organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-di­carb­oxy­pyridinium) dichloride acetone monosolvate

aInstitut für Organische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and bInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 20 October 2009; accepted 20 October 2009; online 23 October 2009)

The title compound, 2C7H6NO4+·2Cl·C3H6O, crystallizes with two 2,6-dicarboxy­pyridinium cations, two chloride anions and one acetone mol­ecule in the asymmetric unit. The crystal structure is characterized by alternating cations and by Cl anions, forming zigzag chains running along the a axis.

Related literature

For co-crystallization experiments, see: Ton & Bolte (2005[Ton, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406-o1407.]); Tutughamiarso et al. (2009[Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574-o578.]).

[Scheme 1]

Experimental

Crystal data
  • 2C7H6NO4+·2Cl·C3H6O

  • Mr = 465.23

  • Monoclinic, P 21 /c

  • a = 21.108 (4) Å

  • b = 6.7877 (14) Å

  • c = 15.224 (3) Å

  • β = 110.28 (3)°

  • V = 2046.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.897, Tmax = 0.930

  • 27731 measured reflections

  • 3867 independent reflections

  • 3412 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.082

  • S = 1.07

  • 3867 reflections

  • 277 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl2i 0.84 2.11 2.9469 (13) 171
O3—H3⋯Cl1ii 0.84 2.14 2.9727 (13) 172
O12—H12⋯Cl1 0.84 2.13 2.9696 (15) 179
O14—H14⋯Cl2 0.84 2.14 2.9775 (12) 177
N1—H1N⋯O30iii 0.88 2.42 3.277 (2) 166
N1—H1N⋯O2 0.88 2.34 2.6685 (16) 103
N1—H1N⋯O4 0.88 2.39 2.7195 (16) 103
N2—H2N⋯O11 0.88 2.25 2.6365 (17) 106
N2—H2N⋯O13 0.88 2.26 2.6392 (16) 106
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z-1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The aim of our research is the cocrystallization of two small organic compounds in order to examine the hydrogen bonds formed between hydrogen-bond acceptors and hydrogen-bond donors (Ton & Bolte, 2005; Tutughamiarso et al., 2009). When pyridine-2,6-dicarbonyl dichlorid and resorcinol were mixed in order to obtain a hydrogen bonded supermolecular complex, it turned out that the pyridine-2,6-dicarbonyl dichlorid had been hydrolyzed to the dicarboxylic acid. The title compound crystallizes with two 2,6-dicarboxypyridinium cations, two chloride anions and one acetone molecule in the asymmetric unit. The crystal structure is characterized by alternating cations and by Cl- anions forming zigzag chains running along the a axis. The amino H atoms do not form intermolecular hydrogen bonds, but show short distances to the O atoms of the adjacent carboxyl groups.

Related literature top

For co-crystallization experiments, see: Ton & Bolte (2005); Tutughamiarso et al. (2009).

Experimental top

Pyridine-2,6-dicarbonyl dichlorid (20 mg) and resorcinol (20 mg) were dissolved in 2 ml absolute acetone. The mixture was sealed and set aside at room temperature. After two weeks small block-shaped crystals were obtained. It turned out that the pyridine-2,6-dicarbonyl dichloride had been hydrolyzed to the dicarboxylic acid.

Refinement top

Hydrogen atoms were located in a difference Fourier map but they were included in calculated positions [N—H = 0.88 Å, C—H = 0.93 - 0.99 Å] and refined as riding [Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O,Cmethyl)].

Structure description top

The aim of our research is the cocrystallization of two small organic compounds in order to examine the hydrogen bonds formed between hydrogen-bond acceptors and hydrogen-bond donors (Ton & Bolte, 2005; Tutughamiarso et al., 2009). When pyridine-2,6-dicarbonyl dichlorid and resorcinol were mixed in order to obtain a hydrogen bonded supermolecular complex, it turned out that the pyridine-2,6-dicarbonyl dichlorid had been hydrolyzed to the dicarboxylic acid. The title compound crystallizes with two 2,6-dicarboxypyridinium cations, two chloride anions and one acetone molecule in the asymmetric unit. The crystal structure is characterized by alternating cations and by Cl- anions forming zigzag chains running along the a axis. The amino H atoms do not form intermolecular hydrogen bonds, but show short distances to the O atoms of the adjacent carboxyl groups.

For co-crystallization experiments, see: Ton & Bolte (2005); Tutughamiarso et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
Bis(2,6-dicarboxypyridinium) dichloride acetone monosolvate top
Crystal data top
2C7H6NO4+·2Cl·C3H6OF(000) = 960
Mr = 465.23Dx = 1.510 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4736 reflections
a = 21.108 (4) Åθ = 3.6–23.9°
b = 6.7877 (14) ŵ = 0.37 mm1
c = 15.224 (3) ÅT = 173 K
β = 110.28 (3)°Block, colourless
V = 2046.0 (7) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Stoe IPDSII two-circle
diffractometer
3867 independent reflections
Radiation source: fine-focus sealed tube3412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 25.7°, θmin = 2.7°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 2525
Tmin = 0.897, Tmax = 0.930k = 88
27731 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0611P)2]
where P = (Fo2 + 2Fc2)/3
3867 reflections(Δ/σ)max = 0.001
277 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
2C7H6NO4+·2Cl·C3H6OV = 2046.0 (7) Å3
Mr = 465.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.108 (4) ŵ = 0.37 mm1
b = 6.7877 (14) ÅT = 173 K
c = 15.224 (3) Å0.30 × 0.20 × 0.20 mm
β = 110.28 (3)°
Data collection top
Stoe IPDSII two-circle
diffractometer
3867 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
3412 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.930Rint = 0.041
27731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
3867 reflectionsΔρmin = 0.33 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.400074 (15)0.86812 (5)0.57272 (2)0.02093 (10)
N10.86727 (6)0.62429 (16)0.08751 (8)0.0176 (2)
H1N0.84610.60940.02690.021*
O10.72464 (5)0.5375 (2)0.15456 (8)0.0373 (3)
O20.74328 (5)0.47101 (18)0.02079 (7)0.0314 (3)
H20.70200.44210.00030.047*
O31.02593 (5)0.77466 (16)0.07980 (7)0.0269 (2)
H31.04200.78920.03690.040*
O40.93315 (5)0.66689 (17)0.03641 (7)0.0312 (3)
C10.93284 (6)0.67693 (19)0.11849 (9)0.0185 (3)
C20.96772 (7)0.6960 (2)0.21350 (10)0.0225 (3)
H2A1.01440.72890.23580.027*
C30.93390 (8)0.6665 (2)0.27580 (10)0.0259 (3)
H3A0.95720.67930.34130.031*
C40.86538 (7)0.6179 (2)0.24171 (10)0.0234 (3)
H40.84120.60160.28350.028*
C50.83310 (7)0.59365 (19)0.14648 (9)0.0194 (3)
C60.76021 (7)0.5313 (2)0.10756 (10)0.0224 (3)
C70.96393 (7)0.7065 (2)0.04423 (9)0.0210 (3)
C110.55437 (6)0.66485 (18)0.39734 (9)0.0170 (3)
C120.52686 (7)0.65541 (19)0.30102 (9)0.0194 (3)
H12A0.48040.68300.26950.023*
C130.56847 (7)0.6047 (2)0.25084 (9)0.0220 (3)
H130.55050.60100.18440.026*
C140.63629 (7)0.5591 (2)0.29749 (9)0.0202 (3)
H14A0.66470.52350.26350.024*
C150.66136 (6)0.56671 (19)0.39429 (9)0.0173 (3)
C160.73154 (6)0.51806 (19)0.45933 (9)0.0201 (3)
C170.51949 (6)0.71815 (19)0.46516 (9)0.0189 (3)
N20.62003 (6)0.62153 (15)0.43989 (7)0.0162 (2)
H2N0.63700.62960.50140.019*
O110.74741 (5)0.55571 (16)0.54219 (7)0.0281 (2)
O120.76850 (5)0.43135 (16)0.41724 (7)0.0260 (2)
H120.80640.40330.45680.039*
O130.54906 (5)0.69891 (16)0.54842 (7)0.0269 (2)
O140.45750 (5)0.78176 (16)0.42371 (7)0.0244 (2)
H140.44000.80750.46430.037*
O300.77087 (6)0.63026 (17)0.86620 (9)0.0391 (3)
C310.81624 (8)0.4065 (2)0.78336 (11)0.0325 (3)
H31A0.85980.45230.82710.049*
H31B0.81390.43250.71900.049*
H31C0.81180.26460.79170.049*
C320.76014 (7)0.5135 (2)0.80203 (11)0.0271 (3)
C330.68937 (8)0.4701 (3)0.73731 (13)0.0398 (4)
H33A0.65970.45380.77410.060*
H33B0.68930.34880.70240.060*
H33C0.67300.57970.69330.060*
Cl10.903216 (16)0.33503 (5)0.55619 (2)0.02480 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.01679 (17)0.02369 (18)0.02316 (18)0.00153 (11)0.00802 (13)0.00127 (12)
N10.0179 (5)0.0192 (5)0.0153 (5)0.0008 (4)0.0052 (4)0.0010 (4)
O10.0271 (6)0.0621 (8)0.0297 (6)0.0071 (5)0.0188 (5)0.0038 (5)
O20.0185 (5)0.0508 (7)0.0265 (6)0.0076 (5)0.0098 (4)0.0110 (5)
O30.0157 (5)0.0409 (6)0.0248 (5)0.0049 (4)0.0080 (4)0.0054 (4)
O40.0253 (5)0.0496 (7)0.0185 (5)0.0122 (5)0.0074 (4)0.0023 (4)
C10.0176 (6)0.0170 (6)0.0206 (7)0.0017 (5)0.0064 (5)0.0001 (5)
C20.0196 (6)0.0250 (7)0.0207 (7)0.0006 (5)0.0042 (5)0.0020 (5)
C30.0285 (7)0.0303 (7)0.0164 (7)0.0018 (6)0.0047 (6)0.0015 (5)
C40.0275 (7)0.0262 (7)0.0191 (7)0.0017 (5)0.0115 (6)0.0005 (5)
C50.0215 (7)0.0174 (6)0.0214 (7)0.0026 (5)0.0100 (5)0.0012 (5)
C60.0222 (7)0.0246 (7)0.0222 (7)0.0008 (5)0.0101 (5)0.0018 (5)
C70.0179 (6)0.0233 (7)0.0215 (7)0.0013 (5)0.0065 (5)0.0008 (5)
C110.0175 (6)0.0152 (6)0.0188 (6)0.0004 (5)0.0071 (5)0.0003 (5)
C120.0192 (6)0.0187 (6)0.0184 (6)0.0003 (5)0.0039 (5)0.0011 (5)
C130.0278 (7)0.0220 (7)0.0156 (6)0.0015 (5)0.0070 (5)0.0001 (5)
C140.0242 (7)0.0201 (6)0.0194 (6)0.0006 (5)0.0117 (5)0.0003 (5)
C150.0186 (6)0.0146 (6)0.0202 (6)0.0011 (5)0.0087 (5)0.0005 (5)
C160.0196 (6)0.0196 (6)0.0219 (7)0.0005 (5)0.0082 (5)0.0003 (5)
C170.0178 (6)0.0201 (7)0.0193 (6)0.0007 (5)0.0071 (5)0.0005 (5)
N20.0176 (5)0.0174 (5)0.0132 (5)0.0004 (4)0.0047 (4)0.0013 (4)
O110.0214 (5)0.0392 (6)0.0211 (5)0.0048 (4)0.0038 (4)0.0057 (4)
O120.0197 (5)0.0340 (6)0.0248 (5)0.0084 (4)0.0083 (4)0.0002 (4)
O130.0241 (5)0.0399 (6)0.0174 (5)0.0069 (4)0.0081 (4)0.0004 (4)
O140.0188 (5)0.0342 (6)0.0217 (5)0.0062 (4)0.0091 (4)0.0019 (4)
O300.0382 (6)0.0362 (6)0.0452 (7)0.0022 (5)0.0175 (5)0.0108 (5)
C310.0323 (8)0.0324 (8)0.0326 (8)0.0014 (6)0.0111 (7)0.0022 (7)
C320.0305 (7)0.0229 (7)0.0288 (8)0.0012 (6)0.0115 (6)0.0049 (6)
C330.0292 (8)0.0443 (10)0.0429 (10)0.0012 (7)0.0087 (7)0.0006 (8)
Cl10.01629 (17)0.02919 (19)0.0289 (2)0.00156 (12)0.00780 (14)0.00016 (13)
Geometric parameters (Å, º) top
N1—C11.3467 (17)C13—C141.394 (2)
N1—C51.3484 (18)C13—H130.9500
N1—H1N0.8800C14—C151.3834 (19)
O1—C61.2040 (18)C14—H14A0.9500
O2—C61.3087 (18)C15—N21.3421 (17)
O2—H20.8400C15—C161.5057 (18)
O3—C71.3147 (17)C16—O111.2149 (17)
O3—H30.8400C16—O121.3085 (17)
O4—C71.2036 (17)C17—O131.2103 (17)
C1—C21.3829 (19)C17—O141.3132 (16)
C1—C71.5045 (19)N2—H2N0.8800
C2—C31.385 (2)O12—H120.8400
C2—H2A0.9500O14—H140.8400
C3—C41.396 (2)O30—C321.2167 (19)
C3—H3A0.9500C31—C321.498 (2)
C4—C51.381 (2)C31—H31A0.9800
C4—H40.9500C31—H31B0.9800
C5—C61.5052 (19)C31—H31C0.9800
C11—N21.3433 (17)C32—C331.506 (2)
C11—C121.3790 (19)C33—H33A0.9800
C11—C171.5052 (18)C33—H33B0.9800
C12—C131.392 (2)C33—H33C0.9800
C12—H12A0.9500
C1—N1—C5121.98 (11)C14—C13—H13119.8
C1—N1—H1N119.0C15—C14—C13118.71 (12)
C5—N1—H1N119.0C15—C14—H14A120.6
C6—O2—H2109.5C13—C14—H14A120.6
C7—O3—H3109.5N2—C15—C14118.96 (12)
N1—C1—C2120.07 (13)N2—C15—C16112.85 (11)
N1—C1—C7115.80 (12)C14—C15—C16128.19 (12)
C2—C1—C7124.11 (12)O11—C16—O12127.34 (12)
C1—C2—C3119.26 (13)O11—C16—C15119.41 (12)
C1—C2—H2A120.4O12—C16—C15113.22 (12)
C3—C2—H2A120.4O13—C17—O14127.23 (12)
C2—C3—C4119.53 (13)O13—C17—C11119.68 (12)
C2—C3—H3A120.2O14—C17—C11113.10 (11)
C4—C3—H3A120.2C15—N2—C11123.93 (11)
C5—C4—C3119.25 (13)C15—N2—H2N118.0
C5—C4—H4120.4C11—N2—H2N118.0
C3—C4—H4120.4C16—O12—H12109.5
N1—C5—C4119.83 (12)C17—O14—H14109.5
N1—C5—C6119.40 (12)C32—C31—H31A109.5
C4—C5—C6120.77 (13)C32—C31—H31B109.5
O1—C6—O2127.04 (13)H31A—C31—H31B109.5
O1—C6—C5121.27 (13)C32—C31—H31C109.5
O2—C6—C5111.69 (12)H31A—C31—H31C109.5
O4—C7—O3127.38 (13)H31B—C31—H31C109.5
O4—C7—C1120.99 (12)O30—C32—C31121.94 (14)
O3—C7—C1111.63 (12)O30—C32—C33121.25 (15)
N2—C11—C12119.10 (12)C31—C32—C33116.81 (14)
N2—C11—C17112.96 (11)C32—C33—H33A109.5
C12—C11—C17127.94 (12)C32—C33—H33B109.5
C11—C12—C13118.80 (12)H33A—C33—H33B109.5
C11—C12—H12A120.6C32—C33—H33C109.5
C13—C12—H12A120.6H33A—C33—H33C109.5
C12—C13—C14120.46 (12)H33B—C33—H33C109.5
C12—C13—H13119.8
C5—N1—C1—C21.76 (19)N2—C11—C12—C131.17 (19)
C5—N1—C1—C7179.77 (12)C17—C11—C12—C13179.30 (12)
N1—C1—C2—C32.1 (2)C11—C12—C13—C141.71 (19)
C7—C1—C2—C3179.60 (13)C12—C13—C14—C150.4 (2)
C1—C2—C3—C40.1 (2)C13—C14—C15—N21.37 (19)
C2—C3—C4—C52.1 (2)C13—C14—C15—C16177.90 (12)
C1—N1—C5—C40.54 (19)N2—C15—C16—O119.64 (18)
C1—N1—C5—C6178.85 (11)C14—C15—C16—O11171.05 (13)
C3—C4—C5—N12.5 (2)N2—C15—C16—O12168.43 (11)
C3—C4—C5—C6176.92 (12)C14—C15—C16—O1210.9 (2)
N1—C5—C6—O1166.16 (14)N2—C11—C17—O137.56 (18)
C4—C5—C6—O114.5 (2)C12—C11—C17—O13172.00 (13)
N1—C5—C6—O214.67 (18)N2—C11—C17—O14172.82 (11)
C4—C5—C6—O2164.72 (13)C12—C11—C17—O147.62 (19)
N1—C1—C7—O46.70 (19)C14—C15—N2—C112.01 (19)
C2—C1—C7—O4171.71 (14)C16—C15—N2—C11177.37 (11)
N1—C1—C7—O3174.26 (11)C12—C11—N2—C150.71 (19)
C2—C1—C7—O37.33 (19)C17—C11—N2—C15178.89 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl2i0.842.112.9469 (13)171
O3—H3···Cl1ii0.842.142.9727 (13)172
O12—H12···Cl10.842.132.9696 (15)179
O14—H14···Cl20.842.142.9775 (12)177
N1—H1N···O30iii0.882.423.277 (2)166
N1—H1N···O20.882.342.6685 (16)103
N1—H1N···O40.882.392.7195 (16)103
N2—H2N···O110.882.252.6365 (17)106
N2—H2N···O130.882.262.6392 (16)106
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formula2C7H6NO4+·2Cl·C3H6O
Mr465.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)21.108 (4), 6.7877 (14), 15.224 (3)
β (°) 110.28 (3)
V3)2046.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerStoe IPDSII two-circle
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.897, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
27731, 3867, 3412
Rint0.041
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.082, 1.07
No. of reflections3867
No. of parameters277
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.33

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl2i0.842.112.9469 (13)170.8
O3—H3···Cl1ii0.842.142.9727 (13)171.5
O12—H12···Cl10.842.132.9696 (15)179.3
O14—H14···Cl20.842.142.9775 (12)177.2
N1—H1N···O30iii0.882.423.277 (2)166.3
N1—H1N···O20.882.342.6685 (16)102.5
N1—H1N···O40.882.392.7195 (16)102.8
N2—H2N···O110.882.252.6365 (17)106.2
N2—H2N···O130.882.262.6392 (16)105.9
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y, z1.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTon, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406–o1407.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds