organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Bromo­benz­yl)-3-iso­propyl­benz­imid­azolin-2-one

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and cDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
*Correspondence e-mail: chhbsia@chem.iitb.ac.in

(Received 8 October 2009; accepted 19 October 2009; online 23 October 2009)

In the structure of the title compound, C17H17BrN2O, the central phenyl and imidazol-2-one rings are coplanar (dihedral angle between planes of 0.73 (11)°). The angles subtended by the substituents on the N atoms of the imidazol-2-one ring range from 109.71 (14)° to 128.53 (15) due to steric hindrance of these substituents with the phenyl H atoms. The carbonyl O and Br both make two weak C—H⋯O and C—H⋯Br inter­actions with two adjacent mol­ecules, thus forming an three-dimensional array.

Related literature

For benzimidazolones as precursors to important pharmacologically active compounds, see: Biagi et al. (2001[Biagi, G., Calderone, V., Giorgi, I., Livi, O., Scartoni, V., Baragatti, B. & Martinotti, E. (2001). Farmaco, 56, 841-849.]). For the benzimidazolones as sources of stable carbenes, see: Albéniz et al. (2002[Albéniz, A. C., Espinet, P., Manrique, R. & Pérez-Mateo, A. (2002). Angew. Chem. Int. Ed. 41, 2363-2366.]); Denk et al. (2001[Denk, M. K., Rodezno, J. M., Gupta, S. & Lough, L. J. (2001). J. Organomet. Chem. 617, 242-253.]); Jarrar & Fataftah (1977[Jarrar, A. A. & Fataftah, Z. (1977). Tetrahedron, 33, 2127-2129.]); Manjare et al. (2009[Manjare, S. T., Singh, H. B. & Butcher, R. J. (2009). Acta Cryst. E65, o2640.]); Çetinkaya et al. (1998[Çetinkaya, B., Çetinkaya, E., Chamizo, J. A., Hitchcock, P. B., Jasaim, H. A., Küçükbay, H. & Lappert, M. F. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2047-2054.]). For the preparation, see: Kuhn et al. (1996[Kuhn, N., Fawzi, R., Kratz, T., Steimann, M. & Henkel, G. (1996). Phosphorus Sulfur Silicon, 112, 107-119.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17BrN2O

  • Mr = 345.24

  • Monoclinic, P 21 /n

  • a = 12.1417 (3) Å

  • b = 10.1146 (3) Å

  • c = 12.2008 (3) Å

  • β = 95.763 (1)°

  • V = 1490.79 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.76 mm−1

  • T = 203 K

  • 0.38 × 0.24 × 0.17 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.631, Tmax = 0.746

  • 26524 measured reflections

  • 3771 independent reflections

  • 3039 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 0.99

  • 3771 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.94 2.52 3.439 (2) 167
C9—H9⋯O1ii 0.94 2.50 3.374 (2) 154
C10—H10⋯Br1iii 0.94 3.05 3.6457 (18) 123
C15—H15⋯Br1iv 0.99 3.11 3.7941 (18) 128
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There has been much interest in benzimidazolones as precursors to important pharmacologically active compounds (Biagi et al. 2001) and also as precursors to stable carbene derivatives (Albéniz et al.2002; Çetinkaya et al. 1998; Denk et al. 2001; Manjare et al. 2009). We report the structure of the title compound, C17H17BrN2O, 1, prepared as part of a study of the reactivity of related selenones (Manjare et al. 2009) and with a view to stabilizing a monomeric selenium dioxide derivative. The product was obtained as the minor product from the selenone by reaction with H2O2 (Fig. 3).

As shown in Figure 1, the central phenyl and imidazol-2-one rings are coplanar (dihedral angle between planes of 0.73 (11)°). The benzoimidazol-2-one moiety is thus a planar system (r.m.s. deviation from plane of 0.0069 (1) Å). The phenyl ring of the substituent bromobenzyl group makes a dihedral angle of 80.64 (3) with this plane. In addition the C atoms attached to N1 and N2 are also coplanar with this ring. Within the imidazole ring the C—N and C—C distances range from 1.380 (2) to 1.402 (2) and thus are significantly shorter than single bonds. However, the bonds from N1 and N2 to the C atoms of the substituents are 1.468 (2) and 1.448 (2) which are in the range found for C—N single bonds. Thus the bond lengths in this ring are similar to those found in structures of dihydro-imidazol-2-one derivatives (Denk et al., 2001). The angles subtended by the substituents on the N's of the imidazol-2-one ring range from 109.71 (14)° to 128.53 (15) due to steric hindrance of these substituents with the phenyl H atoms.

The carbonyl O and Br both make two weak C–H···O and C–H···Br interactions with two adjacent molecules thus forming an 3-D array.

Related literature top

For benzimidazolones as precursors to important pharmacologically active compounds, see: Biagi et al. (2001). For the benzimidazolones as sources of stable carbenes, see: Albéniz et al. (2002); Denk et al. (2001); Jarrar & Fataftah (1977); Manjare et al. (2009); Çetinkaya et al. (1998). For the preparation, see: Kuhn et al. (1996).

Experimental top

The title compound was obtained by the addition of hydrogen peroxide (0.21 ml, 1.82 mmol) to the solution of selenone 2 (0.15 g, 0.37 mmol; Kuhn et al., 1996) in chloroform (15 ml) at room temperature. Sodium sulfate was added to the reaction mixture then the solution was filtered and evaporated. Compound 1 was obtained as minor product along with the compound 3 (Scheme 1).

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 and 0.99 Å and Uiso(H) = 1.2Ueq(C) [1.5 Ueq(CH3).

Structure description top

There has been much interest in benzimidazolones as precursors to important pharmacologically active compounds (Biagi et al. 2001) and also as precursors to stable carbene derivatives (Albéniz et al.2002; Çetinkaya et al. 1998; Denk et al. 2001; Manjare et al. 2009). We report the structure of the title compound, C17H17BrN2O, 1, prepared as part of a study of the reactivity of related selenones (Manjare et al. 2009) and with a view to stabilizing a monomeric selenium dioxide derivative. The product was obtained as the minor product from the selenone by reaction with H2O2 (Fig. 3).

As shown in Figure 1, the central phenyl and imidazol-2-one rings are coplanar (dihedral angle between planes of 0.73 (11)°). The benzoimidazol-2-one moiety is thus a planar system (r.m.s. deviation from plane of 0.0069 (1) Å). The phenyl ring of the substituent bromobenzyl group makes a dihedral angle of 80.64 (3) with this plane. In addition the C atoms attached to N1 and N2 are also coplanar with this ring. Within the imidazole ring the C—N and C—C distances range from 1.380 (2) to 1.402 (2) and thus are significantly shorter than single bonds. However, the bonds from N1 and N2 to the C atoms of the substituents are 1.468 (2) and 1.448 (2) which are in the range found for C—N single bonds. Thus the bond lengths in this ring are similar to those found in structures of dihydro-imidazol-2-one derivatives (Denk et al., 2001). The angles subtended by the substituents on the N's of the imidazol-2-one ring range from 109.71 (14)° to 128.53 (15) due to steric hindrance of these substituents with the phenyl H atoms.

The carbonyl O and Br both make two weak C–H···O and C–H···Br interactions with two adjacent molecules thus forming an 3-D array.

For benzimidazolones as precursors to important pharmacologically active compounds, see: Biagi et al. (2001). For the benzimidazolones as sources of stable carbenes, see: Albéniz et al. (2002); Denk et al. (2001); Jarrar & Fataftah (1977); Manjare et al. (2009); Çetinkaya et al. (1998). For the preparation, see: Kuhn et al. (1996).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of C17H17BrN2O the showing the atom numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing for C17H17BrN2O viewed down the c axis. The C—H···O interactions are shown by dashed lines.
1-(2-Bromobenzyl)-3-isopropylbenzimidazolin-2-one top
Crystal data top
C17H17BrN2OF(000) = 704
Mr = 345.24Dx = 1.538 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9903 reflections
a = 12.1417 (3) Åθ = 2.6–28.4°
b = 10.1146 (3) ŵ = 2.76 mm1
c = 12.2008 (3) ÅT = 203 K
β = 95.763 (1)°Prism, colorless
V = 1490.79 (7) Å30.38 × 0.24 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3771 independent reflections
Radiation source: fine-focus sealed tube3039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 28.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1416
Tmin = 0.631, Tmax = 0.746k = 1213
26524 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0471P)2]
where P = (Fo2 + 2Fc2)/3
3771 reflections(Δ/σ)max = 0.003
192 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C17H17BrN2OV = 1490.79 (7) Å3
Mr = 345.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1417 (3) ŵ = 2.76 mm1
b = 10.1146 (3) ÅT = 203 K
c = 12.2008 (3) Å0.38 × 0.24 × 0.17 mm
β = 95.763 (1)°
Data collection top
Bruker APEXII
diffractometer
3771 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3039 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.746Rint = 0.072
26524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 0.99Δρmax = 0.75 e Å3
3771 reflectionsΔρmin = 0.42 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.037577 (14)0.582633 (17)0.249055 (14)0.01832 (8)
O10.61458 (11)0.41194 (12)0.14806 (11)0.0195 (3)
N10.66453 (12)0.58527 (14)0.26835 (12)0.0145 (3)
N20.48981 (12)0.52025 (15)0.25058 (12)0.0141 (3)
C10.95844 (14)0.46626 (18)0.33498 (14)0.0139 (4)
C21.01703 (15)0.37113 (19)0.39732 (14)0.0178 (4)
H21.09420.36420.39660.021*
C30.96085 (16)0.28571 (18)0.46116 (15)0.0199 (4)
H30.99960.22030.50410.024*
C40.84746 (16)0.29766 (19)0.46107 (15)0.0200 (4)
H40.80920.24020.50450.024*
C50.78948 (15)0.39346 (17)0.39770 (15)0.0172 (4)
H50.71240.40020.39890.021*
C60.84372 (14)0.47977 (17)0.33241 (14)0.0140 (4)
C70.78243 (15)0.58255 (17)0.25879 (15)0.0159 (4)
H7A0.81350.67000.27770.019*
H7B0.79450.56420.18200.019*
C80.60923 (14)0.66479 (17)0.33738 (13)0.0137 (4)
C90.64598 (14)0.76802 (17)0.40571 (14)0.0164 (4)
H90.72050.79480.41260.020*
C100.56824 (15)0.83047 (18)0.46372 (15)0.0186 (4)
H100.59050.90150.51050.022*
C110.45850 (16)0.79053 (18)0.45424 (15)0.0191 (4)
H110.40830.83390.49580.023*
C120.42093 (15)0.68751 (17)0.38446 (14)0.0167 (4)
H120.34620.66170.37710.020*
C130.49817 (14)0.62453 (18)0.32639 (13)0.0137 (4)
C140.59197 (14)0.49597 (17)0.21446 (14)0.0147 (4)
C150.39093 (14)0.44538 (17)0.20836 (15)0.0154 (4)
H150.41660.36910.16680.019*
C160.31692 (15)0.52811 (19)0.12750 (16)0.0207 (4)
H16A0.35690.55170.06540.031*
H16B0.29510.60790.16380.031*
H16C0.25150.47760.10170.031*
C170.32998 (17)0.38940 (19)0.30151 (16)0.0214 (4)
H17A0.38260.34660.35530.032*
H17B0.27550.32540.27180.032*
H17C0.29320.46060.33670.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01045 (11)0.02172 (12)0.02339 (12)0.00227 (7)0.00473 (7)0.00112 (7)
O10.0122 (7)0.0221 (7)0.0245 (7)0.0023 (5)0.0027 (5)0.0052 (5)
N10.0074 (7)0.0186 (8)0.0172 (7)0.0002 (6)0.0004 (6)0.0008 (6)
N20.0073 (7)0.0155 (8)0.0195 (8)0.0003 (6)0.0009 (6)0.0027 (6)
C10.0107 (9)0.0150 (9)0.0160 (8)0.0022 (7)0.0015 (7)0.0036 (7)
C20.0112 (9)0.0207 (10)0.0212 (9)0.0027 (8)0.0002 (7)0.0020 (8)
C30.0187 (10)0.0192 (10)0.0212 (9)0.0063 (8)0.0010 (8)0.0013 (7)
C40.0209 (10)0.0196 (10)0.0195 (9)0.0021 (8)0.0027 (7)0.0027 (7)
C50.0102 (9)0.0216 (10)0.0197 (9)0.0006 (7)0.0014 (7)0.0010 (7)
C60.0104 (9)0.0144 (9)0.0170 (9)0.0003 (7)0.0001 (7)0.0029 (7)
C70.0080 (9)0.0197 (10)0.0200 (9)0.0001 (7)0.0010 (7)0.0023 (7)
C80.0097 (8)0.0154 (9)0.0159 (8)0.0029 (7)0.0007 (6)0.0050 (7)
C90.0125 (9)0.0166 (9)0.0193 (9)0.0035 (7)0.0028 (7)0.0037 (7)
C100.0189 (10)0.0164 (9)0.0197 (9)0.0019 (8)0.0016 (7)0.0020 (7)
C110.0179 (10)0.0181 (10)0.0215 (9)0.0044 (8)0.0030 (7)0.0006 (7)
C120.0091 (8)0.0183 (9)0.0226 (9)0.0003 (7)0.0011 (7)0.0003 (7)
C130.0133 (9)0.0121 (9)0.0152 (8)0.0003 (7)0.0003 (7)0.0015 (7)
C140.0109 (9)0.0154 (9)0.0176 (9)0.0024 (7)0.0001 (7)0.0029 (7)
C150.0089 (9)0.0151 (9)0.0222 (9)0.0018 (7)0.0010 (7)0.0025 (7)
C160.0138 (9)0.0215 (10)0.0258 (10)0.0002 (8)0.0024 (8)0.0001 (8)
C170.0178 (10)0.0178 (10)0.0293 (10)0.0032 (8)0.0056 (8)0.0015 (8)
Geometric parameters (Å, º) top
Br1—C11.9000 (18)C7—H7B0.9800
O1—C141.224 (2)C8—C91.382 (2)
N1—C141.381 (2)C8—C131.402 (2)
N1—C81.386 (2)C9—C101.387 (3)
N1—C71.448 (2)C9—H90.9400
N2—C141.380 (2)C10—C111.386 (3)
N2—C131.400 (2)C10—H100.9400
N2—C151.468 (2)C11—C121.393 (3)
C1—C21.379 (3)C11—H110.9400
C1—C61.397 (2)C12—C131.386 (2)
C2—C31.388 (3)C12—H120.9400
C2—H20.9400C15—C161.518 (3)
C3—C41.382 (3)C15—C171.526 (2)
C3—H30.9400C15—H150.9900
C4—C51.387 (3)C16—H16A0.9700
C4—H40.9400C16—H16B0.9700
C5—C61.391 (2)C16—H16C0.9700
C5—H50.9400C17—H17A0.9700
C6—C71.519 (2)C17—H17B0.9700
C7—H7A0.9800C17—H17C0.9700
C14—N1—C8110.12 (14)C10—C9—H9121.4
C14—N1—C7122.53 (15)C11—C10—C9121.48 (17)
C8—N1—C7127.09 (15)C11—C10—H10119.3
C14—N2—C13109.71 (14)C9—C10—H10119.3
C14—N2—C15121.73 (14)C10—C11—C12121.47 (17)
C13—N2—C15128.53 (15)C10—C11—H11119.3
C2—C1—C6122.59 (16)C12—C11—H11119.3
C2—C1—Br1118.37 (13)C13—C12—C11117.35 (16)
C6—C1—Br1119.04 (14)C13—C12—H12121.3
C1—C2—C3119.25 (17)C11—C12—H12121.3
C1—C2—H2120.4C12—C13—N2132.55 (16)
C3—C2—H2120.4C12—C13—C8120.75 (16)
C4—C3—C2119.41 (17)N2—C13—C8106.70 (15)
C4—C3—H3120.3O1—C14—N2127.12 (17)
C2—C3—H3120.3O1—C14—N1126.46 (16)
C3—C4—C5120.77 (17)N2—C14—N1106.41 (15)
C3—C4—H4119.6N2—C15—C16110.71 (14)
C5—C4—H4119.6N2—C15—C17111.76 (15)
C4—C5—C6120.97 (17)C16—C15—C17112.89 (15)
C4—C5—H5119.5N2—C15—H15107.0
C6—C5—H5119.5C16—C15—H15107.0
C5—C6—C1117.00 (16)C17—C15—H15107.0
C5—C6—C7122.41 (16)C15—C16—H16A109.5
C1—C6—C7120.56 (16)C15—C16—H16B109.5
N1—C7—C6113.26 (14)H16A—C16—H16B109.5
N1—C7—H7A108.9C15—C16—H16C109.5
C6—C7—H7A108.9H16A—C16—H16C109.5
N1—C7—H7B108.9H16B—C16—H16C109.5
C6—C7—H7B108.9C15—C17—H17A109.5
H7A—C7—H7B107.7C15—C17—H17B109.5
C9—C8—N1131.17 (16)H17A—C17—H17B109.5
C9—C8—C13121.76 (16)C15—C17—H17C109.5
N1—C8—C13107.05 (15)H17A—C17—H17C109.5
C8—C9—C10117.18 (16)H17B—C17—H17C109.5
C8—C9—H9121.4
C6—C1—C2—C30.6 (3)C10—C11—C12—C131.3 (3)
Br1—C1—C2—C3179.61 (13)C11—C12—C13—N2179.69 (18)
C1—C2—C3—C40.0 (3)C11—C12—C13—C80.6 (3)
C2—C3—C4—C50.3 (3)C14—N2—C13—C12178.84 (18)
C3—C4—C5—C60.2 (3)C15—N2—C13—C120.7 (3)
C4—C5—C6—C10.8 (3)C14—N2—C13—C80.3 (2)
C4—C5—C6—C7177.72 (17)C15—N2—C13—C8178.43 (16)
C2—C1—C6—C51.0 (3)C9—C8—C13—C120.1 (3)
Br1—C1—C6—C5179.22 (13)N1—C8—C13—C12178.99 (15)
C2—C1—C6—C7177.50 (16)C9—C8—C13—N2179.17 (15)
Br1—C1—C6—C72.3 (2)N1—C8—C13—N20.29 (18)
C14—N1—C7—C680.5 (2)C13—N2—C14—O1179.94 (17)
C8—N1—C7—C693.0 (2)C15—N2—C14—O11.7 (3)
C5—C6—C7—N13.0 (2)C13—N2—C14—N10.22 (19)
C1—C6—C7—N1178.55 (15)C15—N2—C14—N1178.48 (14)
C14—N1—C8—C9178.90 (17)C8—N1—C14—O1179.87 (17)
C7—N1—C8—C96.9 (3)C7—N1—C14—O15.4 (3)
C14—N1—C8—C130.17 (19)C8—N1—C14—N20.03 (19)
C7—N1—C8—C13174.36 (15)C7—N1—C14—N2174.48 (15)
N1—C8—C9—C10178.79 (17)C14—N2—C15—C16104.36 (18)
C13—C8—C9—C100.2 (3)C13—N2—C15—C1673.5 (2)
C8—C9—C10—C110.4 (3)C14—N2—C15—C17128.87 (17)
C9—C10—C11—C121.2 (3)C13—N2—C15—C1753.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.942.523.439 (2)167
C9—H9···O1ii0.942.503.374 (2)154
C10—H10···Br1iii0.943.053.6457 (18)123
C15—H15···Br1iv0.993.113.7941 (18)128
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+3/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H17BrN2O
Mr345.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)203
a, b, c (Å)12.1417 (3), 10.1146 (3), 12.2008 (3)
β (°) 95.763 (1)
V3)1490.79 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.38 × 0.24 × 0.17
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.631, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
26524, 3771, 3039
Rint0.072
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 0.99
No. of reflections3771
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.42

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.942.523.439 (2)167.0
C9—H9···O1ii0.942.503.374 (2)154.4
C10—H10···Br1iii0.943.053.6457 (18)123.0
C15—H15···Br1iv0.993.113.7941 (18)127.8
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+3/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.
 

Acknowledgements

HBS is grateful to the Department of Science and Technology (DST) for the award of a Ramanna Fellowship. STM thanks the CSIR for a JRF/SRF fellowship. RJB wishes to acknowledge the United States–India Educational Foundation for a Fulbright–Nehru Teaching Fellowship for the 2009–2010 academic year.

References

First citationAlbéniz, A. C., Espinet, P., Manrique, R. & Pérez-Mateo, A. (2002). Angew. Chem. Int. Ed. 41, 2363–2366.  Google Scholar
First citationBiagi, G., Calderone, V., Giorgi, I., Livi, O., Scartoni, V., Baragatti, B. & Martinotti, E. (2001). Farmaco, 56, 841–849.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇetinkaya, B., Çetinkaya, E., Chamizo, J. A., Hitchcock, P. B., Jasaim, H. A., Küçükbay, H. & Lappert, M. F. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2047–2054.  Google Scholar
First citationDenk, M. K., Rodezno, J. M., Gupta, S. & Lough, L. J. (2001). J. Organomet. Chem. 617, 242–253.  Web of Science CSD CrossRef Google Scholar
First citationJarrar, A. A. & Fataftah, Z. (1977). Tetrahedron, 33, 2127–2129.  CrossRef CAS Web of Science Google Scholar
First citationKuhn, N., Fawzi, R., Kratz, T., Steimann, M. & Henkel, G. (1996). Phosphorus Sulfur Silicon, 112, 107–119.  CrossRef Web of Science Google Scholar
First citationManjare, S. T., Singh, H. B. & Butcher, R. J. (2009). Acta Cryst. E65, o2640.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds