0.24 × 0.21 × 0.19
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.328, 0.400
No. of measured, independent and
observed [I > 2σ(I)] reflections
37154, 7453, 5638
Rint0.053
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.080, 1.03
No. of reflections7453
No. of parameters398
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.85, 0.67

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Atwood & Barbour, 2003; Barbour, 2001).

 

Acknowledgements

We would like to thank the National Research Foundation (NRF) of South Africa and Mintek (KC) for financial support.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBaukova, T. V., Kuz'mina, L. G., Oleinikova, N. A. & Lemenovskii, D. A. (1995). Izv. Akad. Nauk. Ser. Khim. pp. 2032–2034.  Google Scholar
First citationBaukova, T. V., Kuz'mina, L. G., Oleinikova, N. A., Lemenovskii, D. A. & Blumenfel'd, A. L. (1997). J. Organomet. Chem. 530, 27–38.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoetzee, J., Gabrielli, W. F., Coetzee, K., Schuster, O., Nogai, S. D., Cronje, S. & Raubenheimer, H. G. (2007). Angew. Chem. Int. Ed. 46, 2497–2500.  Web of Science CSD CrossRef CAS Google Scholar
First citationFriedrich, K. & Henning, H. (1959). Chem. Ber. 92, 2756–2760.  CrossRef CAS Web of Science Google Scholar
First citationFriedrichs, S. & Jones, P. G. (2004a). Z. Naturforsch. Teil B, 59, 49–57.  CAS Google Scholar
First citationFriedrichs, S. & Jones, P. G. (2004b). Z. Naturforsch. Teil B, 59, 793–801.  CAS Google Scholar
First citationFriedrichs, S. & Jones, P. G. (2004c). Z. Naturforsch. Teil B, 59, 1429–1437.  CAS Google Scholar
First citationHorner, L., Hoffmann, H., Klink, W., Ertel, H. & Toscano, V. G. (1962). Chem. Ber. 95, 581–601.  CrossRef CAS Web of Science Google Scholar
First citationRäisänen, M. T., Runeberg, N., Klinga, M., Nieger, M., Bolte, M., Pyykkö, P., Leskelä, M. & Repo, T. (2007). Inorg. Chem. 46, 9954–9960.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsón, R., Laguna, A. & Laguna, M. (1989). Inorg. Synth. 26, 85–91.  Google Scholar
First citationUsón, R., Laguna, A., Laguna, M., Fraila, M. N., Lázaro, I., Gimeno, M. C., Jones, P. G., Reihs, C. & Sheldrick, G. M. (1990). J. Chem. Soc. Dalton Trans. pp. 333–338.  Google Scholar
First citationUsón, R., Laguna, A., Laguna, M., Lázaro, I. & Jones, P. G. (1987). Organometallics, 6, 2326–2321.  Google Scholar
First citationUsón, R., Laguna, A., Laguna, M., Lázaro, I., Morata, A., Jones, P. G. & Sheldrick, G. M. (1986). J. Chem. Soc. Dalton Trans. pp. 669–675.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds