organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-3-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 2 October 2009; accepted 13 October 2009; online 17 October 2009)

In the structure of the title compound, C14H12ClNO, the conformations of the N—H and C=O bonds are anti to each other. Furthermore, the conformation of the C=O bond is syn to the meta-methyl group in the benzoyl ring. The central –NH—C(=O)– amido group makes a dihedral angle of 32.4 (1)° with the benzoyl ring and 36.1 (1)° with the anilino ring. The dihedral angle between the two benzene rings is 68.4 (1)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains running along the a axis

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For related structures, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda, Foro et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o770.], 2009[Gowda, B. T., Foro, S., Sowmya, B. P., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o389.]); Gowda, Tokarčík et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o769.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.7

  • Monoclinic, P 21 /c

  • a = 5.31325 (9) Å

  • b = 13.9256 (2) Å

  • c = 16.3497 (3) Å

  • β = 93.1799 (16)°

  • V = 1207.86 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 295 K

  • 0.54 × 0.41 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur, Ruby, Gemini diffractometer

  • Absorption correction: analytical (CrysAlisPro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.842, Tmax = 0.933

  • 22561 measured reflections

  • 2327 independent reflections

  • 2083 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.08

  • 2327 reflections

  • 160 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.864 (14) 2.298 (14) 3.1019 (16) 154.7 (15)
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlisPro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the solid state structures of benzanilides (Gowda, Foro et al., 2008, 2009; Gowda, Tokarčík et al., 2008), the structure of N-(4-chlorophenyl)3-methylbenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in N-(4-chlorophenyl)2-methylbenzamide (II)(Gowda, Foro et al., 2008), N-(4-chlorophenyl)benzamide (III)(Gowda, Tokarčík et al., 2008), 3-methyl-N-(phenyl)benzamide (IV) (Gowda, Foro et al., 2008) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the C=O bond in (I) is syn to the meta-methyl substituent in the benzoyl ring. The central amido group –NH—C(=O)– makes a dihedral angle of 32.4 (1)° with the methyl-phenyl ring (benzoyl) and 36.1 (1)° with the chloro-phenyl ring (anilino). The dihedral angle between the two benzene rings is 68.4 (1)°, compared to the values of 83.1 (1)° in (II), 60.76 (3)°) in (III), and 22.17 (18)° & 75.86 (12)°, respectively, in molecules 1 and 2 of (IV).

The packing diagram of molecules in (I) showing the intermolecular N–H···O hydrogen bonds (Table 1) involved in the formation of molecular chains running along the a-axis is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda, Foro et al. (2008, 2009); Gowda, Tokarčík et al. (2008).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement top

All hydrogen atoms were seen in difference map. H atom attached to nitrogen was refined with the N—H distance restrained to 0.86 (2) Å. H atoms attached to carbon atoms were placed in calculated positions with C–H distances of 0.93 Å (C aromatic) and 0.96 Å (C methyl). The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5 Ueq(C methyl). The C14 methyl group shows orientational disorder in the hydrogen atom positions. The two sets of methyl hydrogen atoms were refined with equal occupancy.

Structure description top

In the present work, as part of a study of the substituent effects on the solid state structures of benzanilides (Gowda, Foro et al., 2008, 2009; Gowda, Tokarčík et al., 2008), the structure of N-(4-chlorophenyl)3-methylbenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in N-(4-chlorophenyl)2-methylbenzamide (II)(Gowda, Foro et al., 2008), N-(4-chlorophenyl)benzamide (III)(Gowda, Tokarčík et al., 2008), 3-methyl-N-(phenyl)benzamide (IV) (Gowda, Foro et al., 2008) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the C=O bond in (I) is syn to the meta-methyl substituent in the benzoyl ring. The central amido group –NH—C(=O)– makes a dihedral angle of 32.4 (1)° with the methyl-phenyl ring (benzoyl) and 36.1 (1)° with the chloro-phenyl ring (anilino). The dihedral angle between the two benzene rings is 68.4 (1)°, compared to the values of 83.1 (1)° in (II), 60.76 (3)°) in (III), and 22.17 (18)° & 75.86 (12)°, respectively, in molecules 1 and 2 of (IV).

The packing diagram of molecules in (I) showing the intermolecular N–H···O hydrogen bonds (Table 1) involved in the formation of molecular chains running along the a-axis is shown in Fig. 2.

For the preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda, Foro et al. (2008, 2009); Gowda, Tokarčík et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with N–H···O hydrogen bonds shown as dashed lines. Symmetry code (i): x - 1,y,z. H atoms not involved in hydrogen bonding have been omitted.
N-(4-Chlorophenyl)-3-methylbenzamide top
Crystal data top
C14H12ClNOF(000) = 512
Mr = 245.7Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15854 reflections
a = 5.31325 (9) Åθ = 2.5–29.5°
b = 13.9256 (2) ŵ = 0.30 mm1
c = 16.3497 (3) ÅT = 295 K
β = 93.1799 (16)°Block, colourless
V = 1207.86 (3) Å30.54 × 0.41 × 0.24 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur, Ruby, Gemini
diffractometer
2327 independent reflections
Graphite monochromator2083 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.021
ω scansθmax = 25.8°, θmin = 2.5°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 66
Tmin = 0.842, Tmax = 0.933k = 1717
22561 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.3304P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2327 reflectionsΔρmax = 0.20 e Å3
160 parametersΔρmin = 0.25 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0092 (14)
Crystal data top
C14H12ClNOV = 1207.86 (3) Å3
Mr = 245.7Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.31325 (9) ŵ = 0.30 mm1
b = 13.9256 (2) ÅT = 295 K
c = 16.3497 (3) Å0.54 × 0.41 × 0.24 mm
β = 93.1799 (16)°
Data collection top
Oxford Diffraction Xcalibur, Ruby, Gemini
diffractometer
2327 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
2083 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.933Rint = 0.021
22561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
2327 reflectionsΔρmin = 0.25 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.1646 (2)0.45549 (8)0.39171 (8)0.0412 (3)
H1N0.017 (3)0.4290 (12)0.3885 (10)0.049*
O10.58424 (19)0.42883 (8)0.38537 (8)0.0557 (3)
C10.3719 (2)0.39844 (10)0.39515 (8)0.0386 (3)
C20.3269 (2)0.29460 (10)0.41211 (8)0.0369 (3)
C30.4867 (3)0.22789 (10)0.37862 (9)0.0405 (3)
H30.61570.24930.3470.049*
C40.4574 (3)0.13000 (10)0.39146 (9)0.0431 (3)
C50.2706 (3)0.10059 (11)0.44192 (10)0.0498 (4)
H50.25060.03550.45250.06*
C60.1136 (3)0.16637 (12)0.47667 (10)0.0522 (4)
H60.00930.14510.51080.063*
C70.1374 (3)0.26343 (11)0.46128 (9)0.0437 (3)
H70.02830.30730.48350.052*
C80.1610 (2)0.55455 (10)0.37157 (8)0.0366 (3)
C90.3518 (3)0.61698 (11)0.39831 (9)0.0443 (3)
H90.48930.59410.43020.053*
C100.3380 (3)0.71322 (11)0.37762 (10)0.0482 (4)
H100.46580.75510.39550.058*
C110.1347 (3)0.74660 (11)0.33054 (9)0.0447 (4)
C120.0573 (3)0.68588 (11)0.30389 (10)0.0489 (4)
H120.19460.70930.27220.059*
C130.0436 (3)0.58985 (11)0.32472 (9)0.0449 (3)
H130.1730.54850.30710.054*
C140.6205 (3)0.05784 (13)0.35038 (12)0.0605 (4)
H14A0.75460.09070.3250.091*0.5
H14B0.52040.02330.30950.091*0.5
H14C0.69040.01360.39050.091*0.5
H14D0.55570.00560.35830.091*0.5
H14E0.78990.06170.37380.091*0.5
H14F0.61980.07150.29280.091*0.5
Cl10.11527 (11)0.86780 (3)0.30416 (3)0.07259 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0333 (6)0.0357 (6)0.0548 (7)0.0041 (5)0.0028 (5)0.0011 (5)
O10.0374 (5)0.0426 (6)0.0884 (9)0.0029 (4)0.0141 (5)0.0086 (6)
C10.0371 (7)0.0378 (7)0.0413 (7)0.0025 (6)0.0052 (5)0.0010 (6)
C20.0345 (6)0.0381 (7)0.0377 (7)0.0030 (5)0.0016 (5)0.0008 (6)
C30.0355 (7)0.0430 (8)0.0429 (7)0.0015 (6)0.0028 (6)0.0010 (6)
C40.0418 (7)0.0402 (8)0.0465 (8)0.0014 (6)0.0052 (6)0.0025 (6)
C50.0538 (9)0.0363 (8)0.0589 (9)0.0057 (7)0.0005 (7)0.0045 (7)
C60.0524 (9)0.0478 (9)0.0577 (9)0.0102 (7)0.0146 (7)0.0050 (7)
C70.0409 (7)0.0420 (8)0.0490 (8)0.0025 (6)0.0093 (6)0.0008 (6)
C80.0355 (7)0.0354 (7)0.0393 (7)0.0015 (5)0.0068 (5)0.0012 (5)
C90.0390 (7)0.0420 (8)0.0511 (8)0.0002 (6)0.0043 (6)0.0048 (6)
C100.0449 (8)0.0397 (8)0.0600 (9)0.0089 (6)0.0028 (7)0.0082 (7)
C110.0532 (9)0.0361 (7)0.0460 (8)0.0013 (6)0.0133 (7)0.0022 (6)
C120.0464 (8)0.0474 (8)0.0523 (9)0.0027 (7)0.0026 (7)0.0074 (7)
C130.0373 (7)0.0428 (8)0.0540 (9)0.0059 (6)0.0019 (6)0.0007 (7)
C140.0588 (10)0.0486 (9)0.0743 (12)0.0070 (8)0.0055 (8)0.0091 (8)
Cl10.0979 (4)0.0399 (2)0.0805 (3)0.0026 (2)0.0090 (3)0.0145 (2)
Geometric parameters (Å, º) top
N1—C11.3565 (18)C8—C91.388 (2)
N1—C81.4181 (18)C9—C101.383 (2)
N1—H1N0.864 (14)C9—H90.93
O1—C11.2239 (17)C10—C111.372 (2)
C1—C21.4942 (19)C10—H100.93
C2—C31.391 (2)C11—C121.377 (2)
C2—C71.3922 (19)C11—Cl11.7437 (15)
C3—C41.389 (2)C12—C131.381 (2)
C3—H30.93C12—H120.93
C4—C51.387 (2)C13—H130.93
C4—C141.509 (2)C14—H14A0.96
C5—C61.382 (2)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—C71.382 (2)C14—H14D0.96
C6—H60.93C14—H14E0.96
C7—H70.93C14—H14F0.96
C8—C131.385 (2)
C1—N1—C8125.43 (12)C9—C10—H10120.2
C1—N1—H1N118.9 (11)C10—C11—C12121.04 (14)
C8—N1—H1N113.6 (11)C10—C11—Cl1120.05 (12)
O1—C1—N1122.98 (13)C12—C11—Cl1118.91 (12)
O1—C1—C2121.13 (12)C11—C12—C13119.25 (14)
N1—C1—C2115.89 (12)C11—C12—H12120.4
C3—C2—C7119.73 (13)C13—C12—H12120.4
C3—C2—C1117.77 (12)C12—C13—C8120.61 (13)
C7—C2—C1122.49 (13)C12—C13—H13119.7
C4—C3—C2121.34 (13)C8—C13—H13119.7
C4—C3—H3119.3C4—C14—H14A109.5
C2—C3—H3119.3C4—C14—H14B109.5
C5—C4—C3117.98 (14)H14A—C14—H14B109.5
C5—C4—C14121.05 (14)C4—C14—H14C109.5
C3—C4—C14120.96 (14)H14A—C14—H14C109.5
C6—C5—C4121.12 (14)H14B—C14—H14C109.5
C6—C5—H5119.4C4—C14—H14D109.5
C4—C5—H5119.4H14A—C14—H14D141.1
C7—C6—C5120.66 (14)H14B—C14—H14D56.3
C7—C6—H6119.7H14C—C14—H14D56.3
C5—C6—H6119.7C4—C14—H14E109.5
C6—C7—C2119.11 (14)H14A—C14—H14E56.3
C6—C7—H7120.4H14B—C14—H14E141.1
C2—C7—H7120.4H14C—C14—H14E56.3
C13—C8—C9119.29 (13)H14D—C14—H14E109.5
C13—C8—N1118.28 (12)C4—C14—H14F109.5
C9—C8—N1122.42 (13)H14A—C14—H14F56.3
C10—C9—C8120.13 (14)H14B—C14—H14F56.3
C10—C9—H9119.9H14C—C14—H14F141.1
C8—C9—H9119.9H14D—C14—H14F109.5
C11—C10—C9119.67 (13)H14E—C14—H14F109.5
C11—C10—H10120.2
C8—N1—C1—O14.3 (2)C3—C2—C7—C60.7 (2)
C8—N1—C1—C2175.93 (12)C1—C2—C7—C6177.55 (14)
O1—C1—C2—C331.1 (2)C1—N1—C8—C13142.17 (15)
N1—C1—C2—C3149.10 (13)C1—N1—C8—C939.0 (2)
O1—C1—C2—C7147.24 (15)C13—C8—C9—C100.6 (2)
N1—C1—C2—C732.57 (19)N1—C8—C9—C10179.33 (14)
C7—C2—C3—C41.7 (2)C8—C9—C10—C110.0 (2)
C1—C2—C3—C4179.96 (13)C9—C10—C11—C120.5 (2)
C2—C3—C4—C52.9 (2)C9—C10—C11—Cl1179.97 (12)
C2—C3—C4—C14175.93 (14)C10—C11—C12—C130.3 (2)
C3—C4—C5—C61.7 (2)Cl1—C11—C12—C13179.82 (12)
C14—C4—C5—C6177.08 (15)C11—C12—C13—C80.3 (2)
C4—C5—C6—C70.6 (3)C9—C8—C13—C120.7 (2)
C5—C6—C7—C21.9 (2)N1—C8—C13—C12179.54 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (1)2.30 (1)3.1019 (16)155 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.7
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)5.31325 (9), 13.9256 (2), 16.3497 (3)
β (°) 93.1799 (16)
V3)1207.86 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.54 × 0.41 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur, Ruby, Gemini
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.842, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
22561, 2327, 2083
Rint0.021
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.08
No. of reflections2327
No. of parameters160
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.864 (14)2.298 (14)3.1019 (16)154.7 (15)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds