organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro­phenyl 4-bromo­benzene­sulfonate

aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: vembu57@yahoo.com

(Received 8 October 2009; accepted 19 October 2009; online 23 October 2009)

In the title mol­ecule, C12H7BrCl2O3S, the dihedral angle between the two benzene rings is 55.18 (5)°. The notable inter­molecular contacts include C—H⋯O and ππ inter­actions [centroid–centroid distances = 4.037 (1) and 3.349 (1) Å].

Related literature

For a detailed account of the mol­ecular and supra­molecular architectures of aromatic sulfonates, see Vembu et al. (2007[Vembu, N., Sparkes, H. A. & Howard, J. A. K. (2007). Acta Cryst. E63, o3543.]). For a general background to aromatic sulfonates, see: Yachi et al. (1989[Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1-7.]): Spungin et al. (1992[Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett. 311, 155-160.]); Tharakan et al. (1992[Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J. Chromatogr. 595, 103-111.]); Alford et al. (1991[Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611-619.]); Jiang et al. (1990[Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139-149.]); Narayanan & Krakow (1983[Narayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res. 11, 2701-2716.]). For the criteria to describe C—H⋯O inter­actions, see: Desiraju & Steiner, (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.]) and for the classification of aromatic stacking inter­actions, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7BrCl2O3S

  • Mr = 382.05

  • Triclinic, [P \overline 1]

  • a = 7.2955 (10) Å

  • b = 8.3955 (11) Å

  • c = 11.1251 (15) Å

  • α = 95.737 (8)°

  • β = 98.645 (7)°

  • γ = 96.231 (8)°

  • V = 664.98 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.65 mm−1

  • T = 90 K

  • 0.17 × 0.10 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer with Oxford Cryostream

  • Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.576, Tmax = 0.784

  • 18308 measured reflections

  • 4745 independent reflections

  • 4091 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.074

  • S = 1.05

  • 4745 reflections

  • 200 parameters

  • All H-atom parameters refined

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.95 (3) 2.58 (3) 3.482 (2) 160 (2)
C11—H11⋯O1ii 0.91 (2) 2.52 (2) 3.390 (2) 160 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z.

Data collection: COLLECT (Nonius, 2000[Nonius, B. V. (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al.,1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure is shown in Fig. 1.

The C4–S–O3–C7 torsion angle of 65.86 (14)° corresponds to +synclinal conformation; as expected the dihedral angle between the mean planes of the 2,4-dichlorophenyl and bromobenzene rings of 55.18 (5)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Vembu et al. 2007 and references cited therein).

The crystal structure exhibits weak intermolecular C—H···O interactions (Desiraju & Steiner, 1999) (Table 1). There are two face to face π···π aromatic stacking interactions. The coordinates of Cg1···Cg1 (-x, 1 - y, 1 - z) at 4.037Å are α = 0.00, β = 24.13, γ = 24.13, the two perpendicular distances involving the aromatic rings being 3.684 Å. The coordinates of Cg2···Cg2 (-1 - x, -y, 2 - z) at 3.751Å are α = 0.03, β = 26.79, γ = 26.79, the two perpendicular distances involving the aromatic rings being 3.349 Å. Cg1 is the centroid of the aromatic ring formed by the atoms C1, C2, C3, C4, C5 & C6, Cg2 is the centroid of the aromatic ring formed by the atoms C7, C8, C9, C10, C11 & C12. α is the dihedral angle between the planes of the two aromatic rings, β is the angle of the aromatic ring formed by the atoms C1—C6 through the aromatic ring formed by the atoms C7—C12, γ is the angle of the vector through the centroids of the planes of the two aromatic rings and normal to the plane of the aromatic ring formed by C7—C12 (Spek, 2009).

Related literature top

For a detailed account of the molecular and supramolecular architectures of aromatic sulfonates, see Vembu et al. (2007). For a general background to aromatic sulfonates, see: Yachi et al. (1989): Spungin et al. (1992); Tharakan et al. (1992); Alford et al. (1991); Jiang et al. (1990); Narayanan & Krakow (1983). For the criteria to describe C—H···O interactions, see: Desiraju & Steiner, (1999) and for the classification of aromatic stacking interactions, see: Spek (2009).

Experimental top

4-Bromobenzenesulfonyl chloride (10 mmol), dissolved in acetone (10 ml), was added dropwise to 2,4-dichlorophenol (10 mmol) in aqueous NaOH (8 ml, 5%) with constant stirring. The precipitate (6.5 mmol, yield 65%) was filtered and recrystallized from aqueous ethanol.

Refinement top

All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined.

Structure description top

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992; Tharakan et al.,1992; Alford et al., 1991; Jiang et al., 1990; Narayanan & Krakow, 1983). An X-ray study of the title compound was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure is shown in Fig. 1.

The C4–S–O3–C7 torsion angle of 65.86 (14)° corresponds to +synclinal conformation; as expected the dihedral angle between the mean planes of the 2,4-dichlorophenyl and bromobenzene rings of 55.18 (5)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Vembu et al. 2007 and references cited therein).

The crystal structure exhibits weak intermolecular C—H···O interactions (Desiraju & Steiner, 1999) (Table 1). There are two face to face π···π aromatic stacking interactions. The coordinates of Cg1···Cg1 (-x, 1 - y, 1 - z) at 4.037Å are α = 0.00, β = 24.13, γ = 24.13, the two perpendicular distances involving the aromatic rings being 3.684 Å. The coordinates of Cg2···Cg2 (-1 - x, -y, 2 - z) at 3.751Å are α = 0.03, β = 26.79, γ = 26.79, the two perpendicular distances involving the aromatic rings being 3.349 Å. Cg1 is the centroid of the aromatic ring formed by the atoms C1, C2, C3, C4, C5 & C6, Cg2 is the centroid of the aromatic ring formed by the atoms C7, C8, C9, C10, C11 & C12. α is the dihedral angle between the planes of the two aromatic rings, β is the angle of the aromatic ring formed by the atoms C1—C6 through the aromatic ring formed by the atoms C7—C12, γ is the angle of the vector through the centroids of the planes of the two aromatic rings and normal to the plane of the aromatic ring formed by C7—C12 (Spek, 2009).

For a detailed account of the molecular and supramolecular architectures of aromatic sulfonates, see Vembu et al. (2007). For a general background to aromatic sulfonates, see: Yachi et al. (1989): Spungin et al. (1992); Tharakan et al. (1992); Alford et al. (1991); Jiang et al. (1990); Narayanan & Krakow (1983). For the criteria to describe C—H···O interactions, see: Desiraju & Steiner, (1999) and for the classification of aromatic stacking interactions, see: Spek (2009).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.
2,4-Dichlorophenyl 4-bromobenzenesulfonate top
Crystal data top
C12H7BrCl2O3SZ = 2
Mr = 382.05F(000) = 376
Triclinic, P1Dx = 1.908 Mg m3
Hall symbol: -P 1Melting point: 398 K
a = 7.2955 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3955 (11) ÅCell parameters from 4109 reflections
c = 11.1251 (15) Åθ = 2.5–33.6°
α = 95.737 (8)°µ = 3.65 mm1
β = 98.645 (7)°T = 90 K
γ = 96.231 (8)°Prism, colorless
V = 664.98 (15) Å30.17 × 0.10 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer with Oxford Cryostream
4745 independent reflections
Radiation source: fine-focus sealed tube4091 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scans with κ offsetsθmax = 33.5°, θmin = 2.9°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
h = 1011
Tmin = 0.576, Tmax = 0.784k = 1212
18308 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.074All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.6284P]
where P = (Fo2 + 2Fc2)/3
4745 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
C12H7BrCl2O3Sγ = 96.231 (8)°
Mr = 382.05V = 664.98 (15) Å3
Triclinic, P1Z = 2
a = 7.2955 (10) ÅMo Kα radiation
b = 8.3955 (11) ŵ = 3.65 mm1
c = 11.1251 (15) ÅT = 90 K
α = 95.737 (8)°0.17 × 0.10 × 0.07 mm
β = 98.645 (7)°
Data collection top
Nonius KappaCCD
diffractometer with Oxford Cryostream
4745 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
4091 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.784Rint = 0.025
18308 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.074All H-atom parameters refined
S = 1.05Δρmax = 0.42 e Å3
4745 reflectionsΔρmin = 0.76 e Å3
200 parameters
Special details top

Geometry. All su's (except the su in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell su's are taken into account individually in the estimation of su's in distances, angles and torsion angles; correlations between su's in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell su's is used for estimating su's involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.64701 (3)0.17437 (2)0.428948 (18)0.01931 (6)
Cl10.02233 (6)0.03498 (5)0.69619 (4)0.01838 (9)
Cl20.36290 (6)0.08990 (6)1.13426 (5)0.02035 (10)
S10.14495 (6)0.51012 (5)0.77797 (4)0.01350 (8)
O10.26445 (19)0.59769 (16)0.88237 (13)0.0180 (3)
O20.00437 (19)0.58520 (17)0.70897 (13)0.0193 (3)
O30.02261 (17)0.36107 (15)0.82191 (12)0.0136 (2)
C10.4977 (2)0.2748 (2)0.53130 (17)0.0139 (3)
C20.5760 (2)0.3301 (2)0.65200 (18)0.0161 (3)
C30.4664 (3)0.4019 (2)0.72856 (17)0.0154 (3)
C40.2818 (2)0.4176 (2)0.68176 (16)0.0129 (3)
C50.2045 (2)0.3631 (2)0.56058 (17)0.0150 (3)
C60.3137 (3)0.2911 (2)0.48443 (17)0.0159 (3)
C70.1140 (2)0.2578 (2)0.89617 (16)0.0125 (3)
C80.1862 (3)0.3101 (2)1.01796 (17)0.0157 (3)
C90.2658 (3)0.2032 (2)1.09162 (17)0.0169 (3)
C100.2681 (2)0.0454 (2)1.04188 (17)0.0148 (3)
C110.1949 (2)0.0090 (2)0.92034 (17)0.0145 (3)
C120.1179 (2)0.0995 (2)0.84746 (16)0.0129 (3)
H20.702 (4)0.319 (3)0.682 (2)0.023 (6)*
H30.511 (4)0.442 (3)0.811 (2)0.021 (6)*
H50.075 (4)0.373 (3)0.533 (2)0.027 (7)*
H60.266 (3)0.253 (3)0.405 (2)0.020 (6)*
H80.177 (3)0.419 (3)1.050 (2)0.019 (6)*
H90.316 (4)0.241 (3)1.174 (3)0.025 (7)*
H110.201 (3)0.113 (3)0.889 (2)0.014 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02086 (9)0.01838 (10)0.02144 (10)0.00506 (7)0.01007 (7)0.00289 (7)
Cl10.0235 (2)0.0159 (2)0.01452 (19)0.00065 (16)0.00259 (16)0.00138 (15)
Cl20.01585 (19)0.0236 (2)0.0246 (2)0.00547 (16)0.00383 (16)0.01331 (18)
S10.01517 (18)0.01071 (18)0.01559 (19)0.00379 (14)0.00343 (15)0.00253 (14)
O10.0223 (6)0.0124 (6)0.0186 (6)0.0010 (5)0.0036 (5)0.0010 (5)
O20.0210 (6)0.0179 (7)0.0223 (7)0.0101 (5)0.0054 (5)0.0071 (5)
O30.0125 (5)0.0132 (6)0.0159 (6)0.0027 (4)0.0023 (4)0.0044 (5)
C10.0160 (7)0.0112 (7)0.0168 (8)0.0032 (6)0.0072 (6)0.0034 (6)
C20.0134 (7)0.0167 (8)0.0192 (8)0.0030 (6)0.0024 (6)0.0054 (7)
C30.0146 (7)0.0158 (8)0.0150 (8)0.0010 (6)0.0002 (6)0.0024 (6)
C40.0139 (7)0.0104 (7)0.0151 (8)0.0026 (6)0.0035 (6)0.0021 (6)
C50.0136 (7)0.0158 (8)0.0151 (8)0.0022 (6)0.0002 (6)0.0024 (6)
C60.0167 (8)0.0167 (8)0.0138 (8)0.0010 (6)0.0013 (6)0.0029 (6)
C70.0123 (7)0.0120 (7)0.0146 (7)0.0025 (6)0.0043 (6)0.0035 (6)
C80.0185 (8)0.0141 (8)0.0145 (8)0.0021 (6)0.0031 (6)0.0008 (6)
C90.0166 (8)0.0188 (9)0.0148 (8)0.0004 (7)0.0017 (6)0.0028 (7)
C100.0110 (7)0.0163 (8)0.0191 (8)0.0032 (6)0.0038 (6)0.0088 (6)
C110.0136 (7)0.0124 (8)0.0192 (8)0.0033 (6)0.0053 (6)0.0040 (6)
C120.0123 (7)0.0137 (8)0.0128 (7)0.0010 (6)0.0035 (6)0.0005 (6)
Geometric parameters (Å, º) top
Br1—C11.8909 (17)C4—C51.392 (2)
Cl1—C121.7306 (18)C5—C61.387 (3)
Cl2—C101.7361 (18)C5—H50.96 (3)
S1—O11.4267 (15)C6—H60.91 (3)
S1—O21.4279 (14)C7—C81.386 (2)
S1—O31.6163 (13)C7—C121.390 (2)
S1—C41.7520 (18)C8—C91.390 (3)
O3—C71.407 (2)C8—H80.96 (3)
C1—C21.390 (3)C9—C101.387 (3)
C1—C61.391 (3)C9—H90.94 (3)
C2—C31.391 (3)C10—C111.389 (3)
C2—H20.95 (3)C11—C121.387 (2)
C3—C41.394 (2)C11—H110.91 (2)
C3—H30.94 (3)
O1—S1—O2120.61 (9)C5—C6—C1119.11 (17)
O1—S1—O3108.71 (8)C5—C6—H6120.8 (16)
O2—S1—O3102.04 (8)C1—C6—H6120.0 (16)
O1—S1—C4109.04 (8)C8—C7—C12120.82 (16)
O2—S1—C4110.81 (9)C8—C7—O3120.41 (16)
O3—S1—C4104.20 (8)C12—C7—O3118.60 (16)
C7—O3—S1119.14 (11)C7—C8—C9119.49 (17)
C2—C1—C6121.93 (16)C7—C8—H8119.2 (15)
C2—C1—Br1118.56 (13)C9—C8—H8121.3 (15)
C6—C1—Br1119.51 (14)C10—C9—C8119.06 (17)
C1—C2—C3119.00 (16)C10—C9—H9122.2 (16)
C1—C2—H2120.7 (16)C8—C9—H9118.7 (17)
C3—C2—H2120.3 (16)C9—C10—C11122.05 (17)
C2—C3—C4119.06 (17)C9—C10—Cl2119.28 (15)
C2—C3—H3123.1 (16)C11—C10—Cl2118.66 (14)
C4—C3—H3117.8 (16)C12—C11—C10118.29 (17)
C5—C4—C3121.71 (16)C12—C11—H11121.4 (15)
C5—C4—S1119.34 (13)C10—C11—H11120.2 (15)
C3—C4—S1118.94 (14)C11—C12—C7120.28 (16)
C6—C5—C4119.18 (16)C11—C12—Cl1119.48 (14)
C6—C5—H5121.9 (17)C7—C12—Cl1120.22 (14)
C4—C5—H5118.9 (16)
O1—S1—O3—C750.31 (14)C2—C1—C6—C50.6 (3)
O2—S1—O3—C7178.76 (13)Br1—C1—C6—C5179.19 (14)
C4—S1—O3—C765.86 (14)S1—O3—C7—C872.63 (19)
C6—C1—C2—C30.8 (3)S1—O3—C7—C12112.06 (16)
Br1—C1—C2—C3179.02 (14)C12—C7—C8—C90.9 (3)
C1—C2—C3—C40.5 (3)O3—C7—C8—C9176.11 (16)
C2—C3—C4—C50.0 (3)C7—C8—C9—C101.1 (3)
C2—C3—C4—S1179.30 (14)C8—C9—C10—C110.6 (3)
O1—S1—C4—C5162.54 (14)C8—C9—C10—Cl2178.65 (14)
O2—S1—C4—C527.52 (17)C9—C10—C11—C120.2 (3)
O3—S1—C4—C581.53 (15)Cl2—C10—C11—C12179.41 (13)
O1—S1—C4—C316.82 (17)C10—C11—C12—C70.4 (3)
O2—S1—C4—C3151.84 (15)C10—C11—C12—Cl1179.04 (13)
O3—S1—C4—C399.11 (15)C8—C7—C12—C110.1 (3)
C3—C4—C5—C60.1 (3)O3—C7—C12—C11175.43 (15)
S1—C4—C5—C6179.47 (14)C8—C7—C12—Cl1178.50 (14)
C4—C5—C6—C10.2 (3)O3—C7—C12—Cl13.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.94 (3)2.51 (3)2.919 (2)106.2 (18)
C2—H2···O3i0.95 (3)2.58 (3)3.482 (2)160 (2)
C11—H11···O1ii0.91 (2)2.52 (2)3.390 (2)160 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H7BrCl2O3S
Mr382.05
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)7.2955 (10), 8.3955 (11), 11.1251 (15)
α, β, γ (°)95.737 (8), 98.645 (7), 96.231 (8)
V3)664.98 (15)
Z2
Radiation typeMo Kα
µ (mm1)3.65
Crystal size (mm)0.17 × 0.10 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer with Oxford Cryostream
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
Tmin, Tmax0.576, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
18308, 4745, 4091
Rint0.025
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.074, 1.05
No. of reflections4745
No. of parameters200
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.42, 0.76

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.94 (3)2.51 (3)2.919 (2)106.2 (18)
C2—H2···O3i0.95 (3)2.58 (3)3.482 (2)160 (2)
C11—H11···O1ii0.91 (2)2.52 (2)3.390 (2)160 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.
 

Acknowledgements

NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].

References

First citationAlford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611–619.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationJiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139–149.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNarayanan, C. S. & Krakow, J. S. (1983). Nucleic Acids Res. 11, 2701–2716.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius, B. V. (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett. 311, 155–160.  CrossRef PubMed CAS Web of Science Google Scholar
First citationTharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J. Chromatogr. 595, 103–111.  CrossRef PubMed CAS Web of Science Google Scholar
First citationVembu, N., Sparkes, H. A. & Howard, J. A. K. (2007). Acta Cryst. E63, o3543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1–7.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds