metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi-1H-imidazole-κ2N3,N3′)(thio­cyanato-κN)copper(II) chloride

aCollege of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi 037009, People's Republic of China, and bInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: miaoli@sxu.edu.cn

(Received 26 October 2009; accepted 27 October 2009; online 31 October 2009)

In the title salt, [Cu(NCS)(C6H6N4)2]Cl, the CuII atom adopts a five-coordinated square-pyramidal geometry consisting of an N atom from a thio­cyanate anion and four N atoms from two chealting biimidazole ligands. The thio­cyanate ligand occupies the axial position and is, like the CuII centre, located on a mirror plane. The cation and anion are linked into a linear chain by N—H⋯S and N—H⋯Cl hydrogen bonds.

Related literature

For the neutral mol­ecule 2,2′-biimidazole (H2biim) and its monoanionic derivative (Hbiim), see: Tadokoro & Nakasuji (2000[Tadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev. 198, 205-218.]). Thio­cyanate is a versatile bridging ligand, see: Ribas et al. (1998[Ribas, J., Diaz, C., Costa, R., Tercero, J., Solans, X., Font-Bardia, M. & Stoeckli-Evans, H. (1998). Inorg. Chem. 37, 233-239.]). For Cu—N bond lengths in biimidazole–Cu complexes, see: Govor et al. (2008[Govor, E. V., Lysenko, A. B., Domasevitch, K. V., Rusanov, E. B. & Chernega, A. N. (2008). Acta Cryst. C64, m117-m120.]);

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)(C6H6N4)2]Cl

  • Mr = 425.37

  • Orthorhombic, C m c 21

  • a = 12.900 (5) Å

  • b = 9.442 (4) Å

  • c = 12.888 (5) Å

  • V = 1569.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.610, Tmax = 0.847

  • 3518 measured reflections

  • 1291 independent reflections

  • 1254 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.096

  • S = 1.20

  • 1291 reflections

  • 121 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 539 Friedel pairs

  • Flack parameter: 0.06 (3)

Table 1
Selected bond lengths (Å)

Cu1—N1 2.014 (6)
Cu1—N3 2.031 (5)
Cu1—N5 2.344 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1ii 0.86 2.27 3.092 (5) 160
N4—H4⋯Cl1 0.86 2.52 3.305 (6) 153
N2—H2A⋯S1iii 0.86 3.36 3.782 (6) 113
N4—H4⋯S1iv 0.86 3.38 3.818 (6) 114
Symmetry codes: (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The neutral molecule 2,2'-biimidazole (H2biim) and its monoanionic derivative(Hbiim-) is a particular organic target for construction of hybrid materials. Its molecular moieties possess a double property, namely they can be coordinated to metal centres and can act as a donor in hydrogen bonding interactions (Tadokoro et al., 2000). The thiocyanate is a versatile briding ligand (Ribas et al., 1998), we think that the self-assembly of these ligand with metal ions should yield structure fascinating compounds. Thus, the title compound (I) was synthesized and its crystal structure is reported here.

The X-ray crystallographic analysis shows that the crystal structure of (I) consists of [Cu(NCS)(biim)2]+ cation and Cl- anions(Fig 1). Cu(II) ion adopts a five coordinated square pyramidal geometry consisting of a nitrogen atom(N5) from thiocyanato anion and four nitrogen atoms (N1, N1i, N3 and N3i) from two coordinating biimidazole ligands. Four nitrogen atoms of two chelating H2biim ligands form the basal plane of the pyramid and the apical position is occupied by the thiocyanate ligand which is coordinated in the axial position through the nitrogen atom. Bond distances of the Cu—N1 and Cu—N3(biim) [2.014 (6) and 2.031 (5) Å](Table 1) are shorter than the apical Cu1—N5(SCN-) distance[2.344 (10) Å]. These distances lie in the range reported for biimidazole-Cu complexes (Govor et al.,2008). The chelating H2biim ligands are almost planar and dihedral angle of two biimidazole plane is 6.32°. Meanwhile, In the crystal,molecules are linked by hydrogen bond interaction (N—H···Cl) forming the three-dimensional architecture(Fig 2).

Related literature top

For the neutral molecule 2,2'-biimidazole (H2biim) and its monoanionic derivative (Hbiim-), see: Tadokoro & Nakasuji (2000). Thiocyanate is a versatile bridging ligand, see: Ribas et al. (1998). For Cu—N bond lengths in biimidazole–Cu complexes, see: Govor et al. (2008);

Experimental top

All chemicals were of reagent grade, were commercially available and were used without further purification. CuCl (0.099 g, 0.10 mmol) dissloved in 10.0 ml of ethanol solution was added to 10.0 ml of ethanol solution of H2biim (0.0134 g, 0.10 mmol) with stirring. Half an hour later, KSCN (0.0195 g, 0.20 mmol) was slowly added above the mixture. Black green crystal of [Cu(biim)2(SCN)]Cl were separated from the mother liquor by slow evaporation at room temperature after two weeks.

Refinement top

H atoms attached to C and N(biimidazole) atoms of (I) were placed in geometrically idealized positions with Csp2—H = 0.93Å and N—H=0.86Å and constrained to ride on their parent atoms.

Structure description top

The neutral molecule 2,2'-biimidazole (H2biim) and its monoanionic derivative(Hbiim-) is a particular organic target for construction of hybrid materials. Its molecular moieties possess a double property, namely they can be coordinated to metal centres and can act as a donor in hydrogen bonding interactions (Tadokoro et al., 2000). The thiocyanate is a versatile briding ligand (Ribas et al., 1998), we think that the self-assembly of these ligand with metal ions should yield structure fascinating compounds. Thus, the title compound (I) was synthesized and its crystal structure is reported here.

The X-ray crystallographic analysis shows that the crystal structure of (I) consists of [Cu(NCS)(biim)2]+ cation and Cl- anions(Fig 1). Cu(II) ion adopts a five coordinated square pyramidal geometry consisting of a nitrogen atom(N5) from thiocyanato anion and four nitrogen atoms (N1, N1i, N3 and N3i) from two coordinating biimidazole ligands. Four nitrogen atoms of two chelating H2biim ligands form the basal plane of the pyramid and the apical position is occupied by the thiocyanate ligand which is coordinated in the axial position through the nitrogen atom. Bond distances of the Cu—N1 and Cu—N3(biim) [2.014 (6) and 2.031 (5) Å](Table 1) are shorter than the apical Cu1—N5(SCN-) distance[2.344 (10) Å]. These distances lie in the range reported for biimidazole-Cu complexes (Govor et al.,2008). The chelating H2biim ligands are almost planar and dihedral angle of two biimidazole plane is 6.32°. Meanwhile, In the crystal,molecules are linked by hydrogen bond interaction (N—H···Cl) forming the three-dimensional architecture(Fig 2).

For the neutral molecule 2,2'-biimidazole (H2biim) and its monoanionic derivative (Hbiim-), see: Tadokoro & Nakasuji (2000). Thiocyanate is a versatile bridging ligand, see: Ribas et al. (1998). For Cu—N bond lengths in biimidazole–Cu complexes, see: Govor et al. (2008);

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) with displacement ellipsoids drawn at the 30% probability level. Symmetrical code (i) 2 - x, y, z
[Figure 2] Fig. 2. The packing view in (I). Cu (Light cyan); Cl (green); S (yellow); N (blue); C (gray)
Bis(2,2'-bi-1H-imidazole-κ2N3,N3')(thiocyanato- κN)copper(II) chloride top
Crystal data top
[Cu(NCS)(C6H6N4)2]ClF(000) = 860
Mr = 425.37Dx = 1.800 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 4272 reflections
a = 12.900 (5) Åθ = 2.1–26.6°
b = 9.442 (4) ŵ = 1.71 mm1
c = 12.888 (5) ÅT = 298 K
V = 1569.8 (11) Å3Block, green
Z = 40.10 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1291 independent reflections
Radiation source: fine-focus sealed tube1254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.610, Tmax = 0.847k = 1110
3518 measured reflectionsl = 1315
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0005P)2 + 5.3473P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
1291 reflectionsΔρmax = 0.45 e Å3
121 parametersΔρmin = 0.45 e Å3
1 restraintAbsolute structure: Flack (1983), 539 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (3)
Crystal data top
[Cu(NCS)(C6H6N4)2]ClV = 1569.8 (11) Å3
Mr = 425.37Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 12.900 (5) ŵ = 1.71 mm1
b = 9.442 (4) ÅT = 298 K
c = 12.888 (5) Å0.10 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1291 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1254 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.847Rint = 0.046
3518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.45 e Å3
S = 1.20Δρmin = 0.45 e Å3
1291 reflectionsAbsolute structure: Flack (1983), 539 Friedel pairs
121 parametersAbsolute structure parameter: 0.06 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.39548 (11)0.38462 (9)0.0307 (3)
S10.50000.7886 (3)0.1136 (2)0.0476 (7)
N10.6167 (3)0.4872 (6)0.4638 (4)0.0317 (12)
N20.7857 (4)0.4990 (6)0.4874 (4)0.0316 (13)
H2A0.85090.48210.48080.038*
N30.3808 (4)0.2803 (5)0.3256 (4)0.0294 (12)
N40.2133 (4)0.2519 (6)0.3172 (4)0.0333 (13)
H40.14840.26470.32940.040*
N50.50000.5634 (10)0.2506 (7)0.044 (2)
C10.6381 (5)0.5905 (6)0.5367 (5)0.0321 (15)
H10.58930.64660.57030.039*
C20.7418 (5)0.5963 (8)0.5509 (6)0.0369 (18)
H20.77670.65630.59620.044*
C30.7087 (4)0.4344 (7)0.4372 (5)0.0302 (15)
C40.2915 (4)0.3246 (6)0.3605 (4)0.0248 (14)
C50.3575 (5)0.1711 (8)0.2579 (5)0.0359 (16)
H50.40620.11680.22250.043*
C60.2537 (5)0.1550 (10)0.2509 (6)0.0345 (18)
H60.21760.09110.20940.041*
C70.50000.6548 (10)0.1940 (8)0.034 (2)
Cl10.00000.3818 (3)0.4227 (2)0.0501 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0153 (5)0.0344 (6)0.0425 (6)0.0000.0000.0068 (6)
S10.0303 (13)0.0513 (17)0.0612 (19)0.0000.0000.0124 (14)
N10.019 (2)0.039 (3)0.037 (3)0.004 (2)0.004 (2)0.007 (3)
N20.015 (2)0.033 (3)0.047 (4)0.001 (2)0.002 (2)0.004 (3)
N30.019 (2)0.033 (3)0.036 (3)0.005 (2)0.002 (2)0.005 (2)
N40.021 (3)0.037 (3)0.042 (3)0.001 (2)0.005 (2)0.002 (3)
N50.031 (4)0.055 (6)0.046 (6)0.0000.0000.006 (4)
C10.032 (3)0.025 (4)0.040 (4)0.003 (3)0.003 (3)0.004 (3)
C20.037 (4)0.041 (5)0.033 (4)0.005 (3)0.001 (3)0.002 (4)
C30.021 (3)0.035 (4)0.035 (4)0.003 (3)0.002 (3)0.003 (3)
C40.018 (3)0.032 (3)0.024 (4)0.003 (2)0.002 (2)0.010 (3)
C50.022 (3)0.043 (4)0.042 (4)0.001 (3)0.005 (3)0.001 (3)
C60.026 (4)0.039 (4)0.038 (4)0.010 (3)0.001 (3)0.004 (3)
C70.021 (4)0.026 (5)0.054 (7)0.0000.0000.006 (5)
Cl10.0206 (11)0.0479 (15)0.082 (2)0.0000.0000.0179 (14)
Geometric parameters (Å, º) top
Cu1—N12.014 (6)N4—C41.342 (7)
Cu1—N1i2.014 (6)N4—C61.356 (10)
Cu1—N32.031 (5)N4—H40.8600
Cu1—N3i2.031 (5)N5—C71.130 (13)
Cu1—N52.344 (10)C1—C21.351 (9)
S1—C71.634 (11)C1—H10.9300
N1—C31.332 (7)C2—H20.9300
N1—C11.382 (8)C3—C4i1.432 (8)
N2—C31.333 (8)C4—C3i1.432 (8)
N2—C21.354 (9)C5—C61.352 (9)
N2—H2A0.8600C5—H50.9300
N3—C41.305 (7)C6—H60.9300
N3—C51.383 (8)
N1—Cu1—N1i96.7 (3)C6—N4—H4125.7
N1—Cu1—N3170.3 (2)C7—N5—Cu1172.8 (8)
N1i—Cu1—N381.62 (18)C2—C1—N1108.6 (6)
N1—Cu1—N3i81.62 (18)C2—C1—H1125.7
N1i—Cu1—N3i170.3 (2)N1—C1—H1125.7
N3—Cu1—N3i98.4 (3)C1—C2—N2107.8 (7)
N1—Cu1—N594.7 (2)C1—C2—H2126.1
N1i—Cu1—N594.7 (2)N2—C2—H2126.1
N3—Cu1—N595.0 (2)N1—C3—N2111.6 (6)
N3i—Cu1—N595.0 (2)N1—C3—C4i116.5 (6)
C3—N1—C1105.1 (5)N2—C3—C4i131.9 (6)
C3—N1—Cu1112.0 (5)N3—C4—N4110.9 (5)
C1—N1—Cu1142.9 (4)N3—C4—C3i118.2 (5)
C3—N2—C2106.9 (5)N4—C4—C3i131.0 (6)
C3—N2—H2A126.5C6—C5—N3110.0 (7)
C2—N2—H2A126.5C6—C5—H5125.0
C4—N3—C5105.3 (5)N3—C5—H5125.0
C4—N3—Cu1111.5 (4)C5—C6—N4105.2 (7)
C5—N3—Cu1143.1 (4)C5—C6—H6127.4
C4—N4—C6108.6 (5)N4—C6—H6127.4
C4—N4—H4125.7N5—C7—S1179.1 (10)
N1i—Cu1—N1—C3172.7 (3)C1—N1—C3—N20.8 (7)
N3i—Cu1—N1—C32.3 (4)Cu1—N1—C3—N2177.9 (4)
N5—Cu1—N1—C392.0 (5)C1—N1—C3—C4i179.4 (5)
N1i—Cu1—N1—C19.4 (9)Cu1—N1—C3—C4i0.6 (7)
N3i—Cu1—N1—C1179.7 (7)C2—N2—C3—N11.1 (8)
N5—Cu1—N1—C185.9 (7)C2—N2—C3—C4i179.4 (6)
N1i—Cu1—N3—C43.8 (4)C5—N3—C4—N41.3 (7)
N3i—Cu1—N3—C4173.9 (3)Cu1—N3—C4—N4177.1 (4)
N5—Cu1—N3—C490.3 (4)C5—N3—C4—C3i177.0 (5)
N1i—Cu1—N3—C5178.8 (8)Cu1—N3—C4—C3i4.6 (6)
N3i—Cu1—N3—C58.6 (9)C6—N4—C4—N30.2 (8)
N5—Cu1—N3—C587.1 (7)C6—N4—C4—C3i177.8 (7)
C3—N1—C1—C20.2 (7)C4—N3—C5—C62.0 (8)
Cu1—N1—C1—C2177.8 (6)Cu1—N3—C5—C6175.5 (6)
N1—C1—C2—N20.5 (8)N3—C5—C6—N41.9 (9)
C3—N2—C2—C11.0 (8)C4—N4—C6—C51.1 (9)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1ii0.862.273.092 (5)160
N4—H4···Cl10.862.523.305 (6)153
N2—H2A···S1iii0.863.363.782 (6)113
N4—H4···S1iv0.863.383.818 (6)114
Symmetry codes: (ii) x+1, y, z; (iii) x+3/2, y+3/2, z+1/2; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(NCS)(C6H6N4)2]Cl
Mr425.37
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)298
a, b, c (Å)12.900 (5), 9.442 (4), 12.888 (5)
V3)1569.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.610, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
3518, 1291, 1254
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.096, 1.20
No. of reflections1291
No. of parameters121
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.45
Absolute structureFlack (1983), 539 Friedel pairs
Absolute structure parameter0.06 (3)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Cu1—N12.014 (6)Cu1—N52.344 (10)
Cu1—N32.031 (5)
N1—Cu1—N1i96.7 (3)N1—Cu1—N594.7 (2)
N1—Cu1—N3170.3 (2)N3—Cu1—N595.0 (2)
N1i—Cu1—N381.62 (18)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1ii0.862.273.092 (5)159.8
N4—H4···Cl10.862.523.305 (6)152.8
N2—H2A···S1iii0.863.363.782 (6)112.9
N4—H4···S1iv0.863.383.818 (6)114.2
Symmetry codes: (ii) x+1, y, z; (iii) x+3/2, y+3/2, z+1/2; (iv) x1/2, y1/2, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Natural Science Foundation of Shanxi Province (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province in 2008.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGovor, E. V., Lysenko, A. B., Domasevitch, K. V., Rusanov, E. B. & Chernega, A. N. (2008). Acta Cryst. C64, m117–m120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRibas, J., Diaz, C., Costa, R., Tercero, J., Solans, X., Font-Bardia, M. & Stoeckli-Evans, H. (1998). Inorg. Chem. 37, 233–239.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev. 198, 205–218.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds