organic compounds
2,4-Dichlorophenyl 4-bromobenzenesulfonate
aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: vembu57@yahoo.com
In the title molecule, C12H7BrCl2O3S, the dihedral angle between the two benzene rings is 55.18 (5)°. The notable intermolecular contacts include C—H⋯O and π–π interactions [centroid–centroid distances = 4.037 (1) and 3.349 (1) Å].
Related literature
For a detailed account of the molecular and supramolecular architectures of aromatic sulfonates, see Vembu et al. (2007). For a general background to aromatic sulfonates, see: Yachi et al. (1989): Spungin et al. (1992); Tharakan et al. (1992); Alford et al. (1991); Jiang et al. (1990); Narayanan & Krakow (1983). For the criteria to describe C—H⋯O interactions, see: Desiraju & Steiner, (1999) and for the classification of aromatic stacking interactions, see: Spek (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536809042950/om2286sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809042950/om2286Isup2.hkl
4-Bromobenzenesulfonyl chloride (10 mmol), dissolved in acetone (10 ml), was added dropwise to 2,4-dichlorophenol (10 mmol) in aqueous NaOH (8 ml, 5%) with constant stirring. The precipitate (6.5 mmol, yield 65%) was filtered and recrystallized from aqueous ethanol.
All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined.
Aromatic sulfonates are used in monitoring the merging of
(Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al.,1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure is shown in Fig. 1.The C4–S–O3–C7 torsion angle of 65.86 (14)° corresponds to +synclinal conformation; as expected the dihedral angle between the mean planes of the 2,4-dichlorophenyl and bromobenzene rings of 55.18 (5)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Vembu et al. 2007 and references cited therein).
The π···π aromatic stacking interactions. The coordinates of Cg1···Cg1 (-x, 1 - y, 1 - z) at 4.037Å are α = 0.00, β = 24.13, γ = 24.13, the two perpendicular distances involving the aromatic rings being 3.684 Å. The coordinates of Cg2···Cg2 (-1 - x, -y, 2 - z) at 3.751Å are α = 0.03, β = 26.79, γ = 26.79, the two perpendicular distances involving the aromatic rings being 3.349 Å. Cg1 is the centroid of the aromatic ring formed by the atoms C1, C2, C3, C4, C5 & C6, Cg2 is the centroid of the aromatic ring formed by the atoms C7, C8, C9, C10, C11 & C12. α is the dihedral angle between the planes of the two aromatic rings, β is the angle of the aromatic ring formed by the atoms C1—C6 through the aromatic ring formed by the atoms C7—C12, γ is the angle of the vector through the centroids of the planes of the two aromatic rings and normal to the plane of the aromatic ring formed by C7—C12 (Spek, 2009).
exhibits weak intermolecular C—H···O interactions (Desiraju & Steiner, 1999) (Table 1). There are two face to faceFor a detailed account of the molecular and supramolecular architectures of aromatic sulfonates, see Vembu et al. (2007). For a general background to aromatic sulfonates, see: Yachi et al. (1989): Spungin et al. (1992); Tharakan et al. (1992); Alford et al. (1991); Jiang et al. (1990); Narayanan & Krakow (1983). For the criteria to describe C—H···O interactions, see: Desiraju & Steiner, (1999) and for the classification of aromatic stacking interactions, see: Spek (2009).
Data collection: COLLECT (Nonius, 2000); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius. |
C12H7BrCl2O3S | Z = 2 |
Mr = 382.05 | F(000) = 376 |
Triclinic, P1 | Dx = 1.908 Mg m−3 |
Hall symbol: -P 1 | Melting point: 398 K |
a = 7.2955 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.3955 (11) Å | Cell parameters from 4109 reflections |
c = 11.1251 (15) Å | θ = 2.5–33.6° |
α = 95.737 (8)° | µ = 3.65 mm−1 |
β = 98.645 (7)° | T = 90 K |
γ = 96.231 (8)° | Prism, colorless |
V = 664.98 (15) Å3 | 0.17 × 0.10 × 0.07 mm |
Nonius KappaCCD diffractometer with Oxford Cryostream | 4745 independent reflections |
Radiation source: fine-focus sealed tube | 4091 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans with κ offsets | θmax = 33.5°, θmin = 2.9° |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor 1997) | h = −10→11 |
Tmin = 0.576, Tmax = 0.784 | k = −12→12 |
18308 measured reflections | l = −16→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.074 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0284P)2 + 0.6284P] where P = (Fo2 + 2Fc2)/3 |
4745 reflections | (Δ/σ)max = 0.001 |
200 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.76 e Å−3 |
C12H7BrCl2O3S | γ = 96.231 (8)° |
Mr = 382.05 | V = 664.98 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2955 (10) Å | Mo Kα radiation |
b = 8.3955 (11) Å | µ = 3.65 mm−1 |
c = 11.1251 (15) Å | T = 90 K |
α = 95.737 (8)° | 0.17 × 0.10 × 0.07 mm |
β = 98.645 (7)° |
Nonius KappaCCD diffractometer with Oxford Cryostream | 4745 independent reflections |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor 1997) | 4091 reflections with I > 2σ(I) |
Tmin = 0.576, Tmax = 0.784 | Rint = 0.025 |
18308 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.074 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.42 e Å−3 |
4745 reflections | Δρmin = −0.76 e Å−3 |
200 parameters |
Geometry. All su's (except the su in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell su's are taken into account individually in the estimation of su's in distances, angles and torsion angles; correlations between su's in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell su's is used for estimating su's involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.64701 (3) | 0.17437 (2) | 0.428948 (18) | 0.01931 (6) | |
Cl1 | 0.02233 (6) | 0.03498 (5) | 0.69619 (4) | 0.01838 (9) | |
Cl2 | 0.36290 (6) | −0.08990 (6) | 1.13426 (5) | 0.02035 (10) | |
S1 | 0.14495 (6) | 0.51012 (5) | 0.77797 (4) | 0.01350 (8) | |
O1 | 0.26445 (19) | 0.59769 (16) | 0.88237 (13) | 0.0180 (3) | |
O2 | 0.00437 (19) | 0.58520 (17) | 0.70897 (13) | 0.0193 (3) | |
O3 | 0.02261 (17) | 0.36107 (15) | 0.82191 (12) | 0.0136 (2) | |
C1 | 0.4977 (2) | 0.2748 (2) | 0.53130 (17) | 0.0139 (3) | |
C2 | 0.5760 (2) | 0.3301 (2) | 0.65200 (18) | 0.0161 (3) | |
C3 | 0.4664 (3) | 0.4019 (2) | 0.72856 (17) | 0.0154 (3) | |
C4 | 0.2818 (2) | 0.4176 (2) | 0.68176 (16) | 0.0129 (3) | |
C5 | 0.2045 (2) | 0.3631 (2) | 0.56058 (17) | 0.0150 (3) | |
C6 | 0.3137 (3) | 0.2911 (2) | 0.48443 (17) | 0.0159 (3) | |
C7 | 0.1140 (2) | 0.2578 (2) | 0.89617 (16) | 0.0125 (3) | |
C8 | 0.1862 (3) | 0.3101 (2) | 1.01796 (17) | 0.0157 (3) | |
C9 | 0.2658 (3) | 0.2032 (2) | 1.09162 (17) | 0.0169 (3) | |
C10 | 0.2681 (2) | 0.0454 (2) | 1.04188 (17) | 0.0148 (3) | |
C11 | 0.1949 (2) | −0.0090 (2) | 0.92034 (17) | 0.0145 (3) | |
C12 | 0.1179 (2) | 0.0995 (2) | 0.84746 (16) | 0.0129 (3) | |
H2 | 0.702 (4) | 0.319 (3) | 0.682 (2) | 0.023 (6)* | |
H3 | 0.511 (4) | 0.442 (3) | 0.811 (2) | 0.021 (6)* | |
H5 | 0.075 (4) | 0.373 (3) | 0.533 (2) | 0.027 (7)* | |
H6 | 0.266 (3) | 0.253 (3) | 0.405 (2) | 0.020 (6)* | |
H8 | 0.177 (3) | 0.419 (3) | 1.050 (2) | 0.019 (6)* | |
H9 | 0.316 (4) | 0.241 (3) | 1.174 (3) | 0.025 (7)* | |
H11 | 0.201 (3) | −0.113 (3) | 0.889 (2) | 0.014 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02086 (9) | 0.01838 (10) | 0.02144 (10) | 0.00506 (7) | 0.01007 (7) | 0.00289 (7) |
Cl1 | 0.0235 (2) | 0.0159 (2) | 0.01452 (19) | 0.00065 (16) | 0.00259 (16) | −0.00138 (15) |
Cl2 | 0.01585 (19) | 0.0236 (2) | 0.0246 (2) | 0.00547 (16) | 0.00383 (16) | 0.01331 (18) |
S1 | 0.01517 (18) | 0.01071 (18) | 0.01559 (19) | 0.00379 (14) | 0.00343 (15) | 0.00253 (14) |
O1 | 0.0223 (6) | 0.0124 (6) | 0.0186 (6) | 0.0010 (5) | 0.0036 (5) | −0.0010 (5) |
O2 | 0.0210 (6) | 0.0179 (7) | 0.0223 (7) | 0.0101 (5) | 0.0054 (5) | 0.0071 (5) |
O3 | 0.0125 (5) | 0.0132 (6) | 0.0159 (6) | 0.0027 (4) | 0.0023 (4) | 0.0044 (5) |
C1 | 0.0160 (7) | 0.0112 (7) | 0.0168 (8) | 0.0032 (6) | 0.0072 (6) | 0.0034 (6) |
C2 | 0.0134 (7) | 0.0167 (8) | 0.0192 (8) | 0.0030 (6) | 0.0024 (6) | 0.0054 (7) |
C3 | 0.0146 (7) | 0.0158 (8) | 0.0150 (8) | 0.0010 (6) | 0.0002 (6) | 0.0024 (6) |
C4 | 0.0139 (7) | 0.0104 (7) | 0.0151 (8) | 0.0026 (6) | 0.0035 (6) | 0.0021 (6) |
C5 | 0.0136 (7) | 0.0158 (8) | 0.0151 (8) | 0.0022 (6) | 0.0002 (6) | 0.0024 (6) |
C6 | 0.0167 (8) | 0.0167 (8) | 0.0138 (8) | 0.0010 (6) | 0.0013 (6) | 0.0029 (6) |
C7 | 0.0123 (7) | 0.0120 (7) | 0.0146 (7) | 0.0025 (6) | 0.0043 (6) | 0.0035 (6) |
C8 | 0.0185 (8) | 0.0141 (8) | 0.0145 (8) | 0.0021 (6) | 0.0031 (6) | 0.0008 (6) |
C9 | 0.0166 (8) | 0.0188 (9) | 0.0148 (8) | 0.0004 (7) | 0.0017 (6) | 0.0028 (7) |
C10 | 0.0110 (7) | 0.0163 (8) | 0.0191 (8) | 0.0032 (6) | 0.0038 (6) | 0.0088 (6) |
C11 | 0.0136 (7) | 0.0124 (8) | 0.0192 (8) | 0.0033 (6) | 0.0053 (6) | 0.0040 (6) |
C12 | 0.0123 (7) | 0.0137 (8) | 0.0128 (7) | 0.0010 (6) | 0.0035 (6) | 0.0005 (6) |
Br1—C1 | 1.8909 (17) | C4—C5 | 1.392 (2) |
Cl1—C12 | 1.7306 (18) | C5—C6 | 1.387 (3) |
Cl2—C10 | 1.7361 (18) | C5—H5 | 0.96 (3) |
S1—O1 | 1.4267 (15) | C6—H6 | 0.91 (3) |
S1—O2 | 1.4279 (14) | C7—C8 | 1.386 (2) |
S1—O3 | 1.6163 (13) | C7—C12 | 1.390 (2) |
S1—C4 | 1.7520 (18) | C8—C9 | 1.390 (3) |
O3—C7 | 1.407 (2) | C8—H8 | 0.96 (3) |
C1—C2 | 1.390 (3) | C9—C10 | 1.387 (3) |
C1—C6 | 1.391 (3) | C9—H9 | 0.94 (3) |
C2—C3 | 1.391 (3) | C10—C11 | 1.389 (3) |
C2—H2 | 0.95 (3) | C11—C12 | 1.387 (2) |
C3—C4 | 1.394 (2) | C11—H11 | 0.91 (2) |
C3—H3 | 0.94 (3) | ||
O1—S1—O2 | 120.61 (9) | C5—C6—C1 | 119.11 (17) |
O1—S1—O3 | 108.71 (8) | C5—C6—H6 | 120.8 (16) |
O2—S1—O3 | 102.04 (8) | C1—C6—H6 | 120.0 (16) |
O1—S1—C4 | 109.04 (8) | C8—C7—C12 | 120.82 (16) |
O2—S1—C4 | 110.81 (9) | C8—C7—O3 | 120.41 (16) |
O3—S1—C4 | 104.20 (8) | C12—C7—O3 | 118.60 (16) |
C7—O3—S1 | 119.14 (11) | C7—C8—C9 | 119.49 (17) |
C2—C1—C6 | 121.93 (16) | C7—C8—H8 | 119.2 (15) |
C2—C1—Br1 | 118.56 (13) | C9—C8—H8 | 121.3 (15) |
C6—C1—Br1 | 119.51 (14) | C10—C9—C8 | 119.06 (17) |
C1—C2—C3 | 119.00 (16) | C10—C9—H9 | 122.2 (16) |
C1—C2—H2 | 120.7 (16) | C8—C9—H9 | 118.7 (17) |
C3—C2—H2 | 120.3 (16) | C9—C10—C11 | 122.05 (17) |
C2—C3—C4 | 119.06 (17) | C9—C10—Cl2 | 119.28 (15) |
C2—C3—H3 | 123.1 (16) | C11—C10—Cl2 | 118.66 (14) |
C4—C3—H3 | 117.8 (16) | C12—C11—C10 | 118.29 (17) |
C5—C4—C3 | 121.71 (16) | C12—C11—H11 | 121.4 (15) |
C5—C4—S1 | 119.34 (13) | C10—C11—H11 | 120.2 (15) |
C3—C4—S1 | 118.94 (14) | C11—C12—C7 | 120.28 (16) |
C6—C5—C4 | 119.18 (16) | C11—C12—Cl1 | 119.48 (14) |
C6—C5—H5 | 121.9 (17) | C7—C12—Cl1 | 120.22 (14) |
C4—C5—H5 | 118.9 (16) | ||
O1—S1—O3—C7 | −50.31 (14) | C2—C1—C6—C5 | −0.6 (3) |
O2—S1—O3—C7 | −178.76 (13) | Br1—C1—C6—C5 | 179.19 (14) |
C4—S1—O3—C7 | 65.86 (14) | S1—O3—C7—C8 | 72.63 (19) |
C6—C1—C2—C3 | 0.8 (3) | S1—O3—C7—C12 | −112.06 (16) |
Br1—C1—C2—C3 | −179.02 (14) | C12—C7—C8—C9 | 0.9 (3) |
C1—C2—C3—C4 | −0.5 (3) | O3—C7—C8—C9 | 176.11 (16) |
C2—C3—C4—C5 | 0.0 (3) | C7—C8—C9—C10 | −1.1 (3) |
C2—C3—C4—S1 | −179.30 (14) | C8—C9—C10—C11 | 0.6 (3) |
O1—S1—C4—C5 | −162.54 (14) | C8—C9—C10—Cl2 | −178.65 (14) |
O2—S1—C4—C5 | −27.52 (17) | C9—C10—C11—C12 | 0.2 (3) |
O3—S1—C4—C5 | 81.53 (15) | Cl2—C10—C11—C12 | 179.41 (13) |
O1—S1—C4—C3 | 16.82 (17) | C10—C11—C12—C7 | −0.4 (3) |
O2—S1—C4—C3 | 151.84 (15) | C10—C11—C12—Cl1 | −179.04 (13) |
O3—S1—C4—C3 | −99.11 (15) | C8—C7—C12—C11 | −0.1 (3) |
C3—C4—C5—C6 | 0.1 (3) | O3—C7—C12—C11 | −175.43 (15) |
S1—C4—C5—C6 | 179.47 (14) | C8—C7—C12—Cl1 | 178.50 (14) |
C4—C5—C6—C1 | 0.2 (3) | O3—C7—C12—Cl1 | 3.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 0.94 (3) | 2.51 (3) | 2.919 (2) | 106.2 (18) |
C2—H2···O3i | 0.95 (3) | 2.58 (3) | 3.482 (2) | 160 (2) |
C11—H11···O1ii | 0.91 (2) | 2.52 (2) | 3.390 (2) | 160 (2) |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C12H7BrCl2O3S |
Mr | 382.05 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 90 |
a, b, c (Å) | 7.2955 (10), 8.3955 (11), 11.1251 (15) |
α, β, γ (°) | 95.737 (8), 98.645 (7), 96.231 (8) |
V (Å3) | 664.98 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.65 |
Crystal size (mm) | 0.17 × 0.10 × 0.07 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer with Oxford Cryostream |
Absorption correction | Multi-scan (HKL SCALEPACK; Otwinowski & Minor 1997) |
Tmin, Tmax | 0.576, 0.784 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18308, 4745, 4091 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.777 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.074, 1.05 |
No. of reflections | 4745 |
No. of parameters | 200 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.42, −0.76 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 0.94 (3) | 2.51 (3) | 2.919 (2) | 106.2 (18) |
C2—H2···O3i | 0.95 (3) | 2.58 (3) | 3.482 (2) | 160 (2) |
C11—H11···O1ii | 0.91 (2) | 2.52 (2) | 3.390 (2) | 160 (2) |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z. |
Acknowledgements
NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].
References
Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611–619. CrossRef PubMed CAS Web of Science Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press. Google Scholar
Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139–149. CrossRef CAS PubMed Web of Science Google Scholar
Narayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res. 11, 2701–2716. CrossRef CAS PubMed Web of Science Google Scholar
Nonius, B. V. (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett. 311, 155–160. CrossRef PubMed CAS Web of Science Google Scholar
Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J. Chromatogr. 595, 103–111. CrossRef PubMed CAS Web of Science Google Scholar
Vembu, N., Sparkes, H. A. & Howard, J. A. K. (2007). Acta Cryst. E63, o3543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1–7. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al.,1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure is shown in Fig. 1.
The C4–S–O3–C7 torsion angle of 65.86 (14)° corresponds to +synclinal conformation; as expected the dihedral angle between the mean planes of the 2,4-dichlorophenyl and bromobenzene rings of 55.18 (5)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Vembu et al. 2007 and references cited therein).
The crystal structure exhibits weak intermolecular C—H···O interactions (Desiraju & Steiner, 1999) (Table 1). There are two face to face π···π aromatic stacking interactions. The coordinates of Cg1···Cg1 (-x, 1 - y, 1 - z) at 4.037Å are α = 0.00, β = 24.13, γ = 24.13, the two perpendicular distances involving the aromatic rings being 3.684 Å. The coordinates of Cg2···Cg2 (-1 - x, -y, 2 - z) at 3.751Å are α = 0.03, β = 26.79, γ = 26.79, the two perpendicular distances involving the aromatic rings being 3.349 Å. Cg1 is the centroid of the aromatic ring formed by the atoms C1, C2, C3, C4, C5 & C6, Cg2 is the centroid of the aromatic ring formed by the atoms C7, C8, C9, C10, C11 & C12. α is the dihedral angle between the planes of the two aromatic rings, β is the angle of the aromatic ring formed by the atoms C1—C6 through the aromatic ring formed by the atoms C7—C12, γ is the angle of the vector through the centroids of the planes of the two aromatic rings and normal to the plane of the aromatic ring formed by C7—C12 (Spek, 2009).