organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Nitro-2-(piperidin-1-yl)benzaldehyde

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Organique, UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire
*Correspondence e-mail: josephngouan@yahoo.fr

(Received 11 October 2009; accepted 22 October 2009; online 28 October 2009)

In the structure of the title compound, C12H14N2O3, the piperidine ring adopts a chair conformation and the aryl substitutent occupies an equatorial position.

Related literature

For the toxicity of nitro­aromatics, see: Cronin et al. (1998[Cronin, M., Gregory, B. & Shultz, T. (1998). Chem. Res. Toxicol. 11, 902-908.]); Shinoda et al. (1998[Shinoda, K., Mitsumori, K., Yasuhara, K., Uneyama, C., Onodera, H., Takegawa, K., Takahashi, M. & Umemura, T. (1998). Arch. Toxicol. 72, 296-302.]). For piperidine ring conformations, see: Parkin et al. (2004[Parkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219-227.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for bond angles, see; Codding & Kerr (1978[Codding, P. W. & Kerr, K. A. (1978). Acta Cryst. B34, 3785-3787.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2O3

  • Mr = 234.25

  • Triclinic, [P \overline 1]

  • a = 5.686 (2) Å

  • b = 10.102 (5) Å

  • c = 10.221 (4) Å

  • α = 80.767 (2)°

  • β = 80.733 (3)°

  • γ = 86.034 (2)°

  • V = 571.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Nonius KappaCCCD area-detector diffractometer

  • Absorption correction: none

  • 11460 measured reflections

  • 3280 independent reflections

  • 2239 reflections with I > 2.0σ(I)

  • Rint = 0.03

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.111

  • S = 1.02

  • 2058 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Nitroaromatics are reactional intermediate compounds in chemical synthesis well known for their toxicity (Cronin et al., 1998; Shinoda et al.,1998). Here we report the single-crystal X-ray determination of the title compound in order to have a best insight of its structure and then to undertake a study of its possible toxic activity. The molecular structure of this compound and its atomic labeling scheme are shown in Fig.1. In this one, the piperidine ring, (N2/C8/C9/C10/C11/C12), as previously reported (Parkin et al., 2004), assumes a chair conformation, with the torsion angles mean value equal to 56.45 °, the puckering parameters (Cremer & Pople, 1975), being: Q = 0.5670 (17) Å, Phi = 365°, Theta = 1.59 (16)°. The C4 atom is in an equatorial position with respect to the piperidine ring. The system defined by (C1/C2/C3/C4/C5/C6), essentially planar, with a maximum deviation of 0.014 Å is an aromatic ring, according to the range of C—C bond lengths (1.3750 (19) Å to 1.4174 (17) Å) and C—C—C bond angles (117.61 (12) ° to 121.51 (12) °) (Peneloppe et al., 1978). Values of selected bond lengths and angles are reported in table 1. The nitro group is confirmed throughout the N—O bond length characteristics, since distances d(O2—N1)=1.2195 (16)Å and d(O1—N1) =1.221 (16)Å are consistent with those encountered in the nitro group (Allen et al., 1987). Besides d(C1—N1)=1.4553Å corresponds to a single bond length between an aromatic carbon and a nitrogen (Car—NO2). The bond length d(C7—O3)=1.2049 (18) Å, characterizes a normal double bond (CO) involved in an aldehyde function (Allen et al., 1987).

Related literature top

For the toxicity of nitroaromatics, see: Cronin et al. (1998); Shinoda et al. (1998). For piperidine ring conformations, see: Parkin et al. (2004). For ring conformational analysis, see: Cremer & Pople (1975). For reference bond lengths, see: Allen et al. (1987) and for bond angles, see; Peneloppe et al. (1978).

Experimental top

[6.52 ml, (66 mmol)] of piperidine and [5.54 g, (66 mmol)] of sodium hydrogenocarbonate(NaHCO3) were added to [8 g, (43 mmol)] of distilled ethanol reflux during 24 h under shelter moister. After cooling to ambient temperature, the mixture was poured into 150 ml of dichloromethane then washed twice with 50 ml of water each time. After decantation, the organic layer was dried on magnesium sulfate, filtered and concentrated under reduced pressure. The residue was purifie by flash chromatography on silica gel using DCM/hexane(80/20)v/v. 8.8 g of the title compound were obtained with 85.51% yields. The melting point is 388k.

Refinement top

All the H atoms were found by difference fourier. their position and displacement parameters Uiso(H) were refined to regularize their geometry(C—H in the range 0.94–0.99 Å) and Uiso(H) (1.2 times Ueq of the parent atom), after which their positions were refined isotropically with riding constraints.

Structure description top

Nitroaromatics are reactional intermediate compounds in chemical synthesis well known for their toxicity (Cronin et al., 1998; Shinoda et al.,1998). Here we report the single-crystal X-ray determination of the title compound in order to have a best insight of its structure and then to undertake a study of its possible toxic activity. The molecular structure of this compound and its atomic labeling scheme are shown in Fig.1. In this one, the piperidine ring, (N2/C8/C9/C10/C11/C12), as previously reported (Parkin et al., 2004), assumes a chair conformation, with the torsion angles mean value equal to 56.45 °, the puckering parameters (Cremer & Pople, 1975), being: Q = 0.5670 (17) Å, Phi = 365°, Theta = 1.59 (16)°. The C4 atom is in an equatorial position with respect to the piperidine ring. The system defined by (C1/C2/C3/C4/C5/C6), essentially planar, with a maximum deviation of 0.014 Å is an aromatic ring, according to the range of C—C bond lengths (1.3750 (19) Å to 1.4174 (17) Å) and C—C—C bond angles (117.61 (12) ° to 121.51 (12) °) (Peneloppe et al., 1978). Values of selected bond lengths and angles are reported in table 1. The nitro group is confirmed throughout the N—O bond length characteristics, since distances d(O2—N1)=1.2195 (16)Å and d(O1—N1) =1.221 (16)Å are consistent with those encountered in the nitro group (Allen et al., 1987). Besides d(C1—N1)=1.4553Å corresponds to a single bond length between an aromatic carbon and a nitrogen (Car—NO2). The bond length d(C7—O3)=1.2049 (18) Å, characterizes a normal double bond (CO) involved in an aldehyde function (Allen et al., 1987).

For the toxicity of nitroaromatics, see: Cronin et al. (1998); Shinoda et al. (1998). For piperidine ring conformations, see: Parkin et al. (2004). For ring conformational analysis, see: Cremer & Pople (1975). For reference bond lengths, see: Allen et al. (1987) and for bond angles, see; Peneloppe et al. (1978).

Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound structure and atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
5-Nitro-2-(piperidin-1-yl)benzaldehyde top
Crystal data top
C12H14N2O3Z = 2
Mr = 234.25F(000) = 248
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Melting point: 388 K
a = 5.686 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.102 (5) ÅCell parameters from 3280 reflections
c = 10.221 (4) Åθ = 2–30°
α = 80.767 (2)°µ = 0.10 mm1
β = 80.733 (3)°T = 295 K
γ = 86.034 (2)°Prism, orange
V = 571.4 (4) Å30.30 × 0.25 × 0.25 mm
Data collection top
Nonius KappaCCCD area detector
diffractometer
Rint = 0.03
Graphite monochromatorθmax = 30.2°, θmin = 2.0°
φ scansh = 08
11460 measured reflectionsk = 1414
3280 independent reflectionsl = 1314
2239 reflections with I > 2.0σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.111 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.1P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.000392
2058 reflectionsΔρmax = 0.16 e Å3
154 parametersΔρmin = 0.15 e Å3
0 restraints
Crystal data top
C12H14N2O3γ = 86.034 (2)°
Mr = 234.25V = 571.4 (4) Å3
Triclinic, P1Z = 2
a = 5.686 (2) ÅMo Kα radiation
b = 10.102 (5) ŵ = 0.10 mm1
c = 10.221 (4) ÅT = 295 K
α = 80.767 (2)°0.30 × 0.25 × 0.25 mm
β = 80.733 (3)°
Data collection top
Nonius KappaCCCD area detector
diffractometer
2239 reflections with I > 2.0σ(I)
11460 measured reflectionsRint = 0.03
3280 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
2058 reflectionsΔρmin = 0.15 e Å3
154 parameters
Special details top

Refinement. We had 3280 independent reflections but 2058 reflections were used in the refinement, instead of 3280 because the refinement was carried out under conditions I > 3σ(I).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2540 (2)0.19297 (12)0.65442 (13)0.0538
N20.1530 (2)0.26552 (11)0.75678 (11)0.0494
C10.1479 (2)0.07454 (13)0.68028 (13)0.0446
C20.0235 (2)0.08957 (12)0.76296 (12)0.0437
C30.1255 (2)0.02260 (12)0.78871 (12)0.0421
C40.0534 (2)0.15293 (12)0.73040 (12)0.0428
C50.1174 (3)0.16295 (13)0.64329 (14)0.0514
C60.2181 (3)0.05102 (14)0.61906 (14)0.0516
C70.3268 (3)0.00219 (15)0.86587 (14)0.0530
C80.1313 (3)0.28678 (15)0.89744 (13)0.0539
C90.3194 (3)0.37797 (17)0.91473 (16)0.0665
C100.3053 (4)0.51042 (17)0.82255 (17)0.0676
C110.3178 (3)0.48655 (15)0.67935 (16)0.0630
C120.1293 (3)0.39255 (14)0.66607 (15)0.0573
O10.1742 (2)0.30357 (10)0.69841 (14)0.0772
O20.4183 (2)0.17831 (12)0.58925 (14)0.0796
O30.3735 (2)0.10961 (12)0.92869 (13)0.0761
H20.07750.17700.80030.0524*
H50.16910.24820.60130.0617*
H60.33660.06040.56080.0619*
H70.42640.07060.86200.0636*
H810.14230.19920.95490.0647*
H820.02580.32950.92320.0647*
H910.30190.39011.00890.0798*
H920.47120.33360.89260.0798*
H1010.42890.56450.82980.0812*
H1020.15070.55720.85150.0812*
H1110.29520.57120.62060.0756*
H1120.47500.44650.65030.0756*
H1210.03160.43280.68800.0688*
H1220.14620.37340.57380.0688*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0571 (7)0.0479 (7)0.0585 (7)0.0037 (5)0.0156 (6)0.0069 (5)
N20.0716 (8)0.0387 (5)0.0387 (5)0.0033 (5)0.0132 (5)0.0032 (4)
C10.0483 (7)0.0414 (7)0.0447 (7)0.0017 (5)0.0089 (5)0.0067 (5)
C20.0490 (7)0.0396 (6)0.0400 (6)0.0018 (5)0.0067 (5)0.0001 (5)
C30.0477 (7)0.0415 (6)0.0365 (6)0.0001 (5)0.0085 (5)0.0023 (5)
C40.0519 (7)0.0396 (6)0.0361 (6)0.0001 (5)0.0066 (5)0.0043 (5)
C50.0636 (9)0.0401 (7)0.0508 (7)0.0056 (6)0.0187 (6)0.0011 (5)
C60.0570 (8)0.0492 (7)0.0510 (7)0.0025 (6)0.0204 (6)0.0044 (6)
C70.0565 (8)0.0502 (8)0.0527 (8)0.0027 (6)0.0168 (6)0.0006 (6)
C80.0693 (9)0.0528 (8)0.0409 (7)0.0078 (7)0.0078 (6)0.0093 (6)
C90.0804 (11)0.0674 (10)0.0576 (9)0.0135 (8)0.0267 (8)0.0066 (8)
C100.0807 (11)0.0571 (9)0.0718 (10)0.0192 (8)0.0251 (9)0.0094 (8)
C110.0770 (11)0.0475 (8)0.0622 (9)0.0086 (7)0.0112 (8)0.0018 (7)
C120.0848 (11)0.0394 (7)0.0501 (8)0.0030 (7)0.0215 (7)0.0026 (6)
O10.0870 (8)0.0420 (6)0.1096 (10)0.0025 (5)0.0414 (7)0.0056 (6)
O20.0848 (8)0.0650 (7)0.1011 (10)0.0102 (6)0.0519 (8)0.0082 (7)
O30.0848 (8)0.0595 (7)0.0874 (9)0.0029 (6)0.0478 (7)0.0128 (6)
Geometric parameters (Å, º) top
N1—O11.2210 (16)C1—C61.3839 (19)
N1—C11.4553 (18)C6—H610.959
N1—O21.2195 (16)C8—C91.507 (2)
C3—C41.4174 (17)C8—H810.984
C3—C21.3878 (19)C8—H820.980
C3—C71.4773 (19)C12—C111.516 (2)
C4—N21.3868 (17)C12—H1220.981
C4—C51.4081 (19)C12—H1210.982
N2—C81.4720 (18)C9—C101.513 (2)
N2—C121.4694 (17)C9—H920.956
C5—C61.376 (2)C9—H910.978
C5—H510.949C11—C101.511 (2)
C2—C11.3750 (19)C11—H1120.977
C2—H210.955C11—H1110.977
C7—O31.2049 (18)C10—H1010.939
C7—H710.951C10—H1020.993
O1—N1—C1118.62 (12)C9—C8—H81111.4
O1—N1—O2122.42 (13)N2—C8—H82108.6
C1—N1—O2118.96 (12)C9—C8—H82108.4
C4—C3—C2120.29 (12)H81—C8—H82108.4
C4—C3—C7122.63 (12)N2—C12—C11109.92 (13)
C2—C3—C7116.75 (12)N2—C12—H122108.8
C3—C4—N2120.58 (12)C11—C12—H122110.7
C3—C4—C5117.61 (12)N2—C12—H121109.0
N2—C4—C5121.79 (12)C11—C12—H121110.9
C4—N2—C8118.01 (11)H122—C12—H121107.5
C4—N2—C12118.40 (11)C8—C9—C10110.77 (14)
C8—N2—C12111.78 (11)C8—C9—H92107.4
C4—C5—C6121.51 (12)C10—C9—H92109.5
C4—C5—H51120.3C8—C9—H91109.3
C6—C5—H51118.1C10—C9—H91112.0
C3—C2—C1119.98 (12)H92—C9—H91107.7
C3—C2—H21119.5C12—C11—C10111.64 (13)
C1—C2—H21120.4C12—C11—H112108.8
C3—C7—O3123.42 (14)C10—C11—H112108.6
C3—C7—H71117.1C12—C11—H111108.5
O3—C7—H71119.4C10—C11—H111110.5
N1—C1—C2119.43 (12)H112—C11—H111108.8
N1—C1—C6119.35 (12)C9—C10—C11110.19 (14)
C2—C1—C6121.20 (12)C9—C10—H101110.3
C1—C6—C5119.35 (13)C11—C10—H101110.4
C1—C6—H61120.6C9—C10—H102107.9
C5—C6—H61120.1C11—C10—H102109.6
N2—C8—C9110.88 (12)H101—C10—H102108.3
N2—C8—H81109.1
C12—N2—C8—C958.84 (17)C8—C9—C10—C1154.06 (18)
C8—N2—C12—C1158.21 (16)C9—C10—C11—C1254.45 (18)
N2—C8—C9—C1056.24 (17)C10—C11—C12—N256.22 (17)

Experimental details

Crystal data
Chemical formulaC12H14N2O3
Mr234.25
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.686 (2), 10.102 (5), 10.221 (4)
α, β, γ (°)80.767 (2), 80.733 (3), 86.034 (2)
V3)571.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerNonius KappaCCCD area detector
Absorption correction
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
11460, 3280, 2239
Rint0.03
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.02
No. of reflections2058
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: COLLECT (Nonius, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), CRYSTALS (Betteridge et al., 2003), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected torsion angles (º) top
C12—N2—C8—C958.84 (17)C8—C9—C10—C1154.06 (18)
C8—N2—C12—C1158.21 (16)C9—C10—C11—C1254.45 (18)
N2—C8—C9—C1056.24 (17)C10—C11—C12—N256.22 (17)
 

Acknowledgements

The authors wish to thank the Laboratoire de Physique des Interactions Ioniques and Spectropôle of Provence University, France, for the use of the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCodding, P. W. & Kerr, K. A. (1978). Acta Cryst. B34, 3785–3787.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCronin, M., Gregory, B. & Shultz, T. (1998). Chem. Res. Toxicol. 11, 902–908.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219–227.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShinoda, K., Mitsumori, K., Yasuhara, K., Uneyama, C., Onodera, H., Takegawa, K., Takahashi, M. & Umemura, T. (1998). Arch. Toxicol. 72, 296–302.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds