organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyridinium-2-carboxyl­ate–benzene-1,2-diol (1/1)

aInstitut für Organische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and bInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 20 October 2009; accepted 20 October 2009; online 23 October 2009)

The title compound, C6H5NO2·C6H6O2, crystallizes with one pyridinium-2-carboxyl­ate zwitterion and one mol­ecule of benzene-1,2-diol in the asymmetric unit. The crystal structure is characterized by alternating mol­ecules forming zigzag chains running along the a axis: the mol­ecules are connected by O—H⋯O and N—H⋯(O,O) hydrogen bonds.

Related literature

For co-crystallization experiments, see: Ton & Bolte (2005[Ton, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406-o1407.]); Tutughamiarso et al. (2009[Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574-o578.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5NO2·C6H6O2

  • Mr = 233.22

  • Orthorhombic, P 21 21 21

  • a = 6.9710 (14) Å

  • b = 6.9855 (14) Å

  • c = 21.806 (4) Å

  • V = 1061.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.21 × 0.18 × 0.16 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: none

  • 11928 measured reflections

  • 1196 independent reflections

  • 1105 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.096

  • wR(F2) = 0.197

  • S = 1.23

  • 1196 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O11i 0.84 1.84 2.655 (6) 163
O2—H2⋯O12 0.84 1.89 2.662 (7) 153
N1—H31⋯O12 0.91 2.16 2.617 (7) 110
N1—H31⋯O1 0.91 2.18 2.984 (7) 147
Symmetry code: (i) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and SHELXL97.

Supporting information


Comment top

The aim of our research is the cocrystallization of two small organic compounds in order to examine the hydrogen bonds formed between hydrogen-bond acceptors and hydrogen-bond donors (Ton & Bolte, 2005; Tutughamiarso et al., 2009). When pyridinecarboxaldehyde and 1,2-dihydroxybenzene were mixed in order to obtain a hydrogen bonded supermolecular complex, it turned out that the aldehyd had been oxidized to the carboxylic acid. The title compound crystallizes with one pyridinium-2-carboxylate zwitterion and one molecule of benzene-1,2-diol in the asymmetric unit. The crystal structure is characterized by alternating molecules forming zigzag chains running along the a axis. The molecules are connected by O—H···N and O—H···O hydrogen bonds.

Related literature top

For co-crystallization experiments, see: Ton & Bolte (2005); Tutughamiarso et al. (2009).

Experimental top

40 mg pyridinecarboxaldehyde and 40 mg 1,2-dihydroxybenzene were diluted in 2 ml diethyl ether in a nitrogen atmosphere. After five weeks a brown precipitate emerged from the mixture. On the surface white crystals has been sedimented, one of which was used for structure determination. It turned out that the pyridinecarboxaldehyde had been oxidized to the carboxylic acid.

Refinement top

Hydrogen atoms were located in a difference Fourier map but those bonded to C and O were included in calculated positions [C—H = 0.93 - 0.99 Å] and refined as riding [Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O,Cmethyl)]. H atoms bonded to N were freely refined. Due to the absence of anomalous scatterers, the absolute structure could not be determined and 808 Friedel pairs were merged.

Structure description top

The aim of our research is the cocrystallization of two small organic compounds in order to examine the hydrogen bonds formed between hydrogen-bond acceptors and hydrogen-bond donors (Ton & Bolte, 2005; Tutughamiarso et al., 2009). When pyridinecarboxaldehyde and 1,2-dihydroxybenzene were mixed in order to obtain a hydrogen bonded supermolecular complex, it turned out that the aldehyd had been oxidized to the carboxylic acid. The title compound crystallizes with one pyridinium-2-carboxylate zwitterion and one molecule of benzene-1,2-diol in the asymmetric unit. The crystal structure is characterized by alternating molecules forming zigzag chains running along the a axis. The molecules are connected by O—H···N and O—H···O hydrogen bonds.

For co-crystallization experiments, see: Ton & Bolte (2005); Tutughamiarso et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
Pyridinium-2-carboxylate–benzene-1,2-diol (1/1) top
Crystal data top
C6H5NO2·C6H6O2F(000) = 488
Mr = 233.22Dx = 1.459 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6345 reflections
a = 6.9710 (14) Åθ = 3.5–24.3°
b = 6.9855 (14) ŵ = 0.11 mm1
c = 21.806 (4) ÅT = 173 K
V = 1061.9 (4) Å3Block, colourless
Z = 40.21 × 0.18 × 0.16 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
1105 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 25.8°, θmin = 3.1°
ω scansh = 88
11928 measured reflectionsk = 88
1196 independent reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.096H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.0513P)2 + 3.5668P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.001
1196 reflectionsΔρmax = 0.44 e Å3
155 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (6)
Crystal data top
C6H5NO2·C6H6O2V = 1061.9 (4) Å3
Mr = 233.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9710 (14) ŵ = 0.11 mm1
b = 6.9855 (14) ÅT = 173 K
c = 21.806 (4) Å0.21 × 0.18 × 0.16 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
1105 reflections with I > 2σ(I)
11928 measured reflectionsRint = 0.081
1196 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0960 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.23Δρmax = 0.44 e Å3
1196 reflectionsΔρmin = 0.34 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1064 (7)0.3802 (7)0.0845 (2)0.0257 (11)
H11.20930.41530.06790.039*
O20.8174 (6)0.1866 (8)0.1466 (2)0.0295 (12)
H20.79940.27560.12140.044*
C11.1455 (9)0.3029 (9)0.1410 (3)0.0200 (13)
C20.9985 (9)0.2048 (10)0.1716 (3)0.0220 (13)
C31.0330 (10)0.1145 (11)0.2274 (3)0.0259 (14)
H30.93320.04600.24730.031*
C41.2160 (10)0.1249 (11)0.2542 (3)0.0303 (16)
H41.23990.06490.29250.036*
C51.3612 (9)0.2231 (10)0.2244 (3)0.0280 (15)
H51.48500.23020.24240.034*
C61.3273 (9)0.3110 (10)0.1686 (3)0.0254 (14)
H61.42840.37770.14870.031*
O110.3875 (7)0.5038 (7)0.0125 (2)0.0307 (12)
O120.6497 (8)0.4131 (10)0.0643 (3)0.0516 (18)
N10.8827 (8)0.5092 (8)0.0246 (2)0.0222 (12)
H310.90860.49120.01600.027*
C111.0169 (10)0.5516 (10)0.0666 (3)0.0260 (15)
H111.14790.52260.05910.031*
C130.6922 (9)0.5494 (9)0.0326 (3)0.0208 (13)
C140.6360 (10)0.6404 (9)0.0853 (3)0.0237 (14)
H140.50490.67250.09140.028*
C150.7722 (10)0.6856 (10)0.1299 (3)0.0275 (15)
H150.73470.74910.16650.033*
C160.9629 (10)0.6368 (11)0.1202 (3)0.0301 (17)
H161.05590.66280.15100.036*
C1310.5649 (10)0.4815 (11)0.0200 (3)0.0283 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.015 (2)0.032 (2)0.030 (2)0.002 (2)0.0002 (18)0.006 (2)
O20.015 (2)0.033 (3)0.041 (3)0.005 (2)0.003 (2)0.007 (2)
C10.017 (3)0.015 (3)0.028 (3)0.007 (3)0.002 (3)0.001 (3)
C20.017 (3)0.020 (3)0.029 (3)0.004 (3)0.000 (3)0.003 (3)
C30.025 (3)0.026 (3)0.027 (3)0.002 (3)0.006 (3)0.002 (3)
C40.032 (4)0.034 (4)0.026 (3)0.001 (3)0.004 (3)0.006 (3)
C50.019 (3)0.035 (4)0.030 (3)0.000 (3)0.004 (3)0.003 (3)
C60.019 (3)0.029 (3)0.028 (3)0.005 (3)0.003 (3)0.003 (3)
O110.016 (2)0.043 (3)0.033 (2)0.002 (2)0.002 (2)0.002 (3)
O120.024 (3)0.086 (5)0.044 (3)0.015 (3)0.007 (2)0.033 (3)
N10.019 (3)0.025 (3)0.023 (2)0.004 (3)0.001 (2)0.000 (2)
C110.022 (3)0.022 (3)0.034 (3)0.000 (3)0.005 (3)0.002 (3)
C130.015 (3)0.015 (3)0.033 (3)0.001 (2)0.002 (3)0.000 (3)
C140.019 (3)0.025 (3)0.027 (3)0.000 (3)0.002 (3)0.002 (3)
C150.038 (4)0.021 (3)0.024 (3)0.001 (3)0.002 (3)0.002 (3)
C160.028 (4)0.034 (4)0.028 (3)0.001 (3)0.004 (3)0.002 (3)
C1310.028 (4)0.028 (3)0.029 (3)0.004 (3)0.003 (3)0.005 (3)
Geometric parameters (Å, º) top
O1—C11.374 (8)O11—C1311.257 (8)
O1—H10.8397O12—C1311.229 (9)
O2—C21.381 (7)N1—C111.342 (9)
O2—H20.8392N1—C131.368 (8)
C1—C21.401 (9)N1—H310.9123
C1—C61.404 (9)C11—C161.365 (10)
C2—C31.391 (9)C11—H110.9500
C3—C41.405 (9)C13—C141.370 (9)
C3—H30.9500C13—C1311.526 (9)
C4—C51.384 (10)C14—C151.396 (10)
C4—H40.9500C14—H140.9500
C5—C61.383 (9)C15—C161.389 (10)
C5—H50.9500C15—H150.9500
C6—H60.9500C16—H160.9500
C1—O1—H1109.4C11—N1—H31123.7
C2—O2—H2109.1C13—N1—H31110.1
O1—C1—C2118.3 (5)N1—C11—C16119.3 (7)
O1—C1—C6123.2 (5)N1—C11—H11120.4
C2—C1—C6118.5 (6)C16—C11—H11120.4
O2—C2—C3117.5 (6)N1—C13—C14118.6 (6)
O2—C2—C1121.7 (6)N1—C13—C131113.9 (6)
C3—C2—C1120.7 (6)C14—C13—C131127.4 (6)
C2—C3—C4119.8 (6)C13—C14—C15119.7 (6)
C2—C3—H3120.1C13—C14—H14120.2
C4—C3—H3120.1C15—C14—H14120.2
C5—C4—C3119.6 (6)C16—C15—C14119.4 (6)
C5—C4—H4120.2C16—C15—H15120.3
C3—C4—H4120.2C14—C15—H15120.3
C6—C5—C4120.5 (6)C11—C16—C15120.0 (7)
C6—C5—H5119.8C11—C16—H16120.0
C4—C5—H5119.8C15—C16—H16120.0
C5—C6—C1120.9 (6)O12—C131—O11128.6 (7)
C5—C6—H6119.6O12—C131—C13115.6 (6)
C1—C6—H6119.6O11—C131—C13115.8 (6)
C11—N1—C13123.0 (6)
O1—C1—C2—O20.7 (10)C11—N1—C13—C141.3 (10)
C6—C1—C2—O2178.3 (6)C11—N1—C13—C131177.8 (6)
O1—C1—C2—C3176.4 (6)N1—C13—C14—C151.5 (9)
C6—C1—C2—C31.2 (10)C131—C13—C14—C15177.4 (6)
O2—C2—C3—C4178.6 (6)C13—C14—C15—C160.2 (10)
C1—C2—C3—C41.4 (10)N1—C11—C16—C152.5 (11)
C2—C3—C4—C50.8 (11)C14—C15—C16—C112.3 (11)
C3—C4—C5—C60.1 (11)N1—C13—C131—O125.1 (9)
C4—C5—C6—C10.1 (11)C14—C13—C131—O12176.0 (7)
O1—C1—C6—C5177.0 (6)N1—C13—C131—O11175.2 (6)
C2—C1—C6—C50.5 (10)C14—C13—C131—O113.7 (10)
C13—N1—C11—C160.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O11i0.841.842.655 (6)163
O2—H2···O120.841.892.662 (7)153
N1—H31···O120.912.162.617 (7)110
N1—H31···O10.912.182.984 (7)147
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H5NO2·C6H6O2
Mr233.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)6.9710 (14), 6.9855 (14), 21.806 (4)
V3)1061.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.21 × 0.18 × 0.16
Data collection
DiffractometerStoe IPDSII two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11928, 1196, 1105
Rint0.081
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.096, 0.197, 1.23
No. of reflections1196
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.34

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), PLATON (Spek, 2009) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O11i0.841.842.655 (6)163.2
O2—H2···O120.841.892.662 (7)153.1
N1—H31···O120.912.162.617 (7)110.0
N1—H31···O10.912.182.984 (7)147.2
Symmetry code: (i) x+1, y, z.
 

References

First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTon, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406–o1407.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds