metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­[(2′-carb­oxybiphen­yl-2-carboxyl­ato-κO)(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)cadmium(II)] hemihydrate

aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China, and bDepartment of Civil and Environmental Engineering, East China Institute of Technology, 56 Xuefu Road, Fuzhou 344000, Jiangxi, People's Republic of China
*Correspondence e-mail: zhw@henu.edu.cn

(Received 1 October 2009; accepted 13 October 2009; online 23 October 2009)

In the centrosymmetric dinuclear title compound, [Cd2(C14H9O4)2Cl2(C15H11N3)2]·0.5H2O, each of the CdII ions is coordinated by three N atoms from a chelating 2,2′:6′,2′′-terpyridine ligand, two bridging Cl atoms and one O atom of a 2′-carb­oxy-[1,1′-biphen­yl]-2-carboxyl­ate anion. The coordination environment is distorted octa­hedral. In the crystal, inter­molecular O—H⋯O hydrogen bonds link symmetry-related mol­ecules, forming an infinite chain. The half-occupancy water mol­ecule is disordered over two general sites with 0.25 occupancy and is, in turn, disordered over an inversion center.

Related literature

For background chemistry, see: Meng et al. (2004[Meng, X. R., Song, Y. L., Hou, H. W., Han, H. Y., Xiao, B., Fan, Y. T. & Zhu, Y. (2004). Inorg. Chem. 43, 3528-3536.]). For related structures, see: Liu (2009[Liu, G. (2009). Acta Cryst. E65, m37.]); Xian et al. (2008[Xian, H.-D., Li, H.-Q., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1445.]); Qu & Li (2008[Qu, Z.-R. & Li, X.-Z. (2008). Acta Cryst. E64, m1085.]); Han et al. (2008[Han, K.-F., Wu, H.-Y., Wang, Z.-M. & Guo, H.-Y. (2008). Acta Cryst. E64, m1607-m1608.]); Du et al. (2008[Du, Z.-X., Qin, J.-H. & Wang, J.-G. (2008). Acta Cryst. E64, m341.]); Wang et al. (2008[Wang, Z., Fan, J., Zhang, W. & Wang, J. (2008). Acta Cryst. E64, m1446.]); Kurawa et al. (2008[Kurawa, M. A., Adams, C. J. & Orpen, A. G. (2008). Acta Cryst. E64, m924-m925.]); An et al. (2009[An, Z., Cui, R.-H. & Zhou, R.-J. (2009). Acta Cryst. E65, m412.]); Seidel & Oppel (2009[Seidel, R. W. & Oppel, I. M. (2009). Acta Cryst. E65, m460.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C14H9O4)2Cl2(C15H11N3)2]·0.5H2O

  • Mr = 1253.67

  • Triclinic, [P \overline 1]

  • a = 9.5673 (18) Å

  • b = 11.575 (2) Å

  • c = 12.565 (2) Å

  • α = 96.233 (4)°

  • β = 96.927 (4)°

  • γ = 108.132 (3)°

  • V = 1297.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 296 K

  • 0.28 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 0.798

  • 7084 measured reflections

  • 4529 independent reflections

  • 3969 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.124

  • S = 1.01

  • 4529 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 1.68 2.487 (4) 169
O1W—H1WA⋯O4i 0.85 2.41 2.862 (14) 114
O1W—H1WB⋯O4ii 0.85 2.36 3.093 (16) 145
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Various coordination modes and potential applications in catalysis, fluorescent materials, NLO materials and so on (Meng et al. 2004) have been described. Here we report the crystal structure of the title complex prepared from CdCl2 and 2'-carboxy-[1,1'-biphenyl]-2-carboxylate ligand (see experimental).

In the centrosymmetric dinuclear title compound, showing in Fig. 1, each of the CdII ions is coordinated by three N atoms from a chelating 2,2':6',2''-terpyridine ligand, two bridging Cl atoms and one O atom of a 2'-carboxy-[1,1'-biphenyl]-2-carboxylate anion. The coordination environment is distorted octahedral. In the dimeric structure, two CdII ions are bridged through the Cl atoms, resulting in a planar Cd2Cl2 core. One of the bridging Cd—Cl bonds is significantly longer than the other. The half-occupancy water molecule is disordered over two general sites with occupancies of 0.25 and 0.25, and is, in turn, disordered over an inversion center.

In the crystal packing, the complex molecules are linked into a one-dimensional infinite chain links supramolecular structure (Fig. 2) by intra- and intermolecular O—H···O, C—H···O and C—H···Cl hydrogen bonding interactions involving the solvent water molecules, the carboxyl group. groups and the chloride (Table 1).

Related literature top

For background chemistry, see: Meng et al. (2004). For related structures, see: Liu (2009); Xian et al. (2008); Qu et al. (2008); Han et al.(2008); Du et al. (2008); Wang et al. (2008); Kurawa et al. (2008); An et al. (2009); Seidel et al. (2009). Scheme should show hemihydrate

Experimental top

The title complound was synthesized hydrothermally in a Teflon-lined autoclave (25 ml) by heating a mixture of [1,1'-biphenyl]-2,2'-dicarboxylic acid (0.2 mmol), 2,2':6',2''-terpyridine (0.4 mmol) and CdCl2.2.5H2O (0.2 mmol) in water (10 ml) at 393 K for 3 d. Crystals suitable for X-ray analysis were obtained.

Refinement top

All H atoms were included in calculated positions, with C—H bond lengths fixed at 0.92 Å (carboxyl –COOH), 0.93Å (aryl group) and O—H = 0.85 Å and were refined in the riding-model approximation. Uiso(H) values were calculated at 1.5 Ueq(C) for carboxyl groups and 1.2 Ueq(C) otherwise.

Structure description top

Various coordination modes and potential applications in catalysis, fluorescent materials, NLO materials and so on (Meng et al. 2004) have been described. Here we report the crystal structure of the title complex prepared from CdCl2 and 2'-carboxy-[1,1'-biphenyl]-2-carboxylate ligand (see experimental).

In the centrosymmetric dinuclear title compound, showing in Fig. 1, each of the CdII ions is coordinated by three N atoms from a chelating 2,2':6',2''-terpyridine ligand, two bridging Cl atoms and one O atom of a 2'-carboxy-[1,1'-biphenyl]-2-carboxylate anion. The coordination environment is distorted octahedral. In the dimeric structure, two CdII ions are bridged through the Cl atoms, resulting in a planar Cd2Cl2 core. One of the bridging Cd—Cl bonds is significantly longer than the other. The half-occupancy water molecule is disordered over two general sites with occupancies of 0.25 and 0.25, and is, in turn, disordered over an inversion center.

In the crystal packing, the complex molecules are linked into a one-dimensional infinite chain links supramolecular structure (Fig. 2) by intra- and intermolecular O—H···O, C—H···O and C—H···Cl hydrogen bonding interactions involving the solvent water molecules, the carboxyl group. groups and the chloride (Table 1).

For background chemistry, see: Meng et al. (2004). For related structures, see: Liu (2009); Xian et al. (2008); Qu et al. (2008); Han et al.(2008); Du et al. (2008); Wang et al. (2008); Kurawa et al. (2008); An et al. (2009); Seidel et al. (2009). Scheme should show hemihydrate

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title complound. Hydrogen-bond interactions are drawn with dashed lines.
Di-µ-chlorido-bis[(2'-carboxy-1,1'-biphenyl-2-carboxylato- κO)(2,2':6',2''-terpyridine- κ3N,N',N'')cadmium(II)] hemihydrate top
Crystal data top
[Cd2(C14H9O4)2Cl2(C15H11N3)2]·0.5H2OZ = 1
Mr = 1253.67F(000) = 629
Triclinic, P1Dx = 1.605 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5673 (18) ÅCell parameters from 4272 reflections
b = 11.575 (2) Åθ = 3.0–27.8°
c = 12.565 (2) ŵ = 0.99 mm1
α = 96.233 (4)°T = 296 K
β = 96.927 (4)°Block, colourless
γ = 108.132 (3)°0.28 × 0.26 × 0.24 mm
V = 1297.0 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4529 independent reflections
Radiation source: sealed tube3969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 116
Tmin = 0.770, Tmax = 0.798k = 1113
7084 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0854P)2]
where P = (Fo2 + 2Fc2)/3
4529 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Cd2(C14H9O4)2Cl2(C15H11N3)2]·0.5H2Oγ = 108.132 (3)°
Mr = 1253.67V = 1297.0 (4) Å3
Triclinic, P1Z = 1
a = 9.5673 (18) ÅMo Kα radiation
b = 11.575 (2) ŵ = 0.99 mm1
c = 12.565 (2) ÅT = 296 K
α = 96.233 (4)°0.28 × 0.26 × 0.24 mm
β = 96.927 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4529 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3969 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.798Rint = 0.059
7084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 1.33 e Å3
4529 reflectionsΔρmin = 0.98 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.89580 (3)0.91082 (2)0.60537 (2)0.03337 (14)
Cl11.04993 (13)0.86663 (10)0.46861 (10)0.0456 (3)
N11.0075 (4)1.0318 (3)0.7764 (3)0.0380 (8)
N20.7167 (4)0.9594 (3)0.6971 (3)0.0315 (7)
N30.6578 (4)0.8338 (3)0.4963 (3)0.0379 (8)
O10.8489 (4)0.7257 (3)0.6690 (3)0.0480 (7)
O21.0910 (4)0.7855 (3)0.7351 (2)0.0473 (7)
O31.2591 (4)0.7729 (3)0.8974 (2)0.0490 (8)
H3A1.20600.76910.83990.073*
O41.4450 (4)0.7087 (4)0.9518 (3)0.0715 (11)
C10.9344 (5)0.5939 (3)0.7723 (3)0.0359 (9)
C20.8088 (5)0.5557 (4)0.8212 (3)0.0446 (10)
H20.73800.59540.81370.054*
C30.7870 (6)0.4608 (4)0.8802 (4)0.0500 (12)
H30.70360.43810.91420.060*
C40.8886 (6)0.3989 (4)0.8894 (4)0.0532 (13)
H40.87490.33520.93040.064*
C51.0103 (6)0.4316 (4)0.8374 (4)0.0480 (11)
H51.07610.38700.84140.058*
C61.0381 (5)0.5304 (3)0.7786 (3)0.0362 (9)
C71.1713 (5)0.5553 (3)0.7216 (3)0.0369 (9)
C81.3159 (5)0.6283 (4)0.7719 (3)0.0387 (9)
C91.4367 (5)0.6326 (4)0.7207 (4)0.0503 (11)
H91.53220.67860.75620.060*
C101.4179 (7)0.5693 (5)0.6174 (5)0.0644 (15)
H101.49980.57420.58280.077*
C111.2763 (7)0.4989 (5)0.5660 (4)0.0659 (15)
H111.26270.45680.49610.079*
C121.1544 (6)0.4905 (4)0.6176 (4)0.0484 (11)
H121.05990.44100.58270.058*
C130.9598 (5)0.7096 (4)0.7199 (3)0.0379 (9)
C141.3450 (5)0.7058 (4)0.8823 (4)0.0458 (11)
C151.1542 (6)1.0720 (4)0.8099 (4)0.0524 (12)
H151.21471.05210.76340.063*
C161.2213 (6)1.1415 (5)0.9098 (5)0.0651 (15)
H161.32441.16900.92990.078*
C171.1310 (7)1.1688 (5)0.9785 (5)0.0679 (16)
H171.17231.21391.04720.081*
C180.9788 (6)1.1290 (4)0.9454 (4)0.0549 (12)
H180.91681.14720.99140.066*
C190.9188 (5)1.0611 (3)0.8423 (3)0.0379 (9)
C200.7568 (5)1.0186 (3)0.7991 (3)0.0360 (9)
C210.6505 (6)1.0399 (4)0.8586 (4)0.0490 (11)
H210.67861.08240.92910.059*
C220.5042 (6)0.9969 (4)0.8106 (4)0.0582 (13)
H220.43201.00880.84990.070*
C230.4613 (5)0.9365 (4)0.7058 (4)0.0504 (12)
H230.36170.90820.67320.060*
C240.5730 (4)0.9188 (3)0.6493 (4)0.0367 (9)
C250.5410 (4)0.8528 (3)0.5354 (3)0.0370 (9)
C260.3985 (5)0.8115 (4)0.4741 (4)0.0545 (12)
H260.31910.82620.50240.065*
C270.3772 (6)0.7487 (5)0.3713 (5)0.0657 (15)
H270.28280.72020.32930.079*
C280.4959 (6)0.7279 (5)0.3300 (4)0.0609 (14)
H280.48330.68600.26020.073*
C290.6342 (6)0.7711 (4)0.3953 (4)0.0498 (11)
H290.71440.75630.36840.060*
O1W0.4261 (19)0.4352 (14)0.9220 (13)0.082 (5)0.25
H1WA0.40410.40790.98010.099*0.25
H1WB0.39280.49430.91410.099*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0282 (2)0.0394 (2)0.0330 (2)0.01333 (13)0.00468 (13)0.00142 (13)
Cl10.0510 (7)0.0417 (5)0.0576 (7)0.0264 (5)0.0265 (5)0.0117 (5)
N10.037 (2)0.0405 (18)0.0375 (18)0.0179 (15)0.0011 (15)0.0009 (14)
N20.0292 (18)0.0307 (16)0.0391 (18)0.0148 (13)0.0105 (14)0.0045 (13)
N30.0338 (19)0.0389 (18)0.0416 (19)0.0134 (15)0.0049 (15)0.0054 (15)
O10.0488 (19)0.0480 (17)0.0532 (19)0.0249 (15)0.0036 (15)0.0120 (14)
O20.049 (2)0.0382 (15)0.0574 (19)0.0157 (14)0.0107 (15)0.0130 (14)
O30.052 (2)0.0532 (18)0.0356 (16)0.0137 (16)0.0057 (14)0.0074 (14)
O40.056 (2)0.085 (3)0.058 (2)0.010 (2)0.0181 (18)0.0130 (19)
C10.039 (2)0.0345 (19)0.031 (2)0.0106 (17)0.0013 (17)0.0006 (16)
C20.040 (3)0.049 (2)0.042 (2)0.014 (2)0.0034 (19)0.0007 (19)
C30.045 (3)0.051 (3)0.042 (3)0.001 (2)0.007 (2)0.006 (2)
C40.062 (3)0.043 (2)0.048 (3)0.006 (2)0.005 (2)0.016 (2)
C50.058 (3)0.038 (2)0.047 (3)0.014 (2)0.003 (2)0.0102 (19)
C60.039 (2)0.0317 (19)0.033 (2)0.0102 (17)0.0032 (17)0.0005 (16)
C70.046 (3)0.0321 (19)0.036 (2)0.0194 (18)0.0039 (18)0.0052 (16)
C80.041 (2)0.036 (2)0.043 (2)0.0174 (18)0.0052 (19)0.0100 (17)
C90.041 (3)0.047 (2)0.070 (3)0.022 (2)0.012 (2)0.015 (2)
C100.074 (4)0.057 (3)0.079 (4)0.034 (3)0.037 (3)0.012 (3)
C110.091 (5)0.058 (3)0.058 (3)0.036 (3)0.029 (3)0.007 (2)
C120.057 (3)0.043 (2)0.044 (2)0.021 (2)0.002 (2)0.0056 (19)
C130.046 (3)0.040 (2)0.032 (2)0.020 (2)0.0075 (18)0.0031 (17)
C140.043 (3)0.048 (2)0.037 (2)0.003 (2)0.001 (2)0.0098 (19)
C150.044 (3)0.055 (3)0.055 (3)0.021 (2)0.005 (2)0.007 (2)
C160.047 (3)0.057 (3)0.078 (4)0.019 (2)0.024 (3)0.020 (3)
C170.075 (4)0.059 (3)0.061 (3)0.035 (3)0.026 (3)0.023 (3)
C180.068 (3)0.055 (3)0.044 (3)0.033 (3)0.002 (2)0.008 (2)
C190.049 (3)0.0319 (19)0.036 (2)0.0203 (18)0.0048 (19)0.0027 (16)
C200.043 (2)0.0335 (19)0.036 (2)0.0175 (17)0.0098 (18)0.0083 (16)
C210.057 (3)0.052 (3)0.047 (3)0.027 (2)0.022 (2)0.005 (2)
C220.058 (3)0.058 (3)0.070 (3)0.027 (2)0.035 (3)0.009 (3)
C230.030 (2)0.056 (3)0.070 (3)0.019 (2)0.018 (2)0.007 (2)
C240.032 (2)0.0327 (19)0.050 (2)0.0146 (16)0.0097 (18)0.0098 (17)
C250.031 (2)0.0304 (19)0.050 (2)0.0097 (16)0.0021 (18)0.0116 (17)
C260.034 (3)0.058 (3)0.072 (3)0.020 (2)0.003 (2)0.007 (2)
C270.042 (3)0.071 (3)0.067 (4)0.009 (2)0.018 (3)0.001 (3)
C280.056 (3)0.058 (3)0.053 (3)0.011 (2)0.012 (2)0.010 (2)
C290.048 (3)0.051 (3)0.048 (3)0.019 (2)0.002 (2)0.004 (2)
O1W0.094 (13)0.085 (11)0.094 (12)0.060 (10)0.012 (10)0.039 (10)
Geometric parameters (Å, º) top
Cd1—O12.301 (3)C9—C101.381 (7)
Cd1—N22.349 (3)C9—H90.9300
Cd1—N32.362 (3)C10—C111.380 (8)
Cd1—N12.363 (3)C10—H100.9300
Cd1—Cl12.5058 (11)C11—C121.384 (7)
Cd1—Cl1i2.7520 (12)C11—H110.9300
Cl1—Cd1i2.7520 (11)C12—H120.9300
N1—C151.331 (6)C15—C161.378 (7)
N1—C191.345 (5)C15—H150.9300
N2—C201.336 (5)C16—C171.372 (8)
N2—C241.345 (5)C16—H160.9300
N3—C251.342 (5)C17—C181.379 (8)
N3—C291.347 (6)C17—H170.9300
O1—C131.247 (5)C18—C191.394 (6)
O2—C131.266 (5)C18—H180.9300
O3—C141.312 (6)C19—C201.484 (6)
O3—H3A0.8200C20—C211.398 (6)
O4—C141.204 (6)C21—C221.367 (7)
C1—C21.387 (6)C21—H210.9300
C1—C61.405 (6)C22—C231.372 (7)
C1—C131.521 (6)C22—H220.9300
C2—C31.369 (6)C23—C241.405 (6)
C2—H20.9300C23—H230.9300
C3—C41.377 (7)C24—C251.496 (6)
C3—H30.9300C25—C261.394 (6)
C4—C51.374 (7)C26—C271.371 (7)
C4—H40.9300C26—H260.9300
C5—C61.403 (6)C27—C281.379 (8)
C5—H50.9300C27—H270.9300
C6—C71.502 (6)C28—C291.383 (7)
C7—C121.399 (6)C28—H280.9300
C7—C81.405 (6)C29—H290.9300
C8—C91.380 (6)O1W—H1WA0.8500
C8—C141.512 (6)O1W—H1WB0.8500
O1—Cd1—N291.38 (11)C10—C11—H11119.8
O1—Cd1—N388.97 (11)C12—C11—H11119.8
N2—Cd1—N369.18 (12)C11—C12—C7120.9 (5)
O1—Cd1—N194.88 (12)C11—C12—H12119.5
N2—Cd1—N169.08 (12)C7—C12—H12119.5
N3—Cd1—N1138.15 (12)O1—C13—O2124.4 (4)
O1—Cd1—Cl196.17 (8)O1—C13—C1117.7 (4)
N2—Cd1—Cl1166.28 (9)O2—C13—C1117.7 (4)
N3—Cd1—Cl199.44 (9)O4—C14—O3121.6 (5)
N1—Cd1—Cl1121.40 (9)O4—C14—C8121.8 (5)
O1—Cd1—Cl1i179.22 (8)O3—C14—C8116.6 (4)
N2—Cd1—Cl1i87.87 (8)N1—C15—C16123.5 (5)
N3—Cd1—Cl1i90.99 (8)N1—C15—H15118.2
N1—Cd1—Cl1i84.62 (9)C16—C15—H15118.2
Cl1—Cd1—Cl1i84.61 (3)C17—C16—C15117.8 (5)
Cd1—Cl1—Cd1i95.39 (3)C17—C16—H16121.1
C15—N1—C19118.9 (4)C15—C16—H16121.1
C15—N1—Cd1122.7 (3)C16—C17—C18119.7 (5)
C19—N1—Cd1118.4 (3)C16—C17—H17120.1
C20—N2—C24120.8 (3)C18—C17—H17120.1
C20—N2—Cd1119.6 (3)C17—C18—C19119.3 (5)
C24—N2—Cd1119.4 (3)C17—C18—H18120.3
C25—N3—C29118.3 (4)C19—C18—H18120.3
C25—N3—Cd1119.3 (3)N1—C19—C18120.7 (4)
C29—N3—Cd1122.4 (3)N1—C19—C20116.6 (3)
C13—O1—Cd1115.1 (3)C18—C19—C20122.7 (4)
C14—O3—H3A109.5N2—C20—C21120.8 (4)
C2—C1—C6119.7 (4)N2—C20—C19115.9 (3)
C2—C1—C13117.9 (4)C21—C20—C19123.3 (4)
C6—C1—C13122.2 (4)C22—C21—C20118.4 (4)
C3—C2—C1121.2 (4)C22—C21—H21120.8
C3—C2—H2119.4C20—C21—H21120.8
C1—C2—H2119.4C21—C22—C23121.5 (4)
C2—C3—C4120.1 (5)C21—C22—H22119.3
C2—C3—H3120.0C23—C22—H22119.3
C4—C3—H3120.0C22—C23—C24117.7 (4)
C5—C4—C3119.6 (4)C22—C23—H23121.2
C5—C4—H4120.2C24—C23—H23121.2
C3—C4—H4120.2N2—C24—C23120.8 (4)
C4—C5—C6121.8 (4)N2—C24—C25116.1 (3)
C4—C5—H5119.1C23—C24—C25123.1 (4)
C6—C5—H5119.1N3—C25—C26121.9 (4)
C5—C6—C1117.5 (4)N3—C25—C24115.8 (4)
C5—C6—C7117.3 (4)C26—C25—C24122.3 (4)
C1—C6—C7125.1 (4)C27—C26—C25118.9 (5)
C12—C7—C8117.8 (4)C27—C26—H26120.6
C12—C7—C6118.3 (4)C25—C26—H26120.6
C8—C7—C6123.5 (4)C26—C27—C28120.0 (5)
C9—C8—C7120.5 (4)C26—C27—H27120.0
C9—C8—C14117.7 (4)C28—C27—H27120.0
C7—C8—C14121.8 (4)C27—C28—C29118.1 (5)
C8—C9—C10120.9 (5)C27—C28—H28120.9
C8—C9—H9119.5C29—C28—H28120.9
C10—C9—H9119.5N3—C29—C28122.9 (5)
C11—C10—C9119.3 (5)N3—C29—H29118.6
C11—C10—H10120.4C28—C29—H29118.6
C9—C10—H10120.4H1WA—O1W—H1WB109.5
C10—C11—C12120.5 (5)
O1—Cd1—Cl1—Cd1i179.90 (8)C8—C9—C10—C111.5 (8)
N2—Cd1—Cl1—Cd1i57.1 (3)C9—C10—C11—C120.7 (8)
N3—Cd1—Cl1—Cd1i90.11 (9)C10—C11—C12—C71.6 (8)
N1—Cd1—Cl1—Cd1i80.34 (10)C8—C7—C12—C110.4 (7)
Cl1i—Cd1—Cl1—Cd1i0.0C6—C7—C12—C11172.7 (4)
O1—Cd1—N1—C1594.5 (4)Cd1—O1—C13—O21.7 (5)
N2—Cd1—N1—C15175.9 (4)Cd1—O1—C13—C1175.0 (3)
N3—Cd1—N1—C15171.6 (3)C2—C1—C13—O139.5 (5)
Cl1—Cd1—N1—C155.8 (4)C6—C1—C13—O1144.7 (4)
Cl1i—Cd1—N1—C1586.1 (3)C2—C1—C13—O2137.4 (4)
O1—Cd1—N1—C1985.5 (3)C6—C1—C13—O238.4 (5)
N2—Cd1—N1—C194.1 (3)C9—C8—C14—O445.6 (6)
N3—Cd1—N1—C198.5 (4)C7—C8—C14—O4135.2 (5)
Cl1—Cd1—N1—C19174.3 (2)C9—C8—C14—O3132.2 (4)
Cl1i—Cd1—N1—C1993.9 (3)C7—C8—C14—O347.1 (6)
O1—Cd1—N2—C2089.0 (3)C19—N1—C15—C160.7 (7)
N3—Cd1—N2—C20177.4 (3)Cd1—N1—C15—C16179.2 (4)
N1—Cd1—N2—C205.7 (3)N1—C15—C16—C171.0 (8)
Cl1—Cd1—N2—C20147.5 (3)C15—C16—C17—C181.4 (8)
Cl1i—Cd1—N2—C2090.7 (3)C16—C17—C18—C190.2 (8)
O1—Cd1—N2—C2485.8 (3)C15—N1—C19—C182.1 (6)
N3—Cd1—N2—C242.6 (3)Cd1—N1—C19—C18177.9 (3)
N1—Cd1—N2—C24179.5 (3)C15—N1—C19—C20177.5 (4)
Cl1—Cd1—N2—C2437.7 (5)Cd1—N1—C19—C202.6 (4)
Cl1i—Cd1—N2—C2494.5 (3)C17—C18—C19—N11.6 (7)
O1—Cd1—N3—C2591.9 (3)C17—C18—C19—C20177.9 (4)
N2—Cd1—N3—C250.1 (3)C24—N2—C20—C210.1 (6)
N1—Cd1—N3—C254.2 (4)Cd1—N2—C20—C21174.8 (3)
Cl1—Cd1—N3—C25172.0 (3)C24—N2—C20—C19178.8 (3)
Cl1i—Cd1—N3—C2587.3 (3)Cd1—N2—C20—C196.4 (4)
O1—Cd1—N3—C2988.3 (3)N1—C19—C20—N22.5 (5)
N2—Cd1—N3—C29179.9 (4)C18—C19—C20—N2177.0 (4)
N1—Cd1—N3—C29175.6 (3)N1—C19—C20—C21178.8 (4)
Cl1—Cd1—N3—C297.8 (3)C18—C19—C20—C211.7 (6)
Cl1i—Cd1—N3—C2992.5 (3)N2—C20—C21—C221.2 (6)
N2—Cd1—O1—C13123.7 (3)C19—C20—C21—C22179.8 (4)
N3—Cd1—O1—C13167.1 (3)C20—C21—C22—C231.5 (7)
N1—Cd1—O1—C1354.6 (3)C21—C22—C23—C240.8 (7)
Cl1—Cd1—O1—C1367.8 (3)C20—N2—C24—C230.7 (6)
C6—C1—C2—C33.2 (6)Cd1—N2—C24—C23174.1 (3)
C13—C1—C2—C3172.7 (4)C20—N2—C24—C25179.4 (3)
C1—C2—C3—C41.9 (7)Cd1—N2—C24—C254.7 (4)
C2—C3—C4—C51.1 (7)C22—C23—C24—N20.4 (6)
C3—C4—C5—C62.8 (7)C22—C23—C24—C25179.0 (4)
C4—C5—C6—C11.4 (6)C29—N3—C25—C261.0 (6)
C4—C5—C6—C7177.8 (4)Cd1—N3—C25—C26178.8 (3)
C2—C1—C6—C51.6 (6)C29—N3—C25—C24177.8 (4)
C13—C1—C6—C5174.2 (4)Cd1—N3—C25—C242.3 (4)
C2—C1—C6—C7174.5 (4)N2—C24—C25—N34.6 (5)
C13—C1—C6—C79.7 (6)C23—C24—C25—N3174.2 (4)
C5—C6—C7—C1285.8 (5)N2—C24—C25—C26176.6 (4)
C1—C6—C7—C1290.3 (5)C23—C24—C25—C264.7 (6)
C5—C6—C7—C886.0 (5)N3—C25—C26—C270.5 (7)
C1—C6—C7—C897.9 (5)C24—C25—C26—C27178.2 (4)
C12—C7—C8—C91.7 (6)C25—C26—C27—C280.2 (8)
C6—C7—C8—C9170.2 (4)C26—C27—C28—C290.5 (8)
C12—C7—C8—C14177.5 (4)C25—N3—C29—C281.2 (7)
C6—C7—C8—C1410.6 (6)Cd1—N3—C29—C28178.6 (4)
C7—C8—C9—C102.7 (7)C27—C28—C29—N31.0 (8)
C14—C8—C9—C10176.6 (4)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.682.487 (4)169
O1W—H1WA···O4ii0.852.412.862 (14)114
O1W—H1WB···O4iii0.852.363.093 (16)145
C16—H16···O4iv0.932.433.284 (6)153
C21—H21···O3v0.932.493.405 (6)169
C26—H26···Cl1iii0.932.753.579 (5)149
Symmetry codes: (ii) x+2, y+1, z+2; (iii) x1, y, z; (iv) x+3, y+2, z+2; (v) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Cd2(C14H9O4)2Cl2(C15H11N3)2]·0.5H2O
Mr1253.67
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.5673 (18), 11.575 (2), 12.565 (2)
α, β, γ (°)96.233 (4), 96.927 (4), 108.132 (3)
V3)1297.0 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.770, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
7084, 4529, 3969
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.01
No. of reflections4529
No. of parameters353
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.98

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.682.487 (4)168.5
O1W—H1WA···O4i0.852.412.862 (14)114.1
O1W—H1WB···O4ii0.852.363.093 (16)145.4
Symmetry codes: (i) x+2, y+1, z+2; (ii) x1, y, z.
 

References

First citationAn, Z., Cui, R.-H. & Zhou, R.-J. (2009). Acta Cryst. E65, m412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationDu, Z.-X., Qin, J.-H. & Wang, J.-G. (2008). Acta Cryst. E64, m341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, K.-F., Wu, H.-Y., Wang, Z.-M. & Guo, H.-Y. (2008). Acta Cryst. E64, m1607–m1608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKurawa, M. A., Adams, C. J. & Orpen, A. G. (2008). Acta Cryst. E64, m924–m925.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, G. (2009). Acta Cryst. E65, m37.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, X. R., Song, Y. L., Hou, H. W., Han, H. Y., Xiao, B., Fan, Y. T. & Zhu, Y. (2004). Inorg. Chem. 43, 3528–3536.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQu, Z.-R. & Li, X.-Z. (2008). Acta Cryst. E64, m1085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeidel, R. W. & Oppel, I. M. (2009). Acta Cryst. E65, m460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Fan, J., Zhang, W. & Wang, J. (2008). Acta Cryst. E64, m1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXian, H.-D., Li, H.-Q., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1445.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds