organic compounds
5-Nitro-2-(piperidin-1-yl)benzaldehyde
aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Organique, UFR SSMT, Université de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire
*Correspondence e-mail: josephngouan@yahoo.fr
In the structure of the title compound, C12H14N2O3, the piperidine ring adopts a chair conformation and the aryl substitutent occupies an equatorial position.
Related literature
For the toxicity of nitroaromatics, see: Cronin et al. (1998); Shinoda et al. (1998). For piperidine ring conformations, see: Parkin et al. (2004). For ring see: Cremer & Pople (1975). For reference bond lengths, see: Allen et al. (1987) and for bond angles, see; Codding & Kerr (1978).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1997); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536809043700/ng2664sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809043700/ng2664Isup2.hkl
[6.52 ml, (66 mmol)] of piperidine and [5.54 g, (66 mmol)] of sodium hydrogenocarbonate(NaHCO3) were added to [8 g, (43 mmol)] of distilled ethanol reflux during 24 h under shelter moister. After cooling to ambient temperature, the mixture was poured into 150 ml of dichloromethane then washed twice with 50 ml of water each time. After decantation, the organic layer was dried on magnesium sulfate, filtered and concentrated under reduced pressure. The residue was purifie by flash
on silica gel using DCM/hexane(80/20)v/v. 8.8 g of the title compound were obtained with 85.51% yields. The melting point is 388k.All the H atoms were found by difference fourier. their position and displacement parameters Uiso(H) were refined to regularize their geometry(C—H in the range 0.94–0.99 Å) and Uiso(H) (1.2 times Ueq of the parent atom), after which their positions were refined isotropically with riding constraints.
Nitroaromatics are reactional intermediate compounds in chemical synthesis well known for their toxicity (Cronin et al., 1998; Shinoda et al.,1998). Here we report the single-crystal X-ray determination of the title compound in order to have a best insight of its structure and then to undertake a study of its possible toxic activity. The molecular structure of this compound and its atomic labeling scheme are shown in Fig.1. In this one, the piperidine ring, (N2/C8/C9/C10/C11/C12), as previously reported (Parkin et al., 2004), assumes a chair conformation, with the torsion angles mean value equal to 56.45 °, the puckering parameters (Cremer & Pople, 1975), being: Q = 0.5670 (17) Å, Phi = 365°, Theta = 1.59 (16)°. The C4 atom is in an equatorial position with respect to the piperidine ring. The system defined by (C1/C2/C3/C4/C5/C6), essentially planar, with a maximum deviation of 0.014 Å is an aromatic ring, according to the range of C—C bond lengths (1.3750 (19) Å to 1.4174 (17) Å) and C—C—C bond angles (117.61 (12) ° to 121.51 (12) °) (Peneloppe et al., 1978). Values of selected bond lengths and angles are reported in table 1. The nitro group is confirmed throughout the N—O bond length characteristics, since distances d(O2—N1)=1.2195 (16)Å and d(O1—N1) =1.221 (16)Å are consistent with those encountered in the nitro group (Allen et al., 1987). Besides d(C1—N1)=1.4553Å corresponds to a single bond length between an aromatic carbon and a nitrogen (Car—NO2). The bond length d(C7—O3)=1.2049 (18) Å, characterizes a normal double bond (CO) involved in an aldehyde function (Allen et al., 1987).
For the toxicity of nitroaromatics, see: Cronin et al. (1998); Shinoda et al. (1998). For piperidine ring conformations, see: Parkin et al. (2004). For ring
see: Cremer & Pople (1975). For reference bond lengths, see: Allen et al. (1987) and for bond angles, see; Peneloppe et al. (1978).Data collection: COLLECT (Nonius, 1997); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).Fig. 1. The title compound structure and atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. |
C12H14N2O3 | Z = 2 |
Mr = 234.25 | F(000) = 248 |
Triclinic, P1 | Dx = 1.362 Mg m−3 |
Hall symbol: -P 1 | Melting point: 388 K |
a = 5.686 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.102 (5) Å | Cell parameters from 3280 reflections |
c = 10.221 (4) Å | θ = 2–30° |
α = 80.767 (2)° | µ = 0.10 mm−1 |
β = 80.733 (3)° | T = 295 K |
γ = 86.034 (2)° | Prism, orange |
V = 571.4 (4) Å3 | 0.30 × 0.25 × 0.25 mm |
Nonius KappaCCCD area detector diffractometer | Rint = 0.03 |
Graphite monochromator | θmax = 30.2°, θmin = 2.0° |
φ scans | h = 0→8 |
11460 measured reflections | k = −14→14 |
3280 independent reflections | l = −13→14 |
2239 reflections with I > 2.0σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.111 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.1P] , where P = (max(Fo2,0) + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.000392 |
2058 reflections | Δρmax = 0.16 e Å−3 |
154 parameters | Δρmin = −0.15 e Å−3 |
0 restraints |
C12H14N2O3 | γ = 86.034 (2)° |
Mr = 234.25 | V = 571.4 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.686 (2) Å | Mo Kα radiation |
b = 10.102 (5) Å | µ = 0.10 mm−1 |
c = 10.221 (4) Å | T = 295 K |
α = 80.767 (2)° | 0.30 × 0.25 × 0.25 mm |
β = 80.733 (3)° |
Nonius KappaCCCD area detector diffractometer | 2239 reflections with I > 2.0σ(I) |
11460 measured reflections | Rint = 0.03 |
3280 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.16 e Å−3 |
2058 reflections | Δρmin = −0.15 e Å−3 |
154 parameters |
Refinement. We had 3280 independent reflections but 2058 reflections were used in the refinement, instead of 3280 because the refinement was carried out under conditions I > 3σ(I). |
x | y | z | Uiso*/Ueq | ||
N1 | −0.2540 (2) | −0.19297 (12) | 0.65442 (13) | 0.0538 | |
N2 | 0.1530 (2) | 0.26552 (11) | 0.75678 (11) | 0.0494 | |
C1 | −0.1479 (2) | −0.07454 (13) | 0.68028 (13) | 0.0446 | |
C2 | 0.0235 (2) | −0.08957 (12) | 0.76296 (12) | 0.0437 | |
C3 | 0.1255 (2) | 0.02260 (12) | 0.78871 (12) | 0.0421 | |
C4 | 0.0534 (2) | 0.15293 (12) | 0.73040 (12) | 0.0428 | |
C5 | −0.1174 (3) | 0.16295 (13) | 0.64329 (14) | 0.0514 | |
C6 | −0.2181 (3) | 0.05102 (14) | 0.61906 (14) | 0.0516 | |
C7 | 0.3268 (3) | −0.00219 (15) | 0.86587 (14) | 0.0530 | |
C8 | 0.1313 (3) | 0.28678 (15) | 0.89744 (13) | 0.0539 | |
C9 | 0.3194 (3) | 0.37797 (17) | 0.91473 (16) | 0.0665 | |
C10 | 0.3053 (4) | 0.51042 (17) | 0.82255 (17) | 0.0676 | |
C11 | 0.3178 (3) | 0.48655 (15) | 0.67935 (16) | 0.0630 | |
C12 | 0.1293 (3) | 0.39255 (14) | 0.66607 (15) | 0.0573 | |
O1 | −0.1742 (2) | −0.30357 (10) | 0.69841 (14) | 0.0772 | |
O2 | −0.4183 (2) | −0.17831 (12) | 0.58925 (14) | 0.0796 | |
O3 | 0.3735 (2) | −0.10961 (12) | 0.92869 (13) | 0.0761 | |
H2 | 0.0775 | −0.1770 | 0.8003 | 0.0524* | |
H5 | −0.1691 | 0.2482 | 0.6013 | 0.0617* | |
H6 | −0.3366 | 0.0604 | 0.5608 | 0.0619* | |
H7 | 0.4264 | 0.0706 | 0.8620 | 0.0636* | |
H81 | 0.1423 | 0.1992 | 0.9549 | 0.0647* | |
H82 | −0.0258 | 0.3295 | 0.9232 | 0.0647* | |
H91 | 0.3019 | 0.3901 | 1.0089 | 0.0798* | |
H92 | 0.4712 | 0.3336 | 0.8926 | 0.0798* | |
H101 | 0.4289 | 0.5645 | 0.8298 | 0.0812* | |
H102 | 0.1507 | 0.5572 | 0.8515 | 0.0812* | |
H111 | 0.2952 | 0.5712 | 0.6206 | 0.0756* | |
H112 | 0.4750 | 0.4465 | 0.6503 | 0.0756* | |
H121 | −0.0316 | 0.4328 | 0.6880 | 0.0688* | |
H122 | 0.1462 | 0.3734 | 0.5738 | 0.0688* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0571 (7) | 0.0479 (7) | 0.0585 (7) | −0.0037 (5) | −0.0156 (6) | −0.0069 (5) |
N2 | 0.0716 (8) | 0.0387 (5) | 0.0387 (5) | −0.0033 (5) | −0.0132 (5) | −0.0032 (4) |
C1 | 0.0483 (7) | 0.0414 (7) | 0.0447 (7) | −0.0017 (5) | −0.0089 (5) | −0.0067 (5) |
C2 | 0.0490 (7) | 0.0396 (6) | 0.0400 (6) | 0.0018 (5) | −0.0067 (5) | −0.0001 (5) |
C3 | 0.0477 (7) | 0.0415 (6) | 0.0365 (6) | −0.0001 (5) | −0.0085 (5) | −0.0023 (5) |
C4 | 0.0519 (7) | 0.0396 (6) | 0.0361 (6) | 0.0001 (5) | −0.0066 (5) | −0.0043 (5) |
C5 | 0.0636 (9) | 0.0401 (7) | 0.0508 (7) | 0.0056 (6) | −0.0187 (6) | −0.0011 (5) |
C6 | 0.0570 (8) | 0.0492 (7) | 0.0510 (7) | 0.0025 (6) | −0.0204 (6) | −0.0044 (6) |
C7 | 0.0565 (8) | 0.0502 (8) | 0.0527 (8) | −0.0027 (6) | −0.0168 (6) | −0.0006 (6) |
C8 | 0.0693 (9) | 0.0528 (8) | 0.0409 (7) | −0.0078 (7) | −0.0078 (6) | −0.0093 (6) |
C9 | 0.0804 (11) | 0.0674 (10) | 0.0576 (9) | −0.0135 (8) | −0.0267 (8) | −0.0066 (8) |
C10 | 0.0807 (11) | 0.0571 (9) | 0.0718 (10) | −0.0192 (8) | −0.0251 (9) | −0.0094 (8) |
C11 | 0.0770 (11) | 0.0475 (8) | 0.0622 (9) | −0.0086 (7) | −0.0112 (8) | 0.0018 (7) |
C12 | 0.0848 (11) | 0.0394 (7) | 0.0501 (8) | −0.0030 (7) | −0.0215 (7) | −0.0026 (6) |
O1 | 0.0870 (8) | 0.0420 (6) | 0.1096 (10) | −0.0025 (5) | −0.0414 (7) | −0.0056 (6) |
O2 | 0.0848 (8) | 0.0650 (7) | 0.1011 (10) | −0.0102 (6) | −0.0519 (8) | −0.0082 (7) |
O3 | 0.0848 (8) | 0.0595 (7) | 0.0874 (9) | −0.0029 (6) | −0.0478 (7) | 0.0128 (6) |
N1—O1 | 1.2210 (16) | C1—C6 | 1.3839 (19) |
N1—C1 | 1.4553 (18) | C6—H61 | 0.959 |
N1—O2 | 1.2195 (16) | C8—C9 | 1.507 (2) |
C3—C4 | 1.4174 (17) | C8—H81 | 0.984 |
C3—C2 | 1.3878 (19) | C8—H82 | 0.980 |
C3—C7 | 1.4773 (19) | C12—C11 | 1.516 (2) |
C4—N2 | 1.3868 (17) | C12—H122 | 0.981 |
C4—C5 | 1.4081 (19) | C12—H121 | 0.982 |
N2—C8 | 1.4720 (18) | C9—C10 | 1.513 (2) |
N2—C12 | 1.4694 (17) | C9—H92 | 0.956 |
C5—C6 | 1.376 (2) | C9—H91 | 0.978 |
C5—H51 | 0.949 | C11—C10 | 1.511 (2) |
C2—C1 | 1.3750 (19) | C11—H112 | 0.977 |
C2—H21 | 0.955 | C11—H111 | 0.977 |
C7—O3 | 1.2049 (18) | C10—H101 | 0.939 |
C7—H71 | 0.951 | C10—H102 | 0.993 |
O1—N1—C1 | 118.62 (12) | C9—C8—H81 | 111.4 |
O1—N1—O2 | 122.42 (13) | N2—C8—H82 | 108.6 |
C1—N1—O2 | 118.96 (12) | C9—C8—H82 | 108.4 |
C4—C3—C2 | 120.29 (12) | H81—C8—H82 | 108.4 |
C4—C3—C7 | 122.63 (12) | N2—C12—C11 | 109.92 (13) |
C2—C3—C7 | 116.75 (12) | N2—C12—H122 | 108.8 |
C3—C4—N2 | 120.58 (12) | C11—C12—H122 | 110.7 |
C3—C4—C5 | 117.61 (12) | N2—C12—H121 | 109.0 |
N2—C4—C5 | 121.79 (12) | C11—C12—H121 | 110.9 |
C4—N2—C8 | 118.01 (11) | H122—C12—H121 | 107.5 |
C4—N2—C12 | 118.40 (11) | C8—C9—C10 | 110.77 (14) |
C8—N2—C12 | 111.78 (11) | C8—C9—H92 | 107.4 |
C4—C5—C6 | 121.51 (12) | C10—C9—H92 | 109.5 |
C4—C5—H51 | 120.3 | C8—C9—H91 | 109.3 |
C6—C5—H51 | 118.1 | C10—C9—H91 | 112.0 |
C3—C2—C1 | 119.98 (12) | H92—C9—H91 | 107.7 |
C3—C2—H21 | 119.5 | C12—C11—C10 | 111.64 (13) |
C1—C2—H21 | 120.4 | C12—C11—H112 | 108.8 |
C3—C7—O3 | 123.42 (14) | C10—C11—H112 | 108.6 |
C3—C7—H71 | 117.1 | C12—C11—H111 | 108.5 |
O3—C7—H71 | 119.4 | C10—C11—H111 | 110.5 |
N1—C1—C2 | 119.43 (12) | H112—C11—H111 | 108.8 |
N1—C1—C6 | 119.35 (12) | C9—C10—C11 | 110.19 (14) |
C2—C1—C6 | 121.20 (12) | C9—C10—H101 | 110.3 |
C1—C6—C5 | 119.35 (13) | C11—C10—H101 | 110.4 |
C1—C6—H61 | 120.6 | C9—C10—H102 | 107.9 |
C5—C6—H61 | 120.1 | C11—C10—H102 | 109.6 |
N2—C8—C9 | 110.88 (12) | H101—C10—H102 | 108.3 |
N2—C8—H81 | 109.1 | ||
C12—N2—C8—C9 | −58.84 (17) | C8—C9—C10—C11 | −54.06 (18) |
C8—N2—C12—C11 | 58.21 (16) | C9—C10—C11—C12 | 54.45 (18) |
N2—C8—C9—C10 | 56.24 (17) | C10—C11—C12—N2 | −56.22 (17) |
Experimental details
Crystal data | |
Chemical formula | C12H14N2O3 |
Mr | 234.25 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 5.686 (2), 10.102 (5), 10.221 (4) |
α, β, γ (°) | 80.767 (2), 80.733 (3), 86.034 (2) |
V (Å3) | 571.4 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.30 × 0.25 × 0.25 |
Data collection | |
Diffractometer | Nonius KappaCCCD area detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2.0σ(I)] reflections | 11460, 3280, 2239 |
Rint | 0.03 |
(sin θ/λ)max (Å−1) | 0.707 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.111, 1.02 |
No. of reflections | 2058 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.15 |
Computer programs: COLLECT (Nonius, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), CRYSTALS (Betteridge et al., 2003), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).
C12—N2—C8—C9 | −58.84 (17) | C8—C9—C10—C11 | −54.06 (18) |
C8—N2—C12—C11 | 58.21 (16) | C9—C10—C11—C12 | 54.45 (18) |
N2—C8—C9—C10 | 56.24 (17) | C10—C11—C12—N2 | −56.22 (17) |
Acknowledgements
The authors wish to thank the Laboratoire de Physique des Interactions Ioniques and Spectropôle of Provence University, France, for the use of the diffractometer.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Codding, P. W. & Kerr, K. A. (1978). Acta Cryst. B34, 3785–3787. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Cronin, M., Gregory, B. & Shultz, T. (1998). Chem. Res. Toxicol. 11, 902–908. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219–227. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Shinoda, K., Mitsumori, K., Yasuhara, K., Uneyama, C., Onodera, H., Takegawa, K., Takahashi, M. & Umemura, T. (1998). Arch. Toxicol. 72, 296–302. Web of Science CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitroaromatics are reactional intermediate compounds in chemical synthesis well known for their toxicity (Cronin et al., 1998; Shinoda et al.,1998). Here we report the single-crystal X-ray determination of the title compound in order to have a best insight of its structure and then to undertake a study of its possible toxic activity. The molecular structure of this compound and its atomic labeling scheme are shown in Fig.1. In this one, the piperidine ring, (N2/C8/C9/C10/C11/C12), as previously reported (Parkin et al., 2004), assumes a chair conformation, with the torsion angles mean value equal to 56.45 °, the puckering parameters (Cremer & Pople, 1975), being: Q = 0.5670 (17) Å, Phi = 365°, Theta = 1.59 (16)°. The C4 atom is in an equatorial position with respect to the piperidine ring. The system defined by (C1/C2/C3/C4/C5/C6), essentially planar, with a maximum deviation of 0.014 Å is an aromatic ring, according to the range of C—C bond lengths (1.3750 (19) Å to 1.4174 (17) Å) and C—C—C bond angles (117.61 (12) ° to 121.51 (12) °) (Peneloppe et al., 1978). Values of selected bond lengths and angles are reported in table 1. The nitro group is confirmed throughout the N—O bond length characteristics, since distances d(O2—N1)=1.2195 (16)Å and d(O1—N1) =1.221 (16)Å are consistent with those encountered in the nitro group (Allen et al., 1987). Besides d(C1—N1)=1.4553Å corresponds to a single bond length between an aromatic carbon and a nitrogen (Car—NO2). The bond length d(C7—O3)=1.2049 (18) Å, characterizes a normal double bond (CO) involved in an aldehyde function (Allen et al., 1987).