organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The zwitterion (23′E)-(23R,25S)-23-[1-(oxidoiminio)eth­yl]-5β-spiro­stan-3β-yl acetate

aEscuela de Ingeniería Química, Universidad del Istmo, Ciudad Universitaria s/n, 70760 Sto. Domingo Tehuantepec, Oax., Mexico, bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, 72000 Puebla, Pue., Mexico, and cDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 20 October 2009; accepted 27 October 2009; online 31 October 2009)

The title steroidal compound, C31H49NO5, resulted from the selective oximation of (23R)-23-acetyl­sarsasapogenin acetate. One- and two-dimensional 1H and 13C NMR spectra, as well as IR data, are in agreement with the presence of a ketoxime group at C-23. However, recrystallization in slightly acidic media affords the title compound in the rare zwitterionic oxime form, as a consequence of migration of the hydr­oxy H atom to the N atom in the oxime group. This H atom is clearly detected and its position was refined from X-ray data. The geometry for the C=N+(H)—O group features long C=N and short N—O bond lengths compared to non-zwitterionic oximes. The ketoxime is stabilized with the E configuration, avoiding steric hindrance between the oxime O atom and H atom at C-23. The sum of the angles around the oxime N atom is 359.6°, giving a planar configuration for that atom, as expected for sp2 hybridization.

Related literature

For the synthesis of (23R)-23-acetyl­sarsasapogenin acetate used as starting material, see: Meza-Reyes et al. (2005[Meza-Reyes, S., Sandoval-Ramírez, J., Montiel-Smith, S., Hernández-Linares, G., Viñas-Bravo, O., Martínez-Pascual, R., Fernández-Herrera, M. A., Vega-Báez, J. L., Merino-Montiel, P., Santillán, R. L., Farfán, N., Rincón, S. & del Río, R. E. (2005). Arkivoc, vi, 307-320.]). For the full spectroscopic characterization of the tautomers of the title compound, see: Hernández-Linares (2005[Hernández-Linares, G. (2005). PhD thesis, Universidad Autónoma de Puebla, Mexico.]). For tautomerism between oximes and imine N-oxides, see: Fernández et al. (1994[Fernández, M. J., Huertas, R., Gálvez, E., Sanz-Aparicio, J., Fonseca, I. & Bellanato, J. (1994). J. Mol. Struct. 323, 85-91.]). For related zwitterionic oximes and hydro­chloride oximes characterized by X-ray diffraction, see: Witte et al. (1984[Witte, E. G., Schwochau, K. S., Henkel, G. & Krebs, B. (1984). Inorg. Chim. Acta, 94, 323-331.]); Fernández et al. (1994[Fernández, M. J., Huertas, R., Gálvez, E., Sanz-Aparicio, J., Fonseca, I. & Bellanato, J. (1994). J. Mol. Struct. 323, 85-91.]); Gurkova et al. (1988[Gurkova, S. N., Gusev, A. I., Alekseev, N. V. & Lakhtin, V. G. (1988). Zh. Strukt. Khim. 29, 184-186.]); Laus et al. (2008[Laus, G., Schwärzler, A., Bentivoglio, G., Hummel, M., Kahlenberg, V., Wurst, K., Kristeva, E., Schutz, J., Kopacka, H., Kreutz, C., Bonn, G., Andriyko, Y., Nauer, G. & Schottenberger, H. (2008). Z. Naturforsch. Teil B, 63, 447-464.]); Forgan et al. (2008[Forgan, R. S., Davidson, J. E., Galbraith, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & White, F. J. (2008). Chem. Commun. pp. 4049-4051.]).

[Scheme 1]

Experimental

Crystal data
  • C31H49NO5

  • Mr = 515.71

  • Orthorhombic, P 21 21 21

  • a = 8.385 (2) Å

  • b = 11.5627 (16) Å

  • c = 30.420 (5) Å

  • V = 2949.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.60 × 0.60 × 0.35 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 4182 measured reflections

  • 2956 independent reflections

  • 2512 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections every 97 reflections intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.129

  • S = 1.02

  • 2956 reflections

  • 344 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

C32—C33 1.477 (5)
C32—N34 1.361 (6)
N34—H34 0.980 (18)
N34—O35 1.367 (5)
C23—C32—C33 122.0 (3)
N34—C32—C23 111.6 (3)
N34—C32—C33 126.3 (3)
C32—N34—O35 109.0 (4)
C32—N34—H34 132.0 (16)
O35—N34—H34 118.6 (16)

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Synthetic routes are available for the large scale preparation of (23R)-23-acetylsarsasapogenin acetate (Meza-Reyes et al., 2005). During attempts to functionalize the 23 position in sarsasapogenin acetate, we have found that the oximation of (23R)-23-acetylsarsasapogenin acetate using NH2OH.HCl afforded the expected 23-hydroxyimino derivative. IR spectrum for that compound exhibits a strong vibration at 3400 cm-1 (νO—H), a weak vibration at 1636 cm-1 (νC=N), and a vibration at 951 cm-1 (νN—O), characteristics of ketoximes. One-dimensional and two-dimensional 1H and 13C NMR data are also in full agreement with that assignment (Hernández-Linares, 2005, and archived CIF). For instance, 31 signals are detected in 13C-NMR, one of which, at 159.3 p.p.m., is characteristic of the C231 atom substituted by an hydroxyimino group.

However, recrystallization of the ketoxime in a slightly acidic medium (MeOH/CH2Cl2, 98:2) afforded a solid with a significantly different melting point (459 K for the oxime, 516 K for the recrystallized material). On the other hand, the high m.p. solid presents a new 1H-NMR broad signal at 9.05 p.p.m., and the stretching vibration for OH group in the IR spectrum no longer appears, while a new strong vibration is observed at 2300 cm-1. In order to rationalize these dramatic changes, the X-ray analysis of this material was carried out.

The molecular structure (Fig. 1) resolves the above mentioned problem: a difference map shows a strong residual in the vicinity of atom N34, while no H atom is found bonded to O35. The oxime is thus stabilized in the solid-state in a rather rare zwittterionic form. The residual close to N34 refines well as an H atom. The N—H bond accounts for the IR vibration at 2300 cm-1 and H34 is detected in 1H-NMR at 9.05 p.p.m..

Refinement of the proposed model was however not so straightforward. Alternative models assuming a non-zwitterionic oxime were probed, with disordered N and O sites, which resulted in oxime groups with geometry far from expectation and physically unreasonable intermolecular contacts. On the other hand, refinements carried out with a free H34 atom converged to a geometry where the oxime N atom deviates significantly from the expected planar trigonal arrangement, although the N34—H34 bond length lies in the expected range. Considering that the structure is based on room-temperature data, we eventually refined the structural model with a pair of soft restraints for non-bonding separations involving H34 (see Experimental). Finally, a supplementary concern is about the terminal O atom O35, which is separated by 2.757 (5) Å from the carbonyl O30 atom of a symmetry-related molecule (symmetry code: 2 - x, -1/2 + y, 1/2 - z). Such an arrangement would be suitable for a stabilizing hydrogen bond, which is not observed because of the migration of the oxime H atom to N34. With the currently available data, it is however difficult to decide if this situation resulted from the actual migration of the H atom in the solid-sate. Definitively, more data are required in order to fully characterize this zwitterion, for example low temperature neutron diffraction data, and the X-ray structure of the non-zwitterionic title molecule.

The tautomerism between oximes and imine N-oxides seems to be poorly documented (Fernández et al., 1994). In the case of the title compound, the CN bond length is long, 1.361 (6) Å, and the N—O bond length is short, 1.367 (5) Å, compared to common non-zwitterionic oximes (ca. 1.28 and 1.41 Å, respectively). The sum of angles around N2 is very close to 360°, as expected for a sp2 hybridized atom. Therefore, delocalization is extended on the whole hydroxyimino group, C32/N34/O35, which is almost planar. The imine group presents the E configuration, which avoids steric hindrance between the oxime O atom and methine H atom H23C. This geometry is close to that previously reported for the few zwitterionic oximes or hydrochloride oximes characterized by X-ray diffraction (Fernández et al., 1994; Gurkova et al., 1988; Laus et al., 2008). The imine N-oxide tautomer has also been used as a ligand (Witte et al., 1984; Forgan et al., 2008).

Related literature top

For the synthesis of (23R)-23-acetylsarsasapogenin acetate used as starting material, see: Meza-Reyes et al. (2005). For the full spectroscopic characterization of the tautomers of the title compound, see: Hernández-Linares (2005). For the tautomerism between oximes and imine N-oxides, see: Fernández et al. (1994). For related zwitterionic oximes and hydrochloride oximes characterized by X-ray diffraction, see: Witte et al. (1984); Fernández et al. (1994); Gurkova et al. (1988); Laus et al. (2008); Forgan et al. (2008).

Experimental top

In a 100 ml round bottom flask was dissolved 2 mmol (1 g) of (23R)-23-acetylsarsasapogenin acetate in ethanol (30 ml). Pyridine (1 ml) and 2 mmol of NH2OH.HCl (0.139 g) were added. The mixture was refluxed for 3 h, following the reaction by TLC. Solvent was then eliminated under reduced pressure, affording the crude oxime. The crude was recrystallized in a mixture of MeOH/CH2Cl2 (98:2), yielding the iminium olate zwitterion (96%). When the crude product was neutralized and then crystallized, the hydroxyimino derivative was obtained Anal. found (calc. for C31H49NO5): C 72.20 (72.20), H 9.56 (9.57), N 2.71 (2.71%).

Refinement top

H34 was found in a difference map and refined with free coordinates, although geometry around N34 was restrained through soft restraints in order to avoid significant deviations from trigonal geometry. The X-ray structure of acetone oxime hydrochloride was used as target (Gurkova et al., 1988): H34···C32 and H34···O35 separations were restrained to 2.10 (2) Å. The isotropic displacement parameter for H34 was fixed to Uiso(H34) = 1.5Ueq(N34). Other H atoms were placed in idealized positions and refined using a riding model, with fixed C—H bond lengths: 0.96 (methyl), 0.97 (methylene) or 0.98 Å (methine). Isotropic displacement parameters were computed as Uiso(H) = 1.5Ueq(carrier C) for methyl groups and Uiso(H) = 1.2Ueq(carrier C) for other H atoms. Methyl groups were allowed to rotate about their C—C bonds.

Structure description top

Synthetic routes are available for the large scale preparation of (23R)-23-acetylsarsasapogenin acetate (Meza-Reyes et al., 2005). During attempts to functionalize the 23 position in sarsasapogenin acetate, we have found that the oximation of (23R)-23-acetylsarsasapogenin acetate using NH2OH.HCl afforded the expected 23-hydroxyimino derivative. IR spectrum for that compound exhibits a strong vibration at 3400 cm-1 (νO—H), a weak vibration at 1636 cm-1 (νC=N), and a vibration at 951 cm-1 (νN—O), characteristics of ketoximes. One-dimensional and two-dimensional 1H and 13C NMR data are also in full agreement with that assignment (Hernández-Linares, 2005, and archived CIF). For instance, 31 signals are detected in 13C-NMR, one of which, at 159.3 p.p.m., is characteristic of the C231 atom substituted by an hydroxyimino group.

However, recrystallization of the ketoxime in a slightly acidic medium (MeOH/CH2Cl2, 98:2) afforded a solid with a significantly different melting point (459 K for the oxime, 516 K for the recrystallized material). On the other hand, the high m.p. solid presents a new 1H-NMR broad signal at 9.05 p.p.m., and the stretching vibration for OH group in the IR spectrum no longer appears, while a new strong vibration is observed at 2300 cm-1. In order to rationalize these dramatic changes, the X-ray analysis of this material was carried out.

The molecular structure (Fig. 1) resolves the above mentioned problem: a difference map shows a strong residual in the vicinity of atom N34, while no H atom is found bonded to O35. The oxime is thus stabilized in the solid-state in a rather rare zwittterionic form. The residual close to N34 refines well as an H atom. The N—H bond accounts for the IR vibration at 2300 cm-1 and H34 is detected in 1H-NMR at 9.05 p.p.m..

Refinement of the proposed model was however not so straightforward. Alternative models assuming a non-zwitterionic oxime were probed, with disordered N and O sites, which resulted in oxime groups with geometry far from expectation and physically unreasonable intermolecular contacts. On the other hand, refinements carried out with a free H34 atom converged to a geometry where the oxime N atom deviates significantly from the expected planar trigonal arrangement, although the N34—H34 bond length lies in the expected range. Considering that the structure is based on room-temperature data, we eventually refined the structural model with a pair of soft restraints for non-bonding separations involving H34 (see Experimental). Finally, a supplementary concern is about the terminal O atom O35, which is separated by 2.757 (5) Å from the carbonyl O30 atom of a symmetry-related molecule (symmetry code: 2 - x, -1/2 + y, 1/2 - z). Such an arrangement would be suitable for a stabilizing hydrogen bond, which is not observed because of the migration of the oxime H atom to N34. With the currently available data, it is however difficult to decide if this situation resulted from the actual migration of the H atom in the solid-sate. Definitively, more data are required in order to fully characterize this zwitterion, for example low temperature neutron diffraction data, and the X-ray structure of the non-zwitterionic title molecule.

The tautomerism between oximes and imine N-oxides seems to be poorly documented (Fernández et al., 1994). In the case of the title compound, the CN bond length is long, 1.361 (6) Å, and the N—O bond length is short, 1.367 (5) Å, compared to common non-zwitterionic oximes (ca. 1.28 and 1.41 Å, respectively). The sum of angles around N2 is very close to 360°, as expected for a sp2 hybridized atom. Therefore, delocalization is extended on the whole hydroxyimino group, C32/N34/O35, which is almost planar. The imine group presents the E configuration, which avoids steric hindrance between the oxime O atom and methine H atom H23C. This geometry is close to that previously reported for the few zwitterionic oximes or hydrochloride oximes characterized by X-ray diffraction (Fernández et al., 1994; Gurkova et al., 1988; Laus et al., 2008). The imine N-oxide tautomer has also been used as a ligand (Witte et al., 1984; Forgan et al., 2008).

For the synthesis of (23R)-23-acetylsarsasapogenin acetate used as starting material, see: Meza-Reyes et al. (2005). For the full spectroscopic characterization of the tautomers of the title compound, see: Hernández-Linares (2005). For the tautomerism between oximes and imine N-oxides, see: Fernández et al. (1994). For related zwitterionic oximes and hydrochloride oximes characterized by X-ray diffraction, see: Witte et al. (1984); Fernández et al. (1994); Gurkova et al. (1988); Laus et al. (2008); Forgan et al. (2008).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level.
(23'E)-(23R,25S)-23-[1-(oxidoiminio)ethyl]-5β- spirostan-3β-yl acetate top
Crystal data top
C31H49NO5Dx = 1.161 Mg m3
Mr = 515.71Melting point: 516 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 44 reflections
a = 8.385 (2) Åθ = 4.7–12.5°
b = 11.5627 (16) ŵ = 0.08 mm1
c = 30.420 (5) ÅT = 298 K
V = 2949.2 (10) Å3Irregular, colourless
Z = 40.60 × 0.60 × 0.35 mm
F(000) = 1128
Data collection top
Bruker P4
diffractometer
Rint = 0.041
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 92
ω scansk = 131
4182 measured reflectionsl = 361
2956 independent reflections3 standard reflections every 97 reflections
2512 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0651P)2 + 1.0057P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2956 reflectionsΔρmax = 0.46 e Å3
344 parametersΔρmin = 0.25 e Å3
2 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0095 (18)
Crystal data top
C31H49NO5V = 2949.2 (10) Å3
Mr = 515.71Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.385 (2) ŵ = 0.08 mm1
b = 11.5627 (16) ÅT = 298 K
c = 30.420 (5) Å0.60 × 0.60 × 0.35 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.041
4182 measured reflections3 standard reflections every 97 reflections
2956 independent reflections intensity decay: 3%
2512 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.46 e Å3
2956 reflectionsΔρmin = 0.25 e Å3
344 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0856 (4)0.6448 (3)0.33730 (11)0.0516 (9)
H1A1.09150.59170.36190.062*
H1B1.13930.60860.31260.062*
C21.1766 (4)0.7539 (4)0.34940 (12)0.0560 (9)
H2D1.18620.80300.32370.067*
H2E1.28320.73330.35890.067*
C31.0929 (5)0.8205 (3)0.38583 (11)0.0554 (9)
H3A1.14860.89340.39170.066*
C40.9219 (5)0.8431 (3)0.37427 (11)0.0531 (9)
H4A0.91820.89640.34970.064*
H4B0.87010.88020.39910.064*
C50.8285 (4)0.7338 (3)0.36217 (10)0.0485 (8)
H5A0.82710.68480.38850.058*
C60.6548 (4)0.7627 (4)0.35160 (11)0.0599 (11)
H6A0.61160.81130.37470.072*
H6B0.59290.69190.35080.072*
C70.6396 (5)0.8252 (4)0.30744 (11)0.0587 (10)
H7B0.52770.83900.30120.070*
H7C0.69250.89960.30930.070*
C80.7128 (4)0.7551 (3)0.27006 (10)0.0447 (8)
H8B0.65220.68310.26700.054*
C90.8885 (4)0.7238 (3)0.27973 (10)0.0421 (7)
H9B0.94610.79720.28210.051*
C100.9083 (4)0.6615 (3)0.32507 (10)0.0441 (8)
C110.9635 (5)0.6585 (3)0.24098 (10)0.0552 (9)
H11B0.91450.58270.23890.066*
H11C1.07610.64730.24690.066*
C120.9452 (4)0.7207 (3)0.19660 (11)0.0519 (9)
H12A1.00780.79130.19700.062*
H12B0.98660.67160.17340.062*
C130.7726 (4)0.7502 (3)0.18680 (10)0.0410 (7)
C140.7059 (4)0.8196 (3)0.22627 (10)0.0434 (8)
H14B0.77640.88670.22960.052*
C150.5478 (4)0.8673 (4)0.20928 (10)0.0531 (9)
H15B0.51230.93290.22660.064*
H15C0.46550.80840.20930.064*
C160.5917 (4)0.9040 (3)0.16224 (10)0.0448 (8)
H16B0.60640.98800.16070.054*
C170.7482 (4)0.8411 (3)0.14966 (10)0.0405 (7)
H17C0.83610.89680.15080.049*
C180.6769 (5)0.6401 (3)0.17818 (12)0.0576 (9)
H18C0.67590.59320.20420.086*
H18D0.72510.59760.15450.086*
H18E0.56950.66020.17040.086*
C190.8329 (5)0.5408 (3)0.32368 (13)0.0615 (10)
H19A0.83760.50660.35240.092*
H19B0.89030.49320.30320.092*
H19C0.72370.54710.31450.092*
C200.7218 (4)0.8046 (3)0.10144 (10)0.0435 (8)
H20A0.71220.72020.10070.052*
C210.8573 (4)0.8390 (4)0.07093 (12)0.0606 (10)
H21B0.82760.82300.04110.091*
H21C0.95120.79560.07830.091*
H21D0.87870.92010.07410.091*
C220.5588 (4)0.8561 (3)0.08961 (10)0.0391 (7)
O220.4759 (2)0.86704 (19)0.13038 (6)0.0415 (5)
C230.4554 (4)0.7843 (3)0.05791 (10)0.0430 (8)
H23C0.52010.76970.03170.052*
C240.3086 (4)0.8530 (3)0.04293 (11)0.0511 (8)
H24C0.25370.81000.02010.061*
H24D0.23590.86160.06750.061*
C250.3526 (5)0.9721 (3)0.02546 (11)0.0541 (9)
H25C0.25381.01570.02090.065*
C260.4476 (5)1.0321 (3)0.06089 (12)0.0552 (9)
H26D0.47731.10880.05090.066*
H26E0.38211.04050.08700.066*
O260.5890 (3)0.96787 (19)0.07171 (7)0.0473 (6)
C270.4413 (6)0.9665 (4)0.01843 (12)0.0700 (11)
H27C0.46991.04320.02750.105*
H27D0.37350.93190.04020.105*
H27E0.53600.92070.01510.105*
O281.0885 (3)0.7483 (2)0.42577 (7)0.0540 (6)
C291.2125 (5)0.7503 (3)0.45297 (11)0.0539 (9)
O301.3306 (4)0.8083 (3)0.44684 (10)0.0741 (8)
C311.1864 (5)0.6731 (4)0.49129 (12)0.0710 (12)
H31B1.25390.69700.51510.106*
H31C1.21170.59500.48330.106*
H31D1.07690.67750.50030.106*
C320.4111 (4)0.6680 (3)0.07679 (11)0.0483 (8)
C330.2777 (5)0.6538 (4)0.10802 (13)0.0660 (11)
H33A0.30500.59620.12950.099*
H33B0.18390.62990.09240.099*
H33C0.25740.72600.12250.099*
N340.5075 (6)0.5826 (3)0.06127 (13)0.0854 (13)
H340.605 (5)0.585 (2)0.0434 (17)0.128*
O350.4610 (5)0.4795 (3)0.07914 (14)0.1043 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (2)0.058 (2)0.0460 (17)0.0135 (19)0.0002 (16)0.0069 (16)
C20.0428 (18)0.069 (2)0.056 (2)0.003 (2)0.0010 (16)0.013 (2)
C30.060 (2)0.054 (2)0.0515 (18)0.009 (2)0.0074 (18)0.0068 (16)
C40.060 (2)0.0538 (19)0.0458 (17)0.0118 (19)0.0014 (17)0.0013 (16)
C50.0440 (18)0.059 (2)0.0422 (17)0.0067 (18)0.0023 (15)0.0068 (16)
C60.0442 (18)0.094 (3)0.0415 (17)0.019 (2)0.0072 (16)0.003 (2)
C70.048 (2)0.083 (3)0.0454 (17)0.027 (2)0.0009 (16)0.0018 (18)
C80.0405 (17)0.0530 (18)0.0405 (16)0.0062 (18)0.0007 (14)0.0011 (15)
C90.0392 (16)0.0439 (17)0.0433 (16)0.0060 (15)0.0002 (14)0.0001 (14)
C100.0425 (17)0.0450 (17)0.0449 (16)0.0041 (16)0.0018 (15)0.0045 (14)
C110.052 (2)0.066 (2)0.0474 (18)0.019 (2)0.0044 (16)0.0054 (17)
C120.0462 (19)0.064 (2)0.0458 (17)0.0113 (18)0.0065 (16)0.0026 (16)
C130.0413 (17)0.0433 (16)0.0385 (15)0.0079 (16)0.0020 (14)0.0003 (14)
C140.0425 (17)0.0485 (18)0.0392 (15)0.0102 (17)0.0026 (14)0.0036 (15)
C150.052 (2)0.069 (2)0.0375 (15)0.022 (2)0.0008 (15)0.0045 (16)
C160.0460 (18)0.0464 (17)0.0421 (16)0.0087 (17)0.0037 (15)0.0033 (14)
C170.0370 (16)0.0425 (16)0.0420 (16)0.0005 (15)0.0003 (14)0.0008 (14)
C180.068 (2)0.0508 (19)0.0541 (19)0.007 (2)0.0033 (19)0.0030 (17)
C190.069 (3)0.053 (2)0.063 (2)0.005 (2)0.002 (2)0.0078 (18)
C200.0406 (17)0.0491 (18)0.0408 (16)0.0034 (16)0.0011 (14)0.0040 (15)
C210.0439 (19)0.089 (3)0.0490 (18)0.005 (2)0.0077 (17)0.000 (2)
C220.0366 (16)0.0435 (16)0.0373 (14)0.0037 (15)0.0031 (14)0.0023 (13)
O220.0375 (11)0.0500 (12)0.0369 (10)0.0064 (11)0.0016 (9)0.0021 (10)
C230.0383 (17)0.0507 (18)0.0399 (16)0.0009 (15)0.0032 (15)0.0040 (14)
C240.0439 (18)0.061 (2)0.0485 (17)0.0003 (18)0.0036 (16)0.0034 (17)
C250.050 (2)0.059 (2)0.0530 (19)0.0090 (19)0.0032 (18)0.0042 (17)
C260.061 (2)0.0443 (18)0.060 (2)0.0087 (18)0.001 (2)0.0056 (16)
O260.0466 (13)0.0468 (12)0.0486 (12)0.0029 (12)0.0005 (11)0.0054 (10)
C270.079 (3)0.079 (3)0.052 (2)0.004 (3)0.002 (2)0.015 (2)
O280.0521 (13)0.0620 (14)0.0480 (12)0.0073 (14)0.0077 (12)0.0084 (12)
C290.054 (2)0.059 (2)0.0481 (18)0.009 (2)0.0064 (17)0.0047 (18)
O300.0616 (17)0.0797 (19)0.0810 (19)0.0100 (17)0.0189 (16)0.0064 (17)
C310.065 (3)0.092 (3)0.056 (2)0.015 (3)0.002 (2)0.010 (2)
C320.0515 (19)0.0424 (17)0.0511 (18)0.0031 (17)0.0078 (17)0.0053 (15)
C330.064 (2)0.061 (2)0.073 (2)0.018 (2)0.000 (2)0.010 (2)
N340.118 (3)0.0420 (17)0.096 (3)0.013 (2)0.039 (3)0.0033 (18)
O350.110 (3)0.079 (2)0.123 (3)0.018 (2)0.028 (3)0.001 (2)
Geometric parameters (Å, º) top
C1—C21.519 (5)C17—C201.542 (4)
C1—C101.544 (5)C17—H17C0.9800
C1—H1A0.9700C18—H18C0.9600
C1—H1B0.9700C18—H18D0.9600
C2—C31.520 (5)C18—H18E0.9600
C2—H2D0.9700C19—H19A0.9600
C2—H2E0.9700C19—H19B0.9600
C3—O281.474 (4)C19—H19C0.9600
C3—C41.500 (5)C20—C211.520 (5)
C3—H3A0.9800C20—C221.534 (5)
C4—C51.531 (5)C20—H20A0.9800
C4—H4A0.9700C21—H21B0.9600
C4—H4B0.9700C21—H21C0.9600
C5—C61.529 (5)C21—H21D0.9600
C5—C101.556 (5)C22—O261.426 (4)
C5—H5A0.9800C22—O221.427 (4)
C6—C71.531 (5)C22—C231.539 (5)
C6—H6A0.9700C23—C321.509 (5)
C6—H6B0.9700C23—C241.534 (5)
C7—C81.526 (5)C23—H23C0.9800
C7—H7B0.9700C24—C251.522 (5)
C7—H7C0.9700C24—H24C0.9700
C8—C141.528 (4)C24—H24D0.9700
C8—C91.545 (5)C25—C261.509 (5)
C8—H8B0.9800C25—C271.530 (5)
C9—C111.534 (5)C25—H25C0.9800
C9—C101.565 (4)C26—O261.437 (4)
C9—H9B0.9800C26—H26D0.9700
C10—C191.532 (5)C26—H26E0.9700
C11—C121.537 (5)C27—H27C0.9600
C11—H11B0.9700C27—H27D0.9600
C11—H11C0.9700C27—H27E0.9600
C12—C131.517 (5)O28—C291.328 (4)
C12—H12A0.9700C29—O301.210 (5)
C12—H12B0.9700C29—C311.484 (5)
C13—C181.528 (5)C31—H31B0.9600
C13—C141.549 (4)C31—H31C0.9600
C13—C171.556 (4)C31—H31D0.9600
C14—C151.526 (5)C32—C331.477 (5)
C14—H14B0.9800C32—N341.361 (6)
C15—C161.537 (5)C33—H33A0.9600
C15—H15B0.9700C33—H33B0.9600
C15—H15C0.9700C33—H33C0.9600
C16—O221.437 (4)N34—H340.980 (18)
C16—C171.548 (4)N34—O351.367 (5)
C16—H16B0.9800
C2—C1—C10116.0 (3)O22—C16—H16B110.3
C2—C1—H1A108.3C15—C16—H16B110.3
C10—C1—H1A108.3C17—C16—H16B110.3
C2—C1—H1B108.3C20—C17—C16104.0 (2)
C10—C1—H1B108.3C20—C17—C13121.6 (3)
H1A—C1—H1B107.4C16—C17—C13104.4 (2)
C1—C2—C3111.4 (3)C20—C17—H17C108.7
C1—C2—H2D109.3C16—C17—H17C108.7
C3—C2—H2D109.3C13—C17—H17C108.7
C1—C2—H2E109.3C13—C18—H18C109.5
C3—C2—H2E109.3C13—C18—H18D109.5
H2D—C2—H2E108.0H18C—C18—H18D109.5
O28—C3—C4105.5 (3)C13—C18—H18E109.5
O28—C3—C2109.0 (3)H18C—C18—H18E109.5
C4—C3—C2111.0 (3)H18D—C18—H18E109.5
O28—C3—H3A110.4C10—C19—H19A109.5
C4—C3—H3A110.4C10—C19—H19B109.5
C2—C3—H3A110.4H19A—C19—H19B109.5
C3—C4—C5113.7 (3)C10—C19—H19C109.5
C3—C4—H4A108.8H19A—C19—H19C109.5
C5—C4—H4A108.8H19B—C19—H19C109.5
C3—C4—H4B108.8C21—C20—C22114.9 (3)
C5—C4—H4B108.8C21—C20—C17113.7 (3)
H4A—C4—H4B107.7C22—C20—C17104.2 (3)
C6—C5—C4110.9 (3)C21—C20—H20A107.9
C6—C5—C10112.0 (3)C22—C20—H20A107.9
C4—C5—C10113.4 (3)C17—C20—H20A107.9
C6—C5—H5A106.7C20—C21—H21B109.5
C4—C5—H5A106.7C20—C21—H21C109.5
C10—C5—H5A106.7H21B—C21—H21C109.5
C5—C6—C7111.6 (3)C20—C21—H21D109.5
C5—C6—H6A109.3H21B—C21—H21D109.5
C7—C6—H6A109.3H21C—C21—H21D109.5
C5—C6—H6B109.3O26—C22—O22109.7 (2)
C7—C6—H6B109.3O26—C22—C20106.4 (3)
H6A—C6—H6B108.0O22—C22—C20105.3 (2)
C8—C7—C6111.7 (3)O26—C22—C23110.5 (2)
C8—C7—H7B109.3O22—C22—C23108.6 (2)
C6—C7—H7B109.3C20—C22—C23116.1 (3)
C8—C7—H7C109.3C22—O22—C16106.5 (2)
C6—C7—H7C109.3C32—C23—C24112.1 (3)
H7B—C7—H7C107.9C32—C23—C22112.4 (3)
C7—C8—C14112.0 (3)C24—C23—C22111.1 (3)
C7—C8—C9111.5 (3)C32—C23—H23C107.0
C14—C8—C9108.4 (3)C24—C23—H23C107.0
C7—C8—H8B108.3C22—C23—H23C107.0
C14—C8—H8B108.3C25—C24—C23112.2 (3)
C9—C8—H8B108.3C25—C24—H24C109.2
C11—C9—C8111.1 (3)C23—C24—H24C109.2
C11—C9—C10114.0 (3)C25—C24—H24D109.2
C8—C9—C10112.2 (3)C23—C24—H24D109.2
C11—C9—H9B106.3H24C—C24—H24D107.9
C8—C9—H9B106.3C26—C25—C24107.1 (3)
C10—C9—H9B106.3C26—C25—C27112.7 (3)
C19—C10—C1106.9 (3)C24—C25—C27112.6 (3)
C19—C10—C5109.4 (3)C26—C25—H25C108.1
C1—C10—C5107.8 (3)C24—C25—H25C108.1
C19—C10—C9110.5 (3)C27—C25—H25C108.1
C1—C10—C9111.8 (3)O26—C26—C25111.2 (3)
C5—C10—C9110.2 (3)O26—C26—H26D109.4
C9—C11—C12113.8 (3)C25—C26—H26D109.4
C9—C11—H11B108.8O26—C26—H26E109.4
C12—C11—H11B108.8C25—C26—H26E109.4
C9—C11—H11C108.8H26D—C26—H26E108.0
C12—C11—H11C108.8C22—O26—C26114.2 (3)
H11B—C11—H11C107.7C25—C27—H27C109.5
C13—C12—C11111.9 (3)C25—C27—H27D109.5
C13—C12—H12A109.2H27C—C27—H27D109.5
C11—C12—H12A109.2C25—C27—H27E109.5
C13—C12—H12B109.2H27C—C27—H27E109.5
C11—C12—H12B109.2H27D—C27—H27E109.5
H12A—C12—H12B107.9C29—O28—C3118.9 (3)
C12—C13—C18110.3 (3)O30—C29—O28123.6 (3)
C12—C13—C14108.0 (3)O30—C29—C31125.0 (4)
C18—C13—C14112.1 (3)O28—C29—C31111.3 (4)
C12—C13—C17114.8 (3)C29—C31—H31B109.5
C18—C13—C17111.7 (3)C29—C31—H31C109.5
C14—C13—C1799.5 (2)H31B—C31—H31C109.5
C15—C14—C8120.3 (3)C29—C31—H31D109.5
C15—C14—C13103.8 (2)H31B—C31—H31D109.5
C8—C14—C13114.1 (3)H31C—C31—H31D109.5
C15—C14—H14B105.8C23—C32—C33122.0 (3)
C8—C14—H14B105.8N34—C32—C23111.6 (3)
C13—C14—H14B105.8N34—C32—C33126.3 (3)
C14—C15—C16101.9 (3)C32—C33—H33A109.5
C14—C15—H15B111.4C32—C33—H33B109.5
C16—C15—H15B111.4H33A—C33—H33B109.5
C14—C15—H15C111.4C32—C33—H33C109.5
C16—C15—H15C111.4H33A—C33—H33C109.5
H15B—C15—H15C109.2H33B—C33—H33C109.5
O22—C16—C15112.6 (3)C32—N34—O35109.0 (4)
O22—C16—C17105.5 (2)C32—N34—H34132.0 (16)
C15—C16—C17107.7 (3)O35—N34—H34118.6 (16)
C10—C1—C2—C354.0 (4)O22—C16—C17—C2019.0 (3)
C1—C2—C3—O2862.8 (4)C15—C16—C17—C20139.4 (3)
C1—C2—C3—C453.0 (4)O22—C16—C17—C13109.5 (3)
O28—C3—C4—C563.8 (4)C15—C16—C17—C1310.9 (3)
C2—C3—C4—C554.2 (4)C12—C13—C17—C2093.1 (4)
C3—C4—C5—C6179.0 (3)C18—C13—C17—C2033.5 (4)
C3—C4—C5—C1053.9 (4)C14—C13—C17—C20151.9 (3)
C4—C5—C6—C772.1 (4)C12—C13—C17—C16150.0 (3)
C10—C5—C6—C755.8 (5)C18—C13—C17—C1683.4 (3)
C5—C6—C7—C856.3 (5)C14—C13—C17—C1635.0 (3)
C6—C7—C8—C14177.0 (3)C16—C17—C20—C21129.4 (3)
C6—C7—C8—C955.3 (4)C13—C17—C20—C21113.5 (3)
C7—C8—C9—C11177.2 (3)C16—C17—C20—C223.6 (3)
C14—C8—C9—C1153.4 (4)C13—C17—C20—C22120.6 (3)
C7—C8—C9—C1053.9 (4)C21—C20—C22—O2633.8 (4)
C14—C8—C9—C10177.7 (3)C17—C20—C22—O2691.3 (3)
C2—C1—C10—C19168.4 (3)C21—C20—C22—O22150.3 (3)
C2—C1—C10—C550.8 (4)C17—C20—C22—O2225.2 (3)
C2—C1—C10—C970.5 (4)C21—C20—C22—C2389.5 (4)
C6—C5—C10—C1968.2 (4)C17—C20—C22—C23145.4 (3)
C4—C5—C10—C19165.2 (3)O26—C22—O22—C1675.4 (3)
C6—C5—C10—C1175.9 (3)C20—C22—O22—C1638.8 (3)
C4—C5—C10—C149.3 (4)C23—C22—O22—C16163.8 (3)
C6—C5—C10—C953.5 (4)C15—C16—O22—C22153.5 (3)
C4—C5—C10—C973.0 (4)C17—C16—O22—C2236.3 (3)
C11—C9—C10—C1958.8 (4)O26—C22—C23—C32176.2 (3)
C8—C9—C10—C1968.5 (4)O22—C22—C23—C3255.8 (3)
C11—C9—C10—C160.1 (4)C20—C22—C23—C3262.6 (3)
C8—C9—C10—C1172.5 (3)O26—C22—C23—C2449.7 (3)
C11—C9—C10—C5179.9 (3)O22—C22—C23—C2470.7 (3)
C8—C9—C10—C552.5 (4)C20—C22—C23—C24171.0 (3)
C8—C9—C11—C1252.7 (4)C32—C23—C24—C25177.9 (3)
C10—C9—C11—C12179.3 (3)C22—C23—C24—C2551.2 (4)
C9—C11—C12—C1353.8 (4)C23—C24—C25—C2654.9 (4)
C11—C12—C13—C1868.7 (4)C23—C24—C25—C2769.6 (4)
C11—C12—C13—C1454.1 (4)C24—C25—C26—O2659.4 (4)
C11—C12—C13—C17164.1 (3)C27—C25—C26—O2665.0 (4)
C7—C8—C14—C1553.3 (4)O22—C22—O26—C2663.2 (3)
C9—C8—C14—C15176.8 (3)C20—C22—O26—C26176.7 (3)
C7—C8—C14—C13177.7 (3)C23—C22—O26—C2656.4 (3)
C9—C8—C14—C1358.9 (4)C25—C26—O26—C2263.0 (4)
C12—C13—C14—C15167.9 (3)C4—C3—O28—C29154.6 (3)
C18—C13—C14—C1570.4 (3)C2—C3—O28—C2986.1 (4)
C17—C13—C14—C1547.8 (3)C3—O28—C29—O300.2 (5)
C12—C13—C14—C859.3 (4)C3—O28—C29—C31179.7 (3)
C18—C13—C14—C862.4 (4)C24—C23—C32—N34135.1 (3)
C17—C13—C14—C8179.4 (3)C22—C23—C32—N3499.0 (3)
C8—C14—C15—C16170.4 (3)C24—C23—C32—C3344.6 (4)
C13—C14—C15—C1641.2 (3)C22—C23—C32—C3381.3 (4)
C14—C15—C16—O22134.1 (3)C33—C32—N34—O350.2 (6)
C14—C15—C16—C1718.3 (4)C23—C32—N34—O35179.5 (3)

Experimental details

Crystal data
Chemical formulaC31H49NO5
Mr515.71
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.385 (2), 11.5627 (16), 30.420 (5)
V3)2949.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.60 × 0.35
Data collection
DiffractometerBruker P4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4182, 2956, 2512
Rint0.041
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.129, 1.02
No. of reflections2956
No. of parameters344
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.25

Computer programs: XSCANS (Siemens, 1994), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C32—C331.477 (5)N34—H340.980 (18)
C32—N341.361 (6)N34—O351.367 (5)
C23—C32—C33122.0 (3)C32—N34—O35109.0 (4)
N34—C32—C23111.6 (3)C32—N34—H34132.0 (16)
N34—C32—C33126.3 (3)O35—N34—H34118.6 (16)
 

Acknowledgements

This work was supported by CONACyT (grant 83049).

References

First citationFernández, M. J., Huertas, R., Gálvez, E., Sanz-Aparicio, J., Fonseca, I. & Bellanato, J. (1994). J. Mol. Struct. 323, 85–91.  Google Scholar
First citationForgan, R. S., Davidson, J. E., Galbraith, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & White, F. J. (2008). Chem. Commun. pp. 4049–4051.  Web of Science CSD CrossRef Google Scholar
First citationGurkova, S. N., Gusev, A. I., Alekseev, N. V. & Lakhtin, V. G. (1988). Zh. Strukt. Khim. 29, 184–186.  CAS Google Scholar
First citationHernández-Linares, G. (2005). PhD thesis, Universidad Autónoma de Puebla, Mexico.  Google Scholar
First citationLaus, G., Schwärzler, A., Bentivoglio, G., Hummel, M., Kahlenberg, V., Wurst, K., Kristeva, E., Schutz, J., Kopacka, H., Kreutz, C., Bonn, G., Andriyko, Y., Nauer, G. & Schottenberger, H. (2008). Z. Naturforsch. Teil B, 63, 447–464.  CAS Google Scholar
First citationMeza-Reyes, S., Sandoval-Ramírez, J., Montiel-Smith, S., Hernández-Linares, G., Viñas-Bravo, O., Martínez-Pascual, R., Fernández-Herrera, M. A., Vega-Báez, J. L., Merino-Montiel, P., Santillán, R. L., Farfán, N., Rincón, S. & del Río, R. E. (2005). Arkivoc, vi, 307–320.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWitte, E. G., Schwochau, K. S., Henkel, G. & Krebs, B. (1984). Inorg. Chim. Acta, 94, 323–331.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds