metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Succinato-κ2O1:O4-bis­[(2,2′-bi­pyridine-κ2N,N′)copper(II)] succinate dodeca­hydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 12 October 2009; accepted 14 October 2009; online 23 October 2009)

In the title compound, [Cu2(C4H4O4)(C10H8N2)4]C4H4O4·12H2O, C10H8N2), the centrosymmetic dinuclear cations, succinate anions and water mol­ecules are hydrogen bonded into layers parallel to (010). The Cu atom is square-pyramidally coordinated by one atom of the succinato ligand and four N atoms of two 2,2′-bipyridine ligands. The 12 water mol­ecules form a new type of water cluster.

Related literature

For metal-organic coordination polymers, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Zheng et al. (2004[Zheng, Y. Q., Lin, J. L. & Kong, Z. P. (2004). Inorg. Chem. 43, 2590-2596.]). The configuration of water clusters depends on the environment of the host, see: Wei et al. (2006[Wei, M. L., He, C., Hua, W. J., Duan, C. Y., Li, S. H. & Meng, Q. J. (2006). J. Am. Chem. Soc. 128, 13318-13319.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C4H4O4)(C10H8N2)4]C4H4O4·12H2O

  • Mr = 1200.15

  • Triclinic, [P \overline 1]

  • a = 10.502 (2) Å

  • b = 10.764 (2) Å

  • c = 12.892 (3) Å

  • α = 77.21 (3)°

  • β = 77.99 (3)°

  • γ = 79.85 (3)°

  • V = 1377.1 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 295 K

  • 0.34 × 0.27 × 0.19 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS, Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.750, Tmax = 0.844

  • 5721 measured reflections

  • 4853 independent reflections

  • 3856 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.145

  • S = 1.07

  • 4853 reflections

  • 353 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −1.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O10i 0.85 1.96 2.750 (6) 154
O5—H5C⋯O9 0.85 1.90 2.739 (6) 169
O6—H6B⋯O5 0.84 1.99 2.820 (6) 168
O6—H6C⋯O5ii 0.86 2.01 2.847 (7) 167
O7—H7B⋯O6iii 0.85 2.01 2.755 (5) 146
O7—H7C⋯O8 0.84 1.98 2.820 (5) 175
O8—H8B⋯O2iv 0.85 1.95 2.795 (5) 177
O8—H8C⋯O3 0.85 1.85 2.682 (5) 169
O9—H9B⋯O8iii 0.84 2.02 2.850 (5) 172
O9—H9C⋯O4 0.86 1.85 2.704 (6) 176
O10—H10B⋯O7v 0.84 2.09 2.877 (7) 156
O10—H10C⋯O4 0.85 1.99 2.758 (7) 149
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x, -y+1, -z+1.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decade, metal-organic coordination polymers have attracted considerable interest due to their potential applications and intriguing architectures (Batten & Robson, 1998). The saturated aliphatic dicarboxylate ligands, which exhibit conformational and coordination versatility due to single-bonded carbon chains, are also an attractive choice and considered as important flexible spacer ligand (Rao, et al., 2004). As one of the lower members in the α,ω-dicarboxylate family, the succinate anions play a special role. Under ambient conditions, the linkage of transition metal cations by succinate anions may lead to linear polymeric chains, two-dimensional open networks and three-dimensional framework coordination polymers (Zheng, et al., 2004). Some metal-organic coordination polymers are open-frameworked and there are guest species occluded by open-framework host in the structures. Water molecules are the commonly encountered guest species, and they usually play an important role in the stabilization of the host, on the other hand, the configuration of water clusters depends on the surrounding environment of the host (Wei, et al., 2006). A variety of water clusters observed in a number of hosts have been structurally characterized to help us gain insight into the nature of water-water interactions. Herein, we report the presence of a new type (H2O)12 water cluster in the structure of succinato bridged dinuclear complex [Cu2(bpy)4(C4H4O4)](C4H4O4).12H2O.

The title compound consists of succinato bridged dinuclear [Cu2(bpy)4(C4H4O4)]2+ complex cations, succinate anions and crystal water molecules. As illustrated in Fig. 1, Cu2+ in the complex cations are each square pyramidally coordinated by one O atom of the succinato ligand and four N atoms of two bpy ligands with the N3 atom at the apical position (d(Cu—O) = 1.981 (3) Å; equatorial d(Cu—N) = 2.000 (4)–2.033 (3) Å; axial d(Cu—N) = 2.172 (3) Å). The Cu atom is shift by 0.179 (2) from the equatorial plane through N1, N2, N4 and O4 atoms towards the apical N3 atom. The succinato group bis-bidentately bridges two Cu ions to form the dinuclear complex cation. Such bridging succinato ligand and the noncoordinating succinate anion are also exhibit trans conformation with the backbone C atoms in a plane. The dehedral angles between the two pyridine rings are twisted by 8.34° and 10.08° in the two different bpy ligands. The complex cations are forced to be aligned in such ways that the symmetry related bpy ligands are orientated parallelly and face the opposite directions with the interplanar distanceds varying from 3.533 Å to 3.541 Å. Obviously, sucn π-π stacking interactions are responsible for the supramolecular assembly of the complex molecules into two-dimensional layers parallel to (010). The resulting complex cationic layers are found to be stabilized by weak C(bpy)-H···O(carboxylate) hydrogen bonds with d(H4A···O2II) = 2.47 Å (II: -x, -y + 2, -z + 2) (Fig. 2).

The most interesting feature of the solid-state structure of the title complex is the hydrogen-bonding interactions of the water molecules and the succinate anion, in which twelve water molecules form a (H2O)12 cluster associated by O—H···O hydrogen bonds (as shown in Fig 3). The geometric parameters of the clusters are summarized in Tables 1. The O···O distances range from 2.738 (6)–2.876 (7) Å and the angles of the O—H···O are vary from 145° to 175°. Interestingly, such (H2O)12 water clusters are farther hydrogen bond interacting with succinate anions to complete two-dimensional layers parallel to (010) with (d(O···O) = 2.682 (5)–2.758 (7) Å; <O—H···O = 149–176°).

Related literature top

For metal-organic coordination polymers, see: Batten & Robson (1998); Rao et al. (2004); Zheng et al. (2004). The configuration of water clusters depends on the environment of the host, see: Wei et al. (2006);

Experimental top

Addition of 10 ml CH3OH containing 0.324 g (2.08 mmol) 2,2'-bipyridine (bpy) to an aqueous solution of 0.171 g (1.00 mmol) CuCl2.2H2O in 10 ml H2O gave a blue solution, then added 0.182 g (1.00 mmol) succinic acid to the mixture. The mixture was further stirred vigorously, and the resulting blue solution was adjusted with NaOH to pH = 8.3 and allowed to stand at room temperature. After two weeks, a small amount of blue block crystals had grown.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model.

Structure description top

In the past decade, metal-organic coordination polymers have attracted considerable interest due to their potential applications and intriguing architectures (Batten & Robson, 1998). The saturated aliphatic dicarboxylate ligands, which exhibit conformational and coordination versatility due to single-bonded carbon chains, are also an attractive choice and considered as important flexible spacer ligand (Rao, et al., 2004). As one of the lower members in the α,ω-dicarboxylate family, the succinate anions play a special role. Under ambient conditions, the linkage of transition metal cations by succinate anions may lead to linear polymeric chains, two-dimensional open networks and three-dimensional framework coordination polymers (Zheng, et al., 2004). Some metal-organic coordination polymers are open-frameworked and there are guest species occluded by open-framework host in the structures. Water molecules are the commonly encountered guest species, and they usually play an important role in the stabilization of the host, on the other hand, the configuration of water clusters depends on the surrounding environment of the host (Wei, et al., 2006). A variety of water clusters observed in a number of hosts have been structurally characterized to help us gain insight into the nature of water-water interactions. Herein, we report the presence of a new type (H2O)12 water cluster in the structure of succinato bridged dinuclear complex [Cu2(bpy)4(C4H4O4)](C4H4O4).12H2O.

The title compound consists of succinato bridged dinuclear [Cu2(bpy)4(C4H4O4)]2+ complex cations, succinate anions and crystal water molecules. As illustrated in Fig. 1, Cu2+ in the complex cations are each square pyramidally coordinated by one O atom of the succinato ligand and four N atoms of two bpy ligands with the N3 atom at the apical position (d(Cu—O) = 1.981 (3) Å; equatorial d(Cu—N) = 2.000 (4)–2.033 (3) Å; axial d(Cu—N) = 2.172 (3) Å). The Cu atom is shift by 0.179 (2) from the equatorial plane through N1, N2, N4 and O4 atoms towards the apical N3 atom. The succinato group bis-bidentately bridges two Cu ions to form the dinuclear complex cation. Such bridging succinato ligand and the noncoordinating succinate anion are also exhibit trans conformation with the backbone C atoms in a plane. The dehedral angles between the two pyridine rings are twisted by 8.34° and 10.08° in the two different bpy ligands. The complex cations are forced to be aligned in such ways that the symmetry related bpy ligands are orientated parallelly and face the opposite directions with the interplanar distanceds varying from 3.533 Å to 3.541 Å. Obviously, sucn π-π stacking interactions are responsible for the supramolecular assembly of the complex molecules into two-dimensional layers parallel to (010). The resulting complex cationic layers are found to be stabilized by weak C(bpy)-H···O(carboxylate) hydrogen bonds with d(H4A···O2II) = 2.47 Å (II: -x, -y + 2, -z + 2) (Fig. 2).

The most interesting feature of the solid-state structure of the title complex is the hydrogen-bonding interactions of the water molecules and the succinate anion, in which twelve water molecules form a (H2O)12 cluster associated by O—H···O hydrogen bonds (as shown in Fig 3). The geometric parameters of the clusters are summarized in Tables 1. The O···O distances range from 2.738 (6)–2.876 (7) Å and the angles of the O—H···O are vary from 145° to 175°. Interestingly, such (H2O)12 water clusters are farther hydrogen bond interacting with succinate anions to complete two-dimensional layers parallel to (010) with (d(O···O) = 2.682 (5)–2.758 (7) Å; <O—H···O = 149–176°).

For metal-organic coordination polymers, see: Batten & Robson (1998); Rao et al. (2004); Zheng et al. (2004). The configuration of water clusters depends on the environment of the host, see: Wei et al. (2006);

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 40% probability level. [Symmetry code: (I) -x + 1, -y + 2, -z + 1]
[Figure 2] Fig. 2. The two-dimensional layer for the supramolecular assembly of the complex cations. [Symmetry codes: (II) -x, -y + 2, -z + 2].
[Figure 3] Fig. 3. The two-dimensional water-succinate framework parallel to (010).
µ-Succinato-κ2O1:O4-bis[(2,2'-bipyridine- κ2N,N')copper(II)] succinate dodecahydrate top
Crystal data top
[Cu2(C4H4O4)(C10H8N2)4]C4H4O4·12H2OZ = 1
Mr = 1200.15F(000) = 626
Triclinic, P1Dx = 1.447 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.502 (2) ÅCell parameters from 25 reflections
b = 10.764 (2) Åθ = 5.0–12.5°
c = 12.892 (3) ŵ = 0.85 mm1
α = 77.21 (3)°T = 295 K
β = 77.99 (3)°Block, blue
γ = 79.85 (3)°0.34 × 0.27 × 0.19 mm
V = 1377.1 (5) Å3
Data collection top
Bruker P4
diffractometer
3856 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
θ/2θ scansh = 112
Absorption correction: ψ scan
XSCANS
k = 1212
Tmin = 0.750, Tmax = 0.844l = 1515
5721 measured reflections3 standard reflections every 97 reflections
4853 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0531P)2 + 2.9966P]
where P = (Fo2 + 2Fc2)/3
4853 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 1.03 e Å3
18 restraintsΔρmin = 1.58 e Å3
Crystal data top
[Cu2(C4H4O4)(C10H8N2)4]C4H4O4·12H2Oγ = 79.85 (3)°
Mr = 1200.15V = 1377.1 (5) Å3
Triclinic, P1Z = 1
a = 10.502 (2) ÅMo Kα radiation
b = 10.764 (2) ŵ = 0.85 mm1
c = 12.892 (3) ÅT = 295 K
α = 77.21 (3)°0.34 × 0.27 × 0.19 mm
β = 77.99 (3)°
Data collection top
Bruker P4
diffractometer
3856 reflections with I > 2σ(I)
Absorption correction: ψ scan
XSCANS
Rint = 0.025
Tmin = 0.750, Tmax = 0.8443 standard reflections every 97 reflections
5721 measured reflections intensity decay: none
4853 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05318 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.07Δρmax = 1.03 e Å3
4853 reflectionsΔρmin = 1.58 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.74197 (5)0.97679 (5)0.74602 (4)0.03307 (17)
N10.7538 (3)1.0058 (3)0.8941 (3)0.0375 (8)
N20.6286 (4)0.8488 (3)0.8385 (3)0.0393 (8)
N30.9308 (3)0.8594 (3)0.7123 (3)0.0385 (8)
N40.8548 (3)1.1107 (3)0.6606 (2)0.0328 (7)
O10.6673 (3)0.9791 (3)0.6165 (2)0.0370 (7)
O20.5113 (3)1.1205 (3)0.6850 (2)0.0479 (8)
O30.3066 (4)0.3885 (4)0.4609 (3)0.0632 (10)
O40.4199 (4)0.4917 (4)0.3143 (3)0.0719 (11)
O50.7964 (4)0.5153 (5)0.0060 (3)0.0875 (14)
O60.9811 (4)0.6789 (4)0.0001 (3)0.0816 (12)
O70.0176 (4)0.3001 (5)0.7912 (3)0.0787 (12)
O80.2760 (3)0.2866 (3)0.6727 (3)0.0581 (9)
O90.6523 (4)0.5599 (4)0.2004 (3)0.0639 (10)
O100.2260 (5)0.5285 (5)0.1913 (4)0.0970 (16)
C10.8295 (5)1.0819 (5)0.9166 (4)0.0481 (11)
H1A0.87741.13390.86000.058*
C20.8378 (6)1.0848 (5)1.0216 (4)0.0603 (14)
H2A0.89151.13731.03530.072*
C30.7667 (6)1.0101 (6)1.1047 (4)0.0670 (16)
H3A0.77101.01171.17570.080*
C40.6883 (6)0.9320 (5)1.0835 (4)0.0559 (13)
H4A0.63890.88081.13970.067*
C50.6844 (4)0.9312 (4)0.9766 (3)0.0380 (10)
C60.6070 (4)0.8479 (4)0.9453 (3)0.0385 (10)
C70.5218 (5)0.7736 (5)1.0173 (4)0.0535 (13)
H7A0.50690.77581.09050.064*
C80.4584 (6)0.6953 (5)0.9794 (5)0.0652 (15)
H8A0.39980.64451.02670.078*
C90.4830 (6)0.6936 (5)0.8710 (5)0.0645 (15)
H9A0.44230.64050.84410.077*
C100.5681 (5)0.7709 (5)0.8026 (4)0.0524 (12)
H10A0.58440.76940.72910.063*
C110.9635 (5)0.7332 (5)0.7468 (4)0.0522 (12)
H11A0.89720.68370.78150.063*
C121.0915 (6)0.6737 (5)0.7330 (4)0.0642 (16)
H12A1.11140.58600.75850.077*
C131.1884 (6)0.7463 (6)0.6812 (5)0.0660 (16)
H13A1.27580.70870.67210.079*
C141.1561 (5)0.8762 (5)0.6421 (4)0.0558 (13)
H14A1.22100.92620.60460.067*
C151.0263 (4)0.9304 (4)0.6595 (3)0.0373 (10)
C160.9817 (4)1.0698 (4)0.6231 (3)0.0346 (9)
C171.0628 (4)1.1533 (5)0.5547 (3)0.0443 (11)
H17A1.14951.12360.52810.053*
C181.0132 (5)1.2814 (5)0.5267 (4)0.0517 (12)
H18A1.06661.33890.48140.062*
C190.8851 (5)1.3235 (5)0.5658 (4)0.0494 (12)
H19A0.85071.40960.54800.059*
C200.8082 (5)1.2362 (4)0.6321 (3)0.0420 (10)
H20A0.72101.26460.65820.050*
C210.5588 (4)1.0531 (4)0.6155 (3)0.0334 (9)
C220.4878 (5)1.0601 (4)0.5229 (4)0.0428 (10)
H22A0.39411.07960.54790.051*
H22B0.51421.13060.46550.051*
C230.4059 (5)0.4377 (4)0.4120 (4)0.0452 (11)
C240.5143 (5)0.4410 (4)0.4746 (4)0.0441 (11)
H24A0.52010.36440.53060.053*
H24B0.59810.44150.42590.053*
H5B0.76660.49600.04360.080*
H5C0.74440.53610.06140.079*
H6B0.93470.62420.00380.072*
H6C1.05550.63040.00390.075*
H7B0.02800.33670.84050.071*
H7C0.09440.30140.75540.072*
H8B0.34820.23770.67750.073*
H8C0.27700.31440.60580.060*
H9B0.67690.59810.24140.054*
H9C0.57930.54000.23870.061*
H10B0.15140.56520.21540.092*
H10C0.26380.50220.24590.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0336 (3)0.0362 (3)0.0252 (3)0.0014 (2)0.00311 (19)0.00379 (19)
N10.039 (2)0.043 (2)0.0283 (17)0.0003 (16)0.0056 (15)0.0060 (15)
N20.041 (2)0.0361 (19)0.0363 (19)0.0005 (16)0.0058 (16)0.0032 (15)
N30.041 (2)0.0392 (19)0.0289 (17)0.0054 (16)0.0042 (15)0.0024 (14)
N40.0351 (19)0.0361 (18)0.0243 (16)0.0008 (15)0.0037 (14)0.0043 (13)
O10.0312 (15)0.0495 (17)0.0308 (14)0.0045 (13)0.0103 (12)0.0118 (12)
O20.0494 (19)0.0567 (19)0.0376 (16)0.0090 (15)0.0112 (14)0.0185 (15)
O30.059 (2)0.076 (3)0.051 (2)0.014 (2)0.0167 (18)0.0055 (18)
O40.068 (3)0.111 (3)0.0383 (19)0.023 (2)0.0130 (17)0.007 (2)
O50.066 (3)0.141 (4)0.066 (3)0.011 (3)0.002 (2)0.053 (3)
O60.088 (3)0.095 (3)0.068 (3)0.020 (3)0.005 (2)0.030 (2)
O70.060 (2)0.122 (4)0.057 (2)0.017 (2)0.0023 (19)0.032 (2)
O80.048 (2)0.073 (2)0.0435 (18)0.0064 (17)0.0043 (15)0.0068 (16)
O90.065 (2)0.078 (3)0.0459 (19)0.005 (2)0.0001 (17)0.0187 (18)
O100.104 (4)0.114 (4)0.080 (3)0.016 (3)0.048 (3)0.027 (3)
C10.052 (3)0.055 (3)0.040 (2)0.010 (2)0.007 (2)0.012 (2)
C20.069 (4)0.068 (3)0.052 (3)0.007 (3)0.020 (3)0.023 (3)
C30.087 (4)0.081 (4)0.035 (3)0.003 (3)0.018 (3)0.016 (3)
C40.068 (3)0.064 (3)0.030 (2)0.005 (3)0.006 (2)0.002 (2)
C50.039 (2)0.039 (2)0.029 (2)0.0052 (18)0.0038 (18)0.0028 (17)
C60.036 (2)0.034 (2)0.036 (2)0.0076 (18)0.0032 (18)0.0004 (17)
C70.051 (3)0.048 (3)0.047 (3)0.000 (2)0.001 (2)0.006 (2)
C80.060 (3)0.048 (3)0.074 (4)0.015 (3)0.006 (3)0.008 (3)
C90.065 (4)0.049 (3)0.078 (4)0.016 (3)0.009 (3)0.008 (3)
C100.059 (3)0.045 (3)0.053 (3)0.008 (2)0.008 (2)0.009 (2)
C110.059 (3)0.043 (3)0.043 (3)0.006 (2)0.005 (2)0.000 (2)
C120.070 (4)0.055 (3)0.054 (3)0.027 (3)0.012 (3)0.009 (2)
C130.052 (3)0.073 (4)0.067 (3)0.028 (3)0.012 (3)0.027 (3)
C140.038 (3)0.067 (3)0.057 (3)0.009 (2)0.000 (2)0.021 (3)
C150.035 (2)0.049 (2)0.027 (2)0.0061 (19)0.0053 (17)0.0140 (18)
C160.032 (2)0.048 (2)0.0248 (19)0.0017 (18)0.0056 (16)0.0114 (17)
C170.037 (2)0.058 (3)0.035 (2)0.008 (2)0.0010 (19)0.010 (2)
C180.061 (3)0.056 (3)0.039 (2)0.023 (3)0.005 (2)0.003 (2)
C190.061 (3)0.039 (2)0.046 (3)0.007 (2)0.012 (2)0.002 (2)
C200.043 (3)0.040 (2)0.039 (2)0.0033 (19)0.0093 (19)0.0043 (19)
C210.035 (2)0.038 (2)0.0276 (19)0.0058 (18)0.0065 (17)0.0046 (17)
C220.042 (3)0.045 (2)0.043 (2)0.009 (2)0.017 (2)0.014 (2)
C230.053 (3)0.046 (3)0.037 (2)0.006 (2)0.013 (2)0.015 (2)
C240.044 (3)0.044 (2)0.044 (2)0.009 (2)0.012 (2)0.015 (2)
Geometric parameters (Å, º) top
Cu1—O11.981 (3)C4—C51.389 (6)
Cu1—N22.000 (4)C4—H4A0.9300
Cu1—N42.013 (3)C5—C61.476 (7)
Cu1—N12.033 (3)C6—C71.371 (6)
Cu1—N32.172 (3)C7—C81.381 (8)
Cu1—O22.795 (3)C7—H7A0.9300
N1—C51.347 (5)C8—C91.371 (8)
N1—C11.349 (6)C8—H8A0.9300
N2—C101.343 (6)C9—C101.370 (7)
N2—C61.346 (5)C9—H9A0.9300
N3—C111.340 (6)C10—H10A0.9300
N3—C151.345 (6)C11—C121.376 (7)
N4—C201.349 (5)C11—H11A0.9300
N4—C161.349 (5)C12—C131.363 (8)
O1—C211.271 (5)C12—H12A0.9300
O2—C211.246 (5)C13—C141.385 (8)
O3—C231.240 (6)C13—H13A0.9300
O4—C231.254 (6)C14—C151.377 (6)
O5—H5B0.8457C14—H14A0.9300
O5—H5C0.8510C15—C161.491 (6)
O6—H6B0.8421C16—C171.385 (6)
O6—H6C0.8584C17—C181.381 (7)
O7—H7B0.8517C17—H17A0.9300
O7—H7C0.8424C18—C191.368 (7)
O8—H8B0.8491C18—H18A0.9300
O8—H8C0.8459C19—C201.375 (6)
O9—H9B0.8404C19—H19A0.9300
O9—H9C0.8548C20—H20A0.9300
O10—H10B0.8424C21—C221.516 (6)
O10—H10C0.8505C22—C22i1.499 (8)
C1—C21.381 (7)C22—H22A0.9700
C1—H1A0.9300C22—H22B0.9700
C2—C31.360 (8)C23—C241.536 (6)
C2—H2A0.9300C24—C24ii1.511 (8)
C3—C41.378 (8)C24—H24A0.9700
C3—H3A0.9300C24—H24B0.9700
O1—Cu1—N292.51 (14)C9—C8—H8A120.5
O1—Cu1—N490.27 (13)C7—C8—H8A120.5
N2—Cu1—N4176.56 (14)C10—C9—C8119.4 (6)
O1—Cu1—N1159.82 (13)C10—C9—H9A120.3
N2—Cu1—N180.65 (15)C8—C9—H9A120.3
N4—Cu1—N196.06 (14)N2—C10—C9121.9 (5)
O1—Cu1—N3101.12 (12)N2—C10—H10A119.1
N2—Cu1—N3102.72 (14)C9—C10—H10A119.1
N4—Cu1—N378.70 (13)N3—C11—C12122.6 (5)
N1—Cu1—N398.90 (14)N3—C11—H11A118.7
O1—Cu1—O251.85 (10)C12—C11—H11A118.7
N2—Cu1—O286.73 (13)C13—C12—C11118.5 (5)
N4—Cu1—O293.40 (12)C13—C12—H12A120.7
N1—Cu1—O2108.49 (12)C11—C12—H12A120.7
N3—Cu1—O2152.18 (11)C12—C13—C14119.6 (5)
C5—N1—C1118.7 (4)C12—C13—H13A120.2
C5—N1—Cu1113.8 (3)C14—C13—H13A120.2
C1—N1—Cu1127.3 (3)C15—C14—C13119.0 (5)
C10—N2—C6118.7 (4)C15—C14—H14A120.5
C10—N2—Cu1125.7 (3)C13—C14—H14A120.5
C6—N2—Cu1115.6 (3)N3—C15—C14121.4 (4)
C11—N3—C15118.7 (4)N3—C15—C16115.4 (4)
C11—N3—Cu1128.5 (3)C14—C15—C16123.2 (4)
C15—N3—Cu1112.3 (3)N4—C16—C17121.3 (4)
C20—N4—C16118.7 (4)N4—C16—C15115.5 (4)
C20—N4—Cu1123.6 (3)C17—C16—C15123.2 (4)
C16—N4—Cu1117.4 (3)C18—C17—C16119.0 (4)
C21—O1—Cu1111.5 (2)C18—C17—H17A120.5
C21—O2—Cu173.5 (2)C16—C17—H17A120.5
H5B—O5—H5C120.3C19—C18—C17119.8 (4)
H6B—O6—H6C97.8C19—C18—H18A120.1
H7B—O7—H7C97.0C17—C18—H18A120.1
H8B—O8—H8C105.8C18—C19—C20118.8 (4)
H9B—O9—H9C100.3C18—C19—H19A120.6
H10B—O10—H10C104.9C20—C19—H19A120.6
N1—C1—C2121.8 (5)N4—C20—C19122.3 (4)
N1—C1—H1A119.1N4—C20—H20A118.8
C2—C1—H1A119.1C19—C20—H20A118.8
C3—C2—C1119.3 (5)O2—C21—O1123.1 (4)
C3—C2—H2A120.4O2—C21—C22119.7 (4)
C1—C2—H2A120.4O1—C21—C22117.2 (3)
C2—C3—C4119.9 (5)C22i—C22—C21114.7 (4)
C2—C3—H3A120.1C22i—C22—H22A108.6
C4—C3—H3A120.1C21—C22—H22A108.6
C3—C4—C5118.7 (5)C22i—C22—H22B108.6
C3—C4—H4A120.6C21—C22—H22B108.6
C5—C4—H4A120.6H22A—C22—H22B107.6
N1—C5—C4121.6 (4)O3—C23—O4123.4 (5)
N1—C5—C6115.5 (4)O3—C23—C24119.0 (4)
C4—C5—C6122.9 (4)O4—C23—C24117.5 (5)
N2—C6—C7121.9 (5)C24ii—C24—C23110.8 (4)
N2—C6—C5114.1 (4)C24ii—C24—H24A109.5
C7—C6—C5124.0 (4)C23—C24—H24A109.5
C6—C7—C8119.1 (5)C24ii—C24—H24B109.5
C6—C7—H7A120.5C23—C24—H24B109.5
C8—C7—H7A120.5H24A—C24—H24B108.1
C9—C8—C7119.0 (5)
C23—C24—C24ii—C23ii180.000 (1)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O10iii0.851.962.750 (6)154
O5—H5C···O90.851.902.739 (6)169
O6—H6B···O50.841.992.820 (6)168
O6—H6C···O5iv0.862.012.847 (7)167
O7—H7B···O6ii0.852.012.755 (5)146
O7—H7C···O80.841.982.820 (5)175
O8—H8B···O2v0.851.952.795 (5)177
O8—H8C···O30.851.852.682 (5)169
O9—H9B···O8ii0.842.022.850 (5)172
O9—H9C···O40.861.852.704 (6)176
O10—H10B···O7vi0.842.092.877 (7)156
O10—H10C···O40.851.992.758 (7)149
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x+2, y+1, z; (v) x, y1, z; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C4H4O4)(C10H8N2)4]C4H4O4·12H2O
Mr1200.15
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.502 (2), 10.764 (2), 12.892 (3)
α, β, γ (°)77.21 (3), 77.99 (3), 79.85 (3)
V3)1377.1 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.34 × 0.27 × 0.19
Data collection
DiffractometerBruker P4
Absorption correctionψ scan
XSCANS
Tmin, Tmax0.750, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
5721, 4853, 3856
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.145, 1.07
No. of reflections4853
No. of parameters353
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 1.58

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O10i0.851.962.750 (6)154
O5—H5C···O90.851.902.739 (6)169
O6—H6B···O50.841.992.820 (6)168
O6—H6C···O5ii0.862.012.847 (7)167
O7—H7B···O6iii0.852.012.755 (5)146
O7—H7C···O80.841.982.820 (5)175
O8—H8B···O2iv0.851.952.795 (5)177
O8—H8C···O30.851.852.682 (5)169
O9—H9B···O8iii0.842.022.850 (5)172
O9—H9C···O40.861.852.704 (6)176
O10—H10B···O7v0.842.092.877 (7)156
O10—H10C···O40.851.992.758 (7)149
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z+1.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Ningbo Municipal Natural Science Foundation (grant No. 2006A610061) and the Scientific Research Fund of Ningbo University (grant No. XYL08012).

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWei, M. L., He, C., Hua, W. J., Duan, C. Y., Li, S. H. & Meng, Q. J. (2006). J. Am. Chem. Soc. 128, 13318–13319.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZheng, Y. Q., Lin, J. L. & Kong, Z. P. (2004). Inorg. Chem. 43, 2590–2596.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds