metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(E)-4-bromo-2-(eth­oxy­imino­meth­yl)phenolato-κ2N,O1]copper(II)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@126.com

(Received 9 October 2009; accepted 25 October 2009; online 31 October 2009)

The title compound, [Cu(C9H9BrNO2)2], is a centrosymmetric mononuclear copper(II) complex. The Cu atom is four-coordinated in a trans-CuN2O2 square-planar geometry by two phenolate O and two oxime N atoms from two symmetry-related N,O-bidentate (E)-4-bromo-2-(ethoxy­imino­meth­yl)phenolate oxime-type ligands. An inter­esting feature of the crystal structure is the centrosymmetric inter­molecular Cu⋯O inter­action [3.382 (1) Å], which establishes an infinite chain structure along the b axis.

Related literature

For background to oximes, see: Cervera et al. (1997[Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395-401.]); Chaudhuri, (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]); Costes et al. (1998[Costes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. (1998). J. Chem. Soc. Dalton Trans. pp. 1307-1314.]); Kukushkin et al. (1996[Kukushkin, V. Yu., Tudela, D. & Pombeiro, A. J. L. (1996). Coord. Chem. Rev. 156, 333-362.]). For related structures, see: Dong et al. (2009[Dong, W.-K., Tong, J.-F., An, L.-L., Wu, J.-C. & Yao, J. (2009). Acta Cryst. E65, m945.]). For the synthesis, see: Wang et al. (2008[Wang, J.-S., Jiang, Y.-L., Dong, W.-K., Xu, L. & Kong, A.-P. (2008). Acta Cryst. E64, o1794.]); Zhao et al. (2009[Zhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H9BrNO2)2]

  • Mr = 549.70

  • Monoclinic, P 21 /n

  • a = 10.0682 (13) Å

  • b = 5.4998 (8) Å

  • c = 17.990 (2) Å

  • β = 96.846 (1)°

  • V = 989.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.17 mm−1

  • T = 298 K

  • 0.41 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.226, Tmax = 0.531

  • 4684 measured reflections

  • 1741 independent reflections

  • 1356 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.01

  • 1741 reflections

  • 125 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oximes are a traditional class of chelating ligands widely used in coordination and analytical chemistry and extraction metallurgy (Kukushkin et al., 1996; Chaudhuri, 2003). Due to their marked ability to from bridges between metal ions, oxime-containing ligands may be used to obtain polynuclear compounds in the field of molecular magnetism and supramolecular chemistry (Cervera et al., 1997; Costes et al., 1998). As a continuation of our study (Wang et al., 2008; Zhao et al., 2009) on oxime-type compounds, the title mononuclear copper(II) complex (Fig. 1), is reported in this paper.

The title compound is a centrosymmetric mononuclear copper(II) complex. The copper(II) ion, lying on the inversion centre, is four-coordinated in a trans-CuN2O2 square-planar geometry, with two phenolate O and two oxime N atoms from two N,O-bidentate oxime-type ligands. All bond lengths and angles are within normal ranges. The Cu—O and Cu—N bond lengths are 1.880 (2) Å and 1.994 (3) Å, respectively, which are comparable to those observed in a similar Schiff base copper(II) complex (Dong et al., 2009).

The interesting feature of the crystal structure, as shown in Fig. 2, is the centrosymmetric intermolecular Cu···O [3.382 (1) Å] interaction, which forms an infinite one-dimensional chain structure along the b axis.

Related literature top

For background to oximes, see: Cervera et al. (1997); Chaudhuri, (2003); Costes et al. (1998); Kukushkin et al. (1996). For related structures, see: Dong et al. (2009). For the synthesis, see: Wang et al. (2008); Zhao et al. (2009).

Experimental top

(E)-5-Bromo-2-hydroxybenzaldehyde O-ethyl oxime (HL) was synthesized according to the analogous method (Wang et al., 2008; Zhao et al., 2009). A blue solution of copper(II) acetate monohydrate (1.7 mg, 0.008 mmol) in methanol (3 ml) was added dropwise to a solution of HL (2.1 mg, 0.009 mmol) in methanol (4 ml) at room temperature. The color of the mixing solution turned to yellow immediately, then turned to brown slowly and was allowed to stand at room temperature for several days. With evaporation of the solvent, dark-brown needle-like single crystals suitable for X-ray crystallographic analysis were obtained. IR: ν C=N, 1608 cm-1, ν Ar—O, 1242 cm-1, ν Cu—N, 445 cm-1 and ν Cu—O, 424 cm-1. Yield, 47.1%. Anal. Calcd. for C18H18Br2CuN2O4: C, 39.33; H, 3.30; Cu, 11.56; N, 5.10. Found: C, 39.20; H, 3.38; Cu, 11.62; N, 4.87.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.97 Å (CH2) and 0.93 Å (CH). The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.

Structure description top

Oximes are a traditional class of chelating ligands widely used in coordination and analytical chemistry and extraction metallurgy (Kukushkin et al., 1996; Chaudhuri, 2003). Due to their marked ability to from bridges between metal ions, oxime-containing ligands may be used to obtain polynuclear compounds in the field of molecular magnetism and supramolecular chemistry (Cervera et al., 1997; Costes et al., 1998). As a continuation of our study (Wang et al., 2008; Zhao et al., 2009) on oxime-type compounds, the title mononuclear copper(II) complex (Fig. 1), is reported in this paper.

The title compound is a centrosymmetric mononuclear copper(II) complex. The copper(II) ion, lying on the inversion centre, is four-coordinated in a trans-CuN2O2 square-planar geometry, with two phenolate O and two oxime N atoms from two N,O-bidentate oxime-type ligands. All bond lengths and angles are within normal ranges. The Cu—O and Cu—N bond lengths are 1.880 (2) Å and 1.994 (3) Å, respectively, which are comparable to those observed in a similar Schiff base copper(II) complex (Dong et al., 2009).

The interesting feature of the crystal structure, as shown in Fig. 2, is the centrosymmetric intermolecular Cu···O [3.382 (1) Å] interaction, which forms an infinite one-dimensional chain structure along the b axis.

For background to oximes, see: Cervera et al. (1997); Chaudhuri, (2003); Costes et al. (1998); Kukushkin et al. (1996). For related structures, see: Dong et al. (2009). For the synthesis, see: Wang et al. (2008); Zhao et al. (2009).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme [Symmetry codes: -x + 1,-y + 1,-z + 1]. Unlabelled atoms are related to their labelled counterparts by the inversion operation. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for the title compound, showing an infinite one-dimensional chain structure formed by short Cu···O contact viewed along the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
Bis[(E)-4-bromo-2-(ethoxyiminomethyl)phenolato- κ2N,O1]copper(II) top
Crystal data top
[Cu(C9H9BrNO2)2]F(000) = 542
Mr = 549.70Dx = 1.846 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1900 reflections
a = 10.0682 (13) Åθ = 2.2–25.1°
b = 5.4998 (8) ŵ = 5.17 mm1
c = 17.990 (2) ÅT = 298 K
β = 96.846 (1)°Needle-shaped, black
V = 989.1 (2) Å30.41 × 0.21 × 0.14 mm
Z = 2
Data collection top
Bruker SMART 1000
diffractometer
1741 independent reflections
Radiation source: fine-focus sealed tube1356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 117
Tmin = 0.226, Tmax = 0.531k = 66
4684 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.0351P]
where P = (Fo2 + 2Fc2)/3
1741 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu(C9H9BrNO2)2]V = 989.1 (2) Å3
Mr = 549.70Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.0682 (13) ŵ = 5.17 mm1
b = 5.4998 (8) ÅT = 298 K
c = 17.990 (2) Å0.41 × 0.21 × 0.14 mm
β = 96.846 (1)°
Data collection top
Bruker SMART 1000
diffractometer
1741 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1356 reflections with I > 2σ(I)
Tmin = 0.226, Tmax = 0.531Rint = 0.041
4684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
1741 reflectionsΔρmin = 0.55 e Å3
125 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.04220 (19)
Br10.06756 (4)0.09316 (8)0.22617 (2)0.06250 (18)
N10.5039 (2)0.2157 (5)0.43148 (14)0.0399 (6)
O10.3323 (2)0.5904 (4)0.45038 (14)0.0573 (7)
O20.6088 (2)0.0414 (4)0.44170 (12)0.0463 (6)
C10.4064 (3)0.1341 (6)0.38559 (17)0.0408 (8)
H10.41860.01430.36250.049*
C20.2803 (3)0.2546 (6)0.36725 (16)0.0374 (7)
C30.2497 (3)0.4733 (6)0.40143 (19)0.0441 (8)
C40.1206 (3)0.5724 (7)0.3809 (2)0.0550 (10)
H40.09770.71710.40290.066*
C50.0289 (3)0.4618 (7)0.3298 (2)0.0508 (9)
H50.05520.53070.31760.061*
C60.0613 (3)0.2477 (6)0.29645 (18)0.0420 (8)
C70.1851 (3)0.1453 (6)0.31422 (18)0.0439 (8)
H70.20620.00180.29090.053*
C80.7242 (3)0.1298 (7)0.4114 (2)0.0545 (10)
H8A0.74880.28940.43150.065*
H8B0.70700.14160.35730.065*
C90.8336 (4)0.0500 (8)0.4337 (2)0.0677 (12)
H9A0.84770.06260.48730.102*
H9B0.91460.00340.41560.102*
H9C0.80850.20610.41260.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0333 (3)0.0474 (4)0.0453 (4)0.0111 (3)0.0021 (2)0.0040 (3)
Br10.0549 (3)0.0701 (3)0.0589 (3)0.00385 (19)0.00800 (18)0.00911 (19)
N10.0340 (14)0.0437 (17)0.0429 (16)0.0140 (12)0.0079 (12)0.0043 (13)
O10.0416 (13)0.0519 (16)0.0738 (17)0.0155 (11)0.0115 (12)0.0206 (13)
O20.0385 (12)0.0467 (14)0.0542 (14)0.0163 (11)0.0083 (10)0.0033 (11)
C10.0415 (18)0.040 (2)0.0425 (19)0.0084 (15)0.0117 (15)0.0025 (15)
C20.0345 (16)0.042 (2)0.0368 (18)0.0042 (14)0.0067 (13)0.0007 (14)
C30.0372 (18)0.045 (2)0.050 (2)0.0038 (16)0.0046 (15)0.0013 (17)
C40.0411 (19)0.050 (2)0.070 (3)0.0150 (17)0.0076 (17)0.0134 (19)
C50.0367 (18)0.050 (2)0.064 (2)0.0097 (16)0.0010 (16)0.0011 (19)
C60.0356 (17)0.051 (2)0.0390 (18)0.0034 (15)0.0003 (14)0.0010 (16)
C70.049 (2)0.043 (2)0.0414 (19)0.0039 (16)0.0126 (16)0.0029 (16)
C80.0437 (19)0.069 (3)0.053 (2)0.0164 (18)0.0150 (17)0.0045 (19)
C90.045 (2)0.081 (3)0.079 (3)0.025 (2)0.016 (2)0.013 (2)
Geometric parameters (Å, º) top
Cu1—O1i1.880 (2)C3—C41.417 (4)
Cu1—O11.880 (2)C4—C51.366 (5)
Cu1—N1i1.994 (3)C4—H40.9300
Cu1—N11.994 (3)C5—C61.378 (5)
Br1—C61.901 (3)C5—H50.9300
N1—C11.285 (4)C6—C71.370 (4)
N1—O21.422 (3)C7—H70.9300
O1—C31.307 (4)C8—C91.499 (5)
O2—C81.427 (4)C8—H8A0.9700
C1—C21.435 (4)C8—H8B0.9700
C1—H10.9300C9—H9A0.9600
C2—C31.402 (4)C9—H9B0.9600
C2—C71.405 (4)C9—H9C0.9600
O1i—Cu1—O1180.000 (1)C3—C4—H4119.0
O1i—Cu1—N1i89.80 (10)C4—C5—C6119.8 (3)
O1—Cu1—N1i90.20 (10)C4—C5—H5120.1
O1i—Cu1—N190.20 (10)C6—C5—H5120.1
O1—Cu1—N189.80 (10)C7—C6—C5120.4 (3)
N1i—Cu1—N1180.0C7—C6—Br1120.0 (3)
C1—N1—O2110.2 (2)C5—C6—Br1119.6 (2)
C1—N1—Cu1127.0 (2)C6—C7—C2120.7 (3)
O2—N1—Cu1121.18 (18)C6—C7—H7119.6
C3—O1—Cu1130.8 (2)C2—C7—H7119.6
N1—O2—C8110.3 (2)O2—C8—C9106.1 (3)
N1—C1—C2125.0 (3)O2—C8—H8A110.5
N1—C1—H1117.5C9—C8—H8A110.5
C2—C1—H1117.5O2—C8—H8B110.5
C3—C2—C7119.8 (3)C9—C8—H8B110.5
C3—C2—C1122.0 (3)H8A—C8—H8B108.7
C7—C2—C1118.2 (3)C8—C9—H9A109.5
O1—C3—C2124.3 (3)C8—C9—H9B109.5
O1—C3—C4118.4 (3)H9A—C9—H9B109.5
C2—C3—C4117.3 (3)C8—C9—H9C109.5
C5—C4—C3122.0 (3)H9A—C9—H9C109.5
C5—C4—H4119.0H9B—C9—H9C109.5
O1i—Cu1—N1—C1168.7 (3)C7—C2—C3—O1178.8 (3)
O1—Cu1—N1—C111.3 (3)C1—C2—C3—O12.3 (5)
O1i—Cu1—N1—O24.8 (2)C7—C2—C3—C40.9 (5)
O1—Cu1—N1—O2175.2 (2)C1—C2—C3—C4178.0 (3)
N1i—Cu1—O1—C3168.8 (3)O1—C3—C4—C5179.6 (3)
N1—Cu1—O1—C311.2 (3)C2—C3—C4—C50.2 (6)
C1—N1—O2—C8113.3 (3)C3—C4—C5—C60.2 (6)
Cu1—N1—O2—C880.4 (3)C4—C5—C6—C70.0 (5)
O2—N1—C1—C2174.8 (3)C4—C5—C6—Br1179.3 (3)
Cu1—N1—C1—C29.4 (5)C5—C6—C7—C20.7 (5)
N1—C1—C2—C32.9 (5)Br1—C6—C7—C2178.6 (2)
N1—C1—C2—C7178.1 (3)C3—C2—C7—C61.2 (5)
Cu1—O1—C3—C29.0 (5)C1—C2—C7—C6177.7 (3)
Cu1—O1—C3—C4171.2 (3)N1—O2—C8—C9172.7 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C9H9BrNO2)2]
Mr549.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.0682 (13), 5.4998 (8), 17.990 (2)
β (°) 96.846 (1)
V3)989.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.17
Crystal size (mm)0.41 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART 1000
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.226, 0.531
No. of measured, independent and
observed [I > 2σ(I)] reflections
4684, 1741, 1356
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.01
No. of reflections1741
No. of parameters125
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.55

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (0904–11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationCervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395–401.  CSD CrossRef Web of Science Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationCostes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. (1998). J. Chem. Soc. Dalton Trans. pp. 1307–1314.  Web of Science CSD CrossRef Google Scholar
First citationDong, W.-K., Tong, J.-F., An, L.-L., Wu, J.-C. & Yao, J. (2009). Acta Cryst. E65, m945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKukushkin, V. Yu., Tudela, D. & Pombeiro, A. J. L. (1996). Coord. Chem. Rev. 156, 333–362.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, J.-S., Jiang, Y.-L., Dong, W.-K., Xu, L. & Kong, A.-P. (2008). Acta Cryst. E64, o1794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds