metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ammonium di­aqua­bis­(methyl­enedi­phospho­nato-κ2O,O′)cobaltate(II)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9330, South Africa
*Correspondence e-mail: visserhg.sci@ufs.ac.za

(Received 12 October 2009; accepted 14 October 2009; online 17 October 2009)

In the salt, (NH4)2[Co(CH4O6P2)2(H2O)2], the methyl­ene­diphospho­nate acts as a bidentate ligand and the CoII ion (site symmetry [\overline 1]) assumes an octa­hedral CoO6 coordination geometry. The acid H atom of the ligand is distributed over two O atoms. In the crystal, a three-dimensional network is formed through O—H⋯O and N—H⋯O hydrogen bonds between the cations and anions.

Related literature

For related structures, see: DeLaMatter et al. (1973[DeLaMatter, D., McCullough, J. J. & Calvo, C. (1973). J. Phys. Chem. 77, 1146-1148.]); Jurisson et al. (1983[Jurisson, S. S., Benedict, J. J., Elder, R. C., Whittle, R. & Deutsch, E. (1983). Inorg. Chem. 22, 1332-1338.]); Barthelet et al. (2002[Barthelet, K., Riou, D. & Férey, G. (2002). Acta Cryst. C58, m264-m265.]); Stahl et al. (2006[Stahl, K., Oddershede, J., Preikschat, H., Fischer, E. & Bennekou, J. S. (2006). Acta Cryst. C62, m112-m115.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)2[Co(CH4O6P2)2(H2O)2]

  • Mr = 479.01

  • Triclinic, [P \overline 1]

  • a = 7.455 (5) Å

  • b = 7.560 (5) Å

  • c = 8.035 (5) Å

  • α = 88.282 (5)°

  • β = 62.450 (5)°

  • γ = 71.834 (5)°

  • V = 378.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 103 K

  • 0.28 × 0.16 × 0.11 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.739, Tmax = 0.830

  • 8419 measured reflections

  • 1875 independent reflections

  • 1735 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.097

  • S = 1.23

  • 1875 reflections

  • 134 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5i 0.819 (18) 1.99 (2) 2.795 (3) 166 (4)
O1—H1B⋯O4ii 0.835 (19) 1.994 (19) 2.827 (3) 175 (4)
N1—H1N⋯O7iii 0.825 (18) 2.09 (2) 2.892 (3) 166 (3)
N1—H2N⋯O6 0.825 (18) 1.98 (2) 2.796 (3) 171 (4)
N1—H3N⋯O3iv 0.821 (18) 2.17 (2) 2.959 (3) 161 (3)
N1—H4N⋯O3v 0.821 (18) 2.146 (19) 2.966 (3) 177 (3)
O6—H6A⋯O6vi 0.82 1.66 2.463 (4) 165
O7—H7⋯O4vii 0.82 1.66 2.435 (3) 156
Symmetry codes: (i) x-1, y, z+1; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y, -z+1; (v) x, y, z-1; (vi) -x+1, -y, -z+1; (vii) x-1, y, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2005[Brandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diphosphonic acids are useful for the synthesis of metalorganic frameworks exhibiting microporous properties (Barthelet et al., 2002).

The CoII ion in the title complex, (NH4)2[Co(C2H8O12)2(H2O)2], is in a slightly distorted octahedral environment with O—Co—O bonding angles ranging from 84.72 (8) to 95.28 (8) o. All the bonding distances and angles fall within the normal range observed for complexes of this nature (DeLaMatter et al., 1973; Jurisson et al., 1983 and Stahl et al., 2006). In the bidentate ligand, the distances of uncoordinated O atoms to their respective P atoms do not vary much with values ranging from 1.5304 (19) and 1.5469 (19) Å. This, together with the fact that the best fits of our data were obtained when a 50% positional disorder was applied to the hydrogen atoms bonded to these O atoms, probably is enough to validate the slight disorder. A three-dimensional network is provided by numerous hydrogen bonds between the oxygen atoms of the anionic species and the ammonium cations.

Related literature top

For related structures, see: DeLaMatter et al. (1973); Jurisson et al. (1983); Barthelet et al. (2002); Stahl et al. (2006).

Experimental top

CoCl2.6H2O (0,1696 g, 0,00071 mol) was dissolved in water (7 cm3) and heated to 70°C. The pH of the solution was 4,89 and deep pink in colour. Ammonium bicarbonate was added to raise the pH to 5,61 after which methylene disphosphonate (0,25 g, 0,00142 mol), dissolved in water (5 cm3) was added dropwise. The final pH of the solution was adjusted to 1.50 with ammonium bicarbonate. (Yield: 84.1%)

Refinement top

The aliphatic H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with U<i/>iso(H) = 1.2U<i/>eq(C). The hydroxyl H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with U<i/>iso(H) = 1.5U<i/>eq(O). A 50% positional disorder was assigned to these hydrogen atoms and provided the best fits of the data. The highest electron density lies within 0.74 Å from O7.

Structure description top

Diphosphonic acids are useful for the synthesis of metalorganic frameworks exhibiting microporous properties (Barthelet et al., 2002).

The CoII ion in the title complex, (NH4)2[Co(C2H8O12)2(H2O)2], is in a slightly distorted octahedral environment with O—Co—O bonding angles ranging from 84.72 (8) to 95.28 (8) o. All the bonding distances and angles fall within the normal range observed for complexes of this nature (DeLaMatter et al., 1973; Jurisson et al., 1983 and Stahl et al., 2006). In the bidentate ligand, the distances of uncoordinated O atoms to their respective P atoms do not vary much with values ranging from 1.5304 (19) and 1.5469 (19) Å. This, together with the fact that the best fits of our data were obtained when a 50% positional disorder was applied to the hydrogen atoms bonded to these O atoms, probably is enough to validate the slight disorder. A three-dimensional network is provided by numerous hydrogen bonds between the oxygen atoms of the anionic species and the ammonium cations.

For related structures, see: DeLaMatter et al. (1973); Jurisson et al. (1983); Barthelet et al. (2002); Stahl et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). The ammonium cations have been omitted for clarity.
Diammonium diaquabis(methylenediphosphonato-κ2O,O')cobaltate(II) top
Crystal data top
(NH4)2[Co(CH4O6P2)2(H2O)2]Z = 1
Mr = 479.01F(000) = 237
Triclinic, P1Dx = 2.069 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.455 (5) ÅCell parameters from 4649 reflections
b = 7.560 (5) Åθ = 3.2–28.3°
c = 8.035 (5) ŵ = 1.63 mm1
α = 88.282 (5)°T = 103 K
β = 62.450 (5)°Rod, pink
γ = 71.834 (5)°0.28 × 0.16 × 0.11 mm
V = 378.0 (4) Å3
Data collection top
Bruker SMART
diffractometer
1875 independent reflections
Radiation source: sealed tube1735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 28.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.739, Tmax = 0.830k = 910
8419 measured reflectionsl = 109
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4031P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.23Δρmax = 0.58 e Å3
1875 reflectionsΔρmin = 0.48 e Å3
134 parameters
Crystal data top
(NH4)2[Co(CH4O6P2)2(H2O)2]γ = 71.834 (5)°
Mr = 479.01V = 378.0 (4) Å3
Triclinic, P1Z = 1
a = 7.455 (5) ÅMo Kα radiation
b = 7.560 (5) ŵ = 1.63 mm1
c = 8.035 (5) ÅT = 103 K
α = 88.282 (5)°0.28 × 0.16 × 0.11 mm
β = 62.450 (5)°
Data collection top
Bruker SMART
diffractometer
1875 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1735 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.830Rint = 0.029
8419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0266 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 0.58 e Å3
1875 reflectionsΔρmin = 0.48 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.5010.00601 (14)
P10.79673 (9)0.26243 (8)0.74506 (8)0.00547 (16)
P20.40236 (9)0.26654 (8)0.71287 (8)0.00548 (15)
C10.5577 (4)0.3956 (3)0.7338 (3)0.0069 (4)
H510.46580.4870.8470.008*
H610.59840.4650.62640.008*
O20.3230 (3)0.1616 (2)0.8790 (2)0.0082 (3)
O30.7476 (3)0.1227 (2)0.8847 (2)0.0079 (3)
O60.5476 (3)0.1357 (2)0.5238 (2)0.0103 (4)
H6A0.49350.0580.51910.016*0.5
O10.3253 (3)0.2144 (3)1.2321 (2)0.0101 (4)
N10.8609 (4)0.1904 (3)0.1800 (3)0.0114 (4)
O70.2170 (3)0.4231 (2)0.7030 (2)0.0092 (3)
H70.10630.39710.75690.014*0.5
O50.9736 (3)0.1640 (2)0.5452 (2)0.0091 (3)
H5A0.97080.05830.53010.014*0.5
O40.8575 (3)0.4110 (2)0.8125 (2)0.0083 (3)
H40.98660.37150.77870.013*0.5
H1N0.860 (5)0.298 (3)0.197 (4)0.010 (8)*
H2N0.779 (5)0.165 (6)0.282 (4)0.029 (10)*
H3N0.984 (3)0.121 (4)0.149 (5)0.020 (9)*
H4N0.829 (6)0.175 (5)0.098 (4)0.020 (9)*
H1A0.233 (5)0.201 (5)1.334 (3)0.020 (9)*
H1B0.274 (6)0.323 (3)1.212 (5)0.027 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0060 (2)0.0058 (2)0.0061 (2)0.00256 (17)0.00242 (18)0.00160 (16)
P10.0050 (3)0.0051 (3)0.0066 (3)0.0025 (2)0.0026 (2)0.0016 (2)
P20.0056 (3)0.0052 (3)0.0062 (3)0.0025 (2)0.0028 (2)0.0017 (2)
C10.0074 (11)0.0060 (10)0.0083 (10)0.0026 (8)0.0043 (9)0.0013 (8)
O20.0077 (8)0.0087 (8)0.0093 (8)0.0042 (6)0.0043 (7)0.0044 (6)
O30.0071 (8)0.0083 (8)0.0087 (8)0.0038 (6)0.0036 (6)0.0034 (6)
O60.0115 (9)0.0112 (8)0.0081 (8)0.0071 (7)0.0023 (7)0.0008 (6)
O10.0107 (9)0.0075 (8)0.0085 (8)0.0032 (7)0.0017 (7)0.0011 (6)
N10.0107 (11)0.0102 (10)0.0108 (10)0.0006 (8)0.0051 (9)0.0010 (8)
O70.0077 (8)0.0076 (8)0.0147 (9)0.0033 (6)0.0069 (7)0.0055 (6)
O50.0086 (8)0.0067 (8)0.0083 (8)0.0033 (6)0.0006 (6)0.0003 (6)
O40.0056 (8)0.0087 (8)0.0113 (8)0.0026 (6)0.0042 (7)0.0002 (6)
Geometric parameters (Å, º) top
Co1—O22.0714 (18)P2—C11.793 (2)
Co1—O2i2.0714 (18)C1—H510.97
Co1—O1i2.102 (2)C1—H610.97
Co1—O12.102 (2)O6—H6A0.82
Co1—O3i2.135 (2)O1—H1A0.819 (18)
Co1—O32.135 (2)O1—H1B0.835 (19)
P1—O31.5166 (18)N1—H1N0.825 (18)
P1—O41.5304 (19)N1—H2N0.825 (18)
P1—O51.5403 (19)N1—H3N0.821 (18)
P1—C11.795 (3)N1—H4N0.821 (18)
P2—O21.5032 (18)O7—H70.82
P2—O61.5363 (19)O5—H5A0.82
P2—O71.5469 (19)O4—H40.82
O2—Co1—O2i180O2—P2—C1111.74 (11)
O2—Co1—O1i92.53 (8)O6—P2—C1106.30 (11)
O2i—Co1—O1i87.47 (8)O7—P2—C1102.44 (12)
O2—Co1—O187.47 (8)P2—C1—P1116.96 (14)
O2i—Co1—O192.53 (8)P2—C1—H51108.1
O1i—Co1—O1180.0000 (10)P1—C1—H51108.1
O2—Co1—O3i84.72 (8)P2—C1—H61108.1
O2i—Co1—O3i95.28 (8)P1—C1—H61108.1
O1i—Co1—O3i88.91 (8)H51—C1—H61107.3
O1—Co1—O3i91.09 (8)P2—O2—Co1126.71 (11)
O2—Co1—O395.28 (8)P1—O3—Co1133.61 (10)
O2i—Co1—O384.72 (8)P2—O6—H6A109.5
O1i—Co1—O391.09 (8)Co1—O1—H1A121 (2)
O1—Co1—O388.91 (8)Co1—O1—H1B117 (3)
O3i—Co1—O3180.00 (7)H1A—O1—H1B106 (4)
O3—P1—O4111.68 (11)H1N—N1—H2N108 (4)
O3—P1—O5111.77 (11)H1N—N1—H3N105 (3)
O4—P1—O5110.47 (11)H2N—N1—H3N108 (4)
O3—P1—C1109.61 (11)H1N—N1—H4N114 (3)
O4—P1—C1103.92 (11)H2N—N1—H4N111 (4)
O5—P1—C1109.08 (11)H3N—N1—H4N110 (3)
O2—P2—O6112.62 (11)P2—O7—H7109.5
O2—P2—O7112.39 (10)P1—O5—H5A109.5
O6—P2—O7110.73 (11)P1—O4—H4109.5
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5ii0.82 (2)1.99 (2)2.795 (3)166 (4)
O1—H1B···O4iii0.84 (2)1.99 (2)2.827 (3)175 (4)
N1—H1N···O7iv0.83 (2)2.09 (2)2.892 (3)166 (3)
N1—H2N···O60.83 (2)1.98 (2)2.796 (3)171 (4)
N1—H3N···O3v0.82 (2)2.17 (2)2.959 (3)161 (3)
N1—H4N···O3vi0.82 (2)2.15 (2)2.966 (3)177 (3)
O6—H6A···O6vii0.821.662.463 (4)165
O7—H7···O4viii0.821.662.435 (3)156
Symmetry codes: (ii) x1, y, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x+2, y, z+1; (vi) x, y, z1; (vii) x+1, y, z+1; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula(NH4)2[Co(CH4O6P2)2(H2O)2]
Mr479.01
Crystal system, space groupTriclinic, P1
Temperature (K)103
a, b, c (Å)7.455 (5), 7.560 (5), 8.035 (5)
α, β, γ (°)88.282 (5), 62.450 (5), 71.834 (5)
V3)378.0 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.28 × 0.16 × 0.11
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.739, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
8419, 1875, 1735
Rint0.029
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.097, 1.23
No. of reflections1875
No. of parameters134
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.48

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.819 (18)1.99 (2)2.795 (3)166 (4)
O1—H1B···O4ii0.835 (19)1.994 (19)2.827 (3)175 (4)
N1—H1N···O7iii0.825 (18)2.09 (2)2.892 (3)166 (3)
N1—H2N···O60.825 (18)1.98 (2)2.796 (3)171 (4)
N1—H3N···O3iv0.821 (18)2.17 (2)2.959 (3)161 (3)
N1—H4N···O3v0.821 (18)2.146 (19)2.966 (3)177 (3)
O6—H6A···O6vi0.821.662.463 (4)164.6
O7—H7···O4vii0.821.662.435 (3)156.1
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x, y, z1; (vi) x+1, y, z+1; (vii) x1, y, z.
 

Acknowledgements

We thank the University of the Free State for financial support and Professor A. Roodt for helpful discussions.

References

First citationBarthelet, K., Riou, D. & Férey, G. (2002). Acta Cryst. C58, m264–m265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeLaMatter, D., McCullough, J. J. & Calvo, C. (1973). J. Phys. Chem. 77, 1146–1148.  CSD CrossRef CAS Web of Science Google Scholar
First citationJurisson, S. S., Benedict, J. J., Elder, R. C., Whittle, R. & Deutsch, E. (1983). Inorg. Chem. 22, 1332–1338.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStahl, K., Oddershede, J., Preikschat, H., Fischer, E. & Bennekou, J. S. (2006). Acta Cryst. C62, m112–m115.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds