organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­droxy­benzyl alcohol–phenanthroline (1/1)

aInstitut für Organische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and bInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 20 October 2009; accepted 27 October 2009; online 31 October 2009)

Crystals of the title compound, C12H8N2·C7H8O2, were obtained during cocrystallization experiments of a compound with two hydrogen-bond donors (2-hydroxy­benzyl alcohol) with another compound containing two hydrogen-bond acceptors (phenanthroline). Unexpectedly, the two mol­ecules do not form dimers with two O—H⋯N hydrogen bonds connecting the two mol­ecules. However, one of the hydr­oxy groups forms a bifurcated hydrogen bond to both phenanthroline N atoms, whereas the other hydr­oxy group forms an O—H⋯O hydrogen bond to a symmetry-equivalent 2-hydroxy­benzyl alcohol mol­ecule. In addition, the crystal packing is stabilized by ππ inter­actions between the two phenanthroline ring systems, with a centroid–centroid distance of 3.570  Å.

Related literature

For co-crystallization experiments, see: Ton & Bolte (2005[Ton, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406-o1407.]); Tutughamiarso et al. (2009[Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574-o578.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8N2·C7H8O2

  • Mr = 304.34

  • Monoclinic, P 21 /n

  • a = 7.264 (1) Å

  • b = 20.256 (3) Å

  • c = 11.082 (2) Å

  • β = 109.13 (3)°

  • V = 1540.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.60 × 0.50 × 0.30 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: none

  • 20425 measured reflections

  • 2885 independent reflections

  • 2518 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.099

  • S = 1.06

  • 2885 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.93 1.69 2.6125 (14) 168
O2—H2O⋯N1ii 0.87 2.29 3.0390 (15) 144
O2—H2O⋯N2ii 0.87 2.15 2.8663 (14) 140
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The aim of our research is the cocrystallization of two small organic compounds in order to examine the hydrogen bonds formed between hydrogen-bond acceptors and hydrogen-bond donors (Ton & Bolte, 2005; Tutughamiarso et al., 2009). In this work, we wanted to cocrystallize phenanthroline and 2-hydroxybenzyl alcohol. However, the cocrystal, we obtained, did not show the expected AA/DD pattern, i.e. with two O—H···N hydrogen bonds connecting the two molecules to a dimer. However, one of the hydroxy groups forms a bifurcated hydrogen bonds to both phenanthroline N atoms, whereas the other hydroxy group forms a O—H···O hydrogen bond to a symmetry equivalent 2-hydroxybenzyl alcohol molecule. In addition, the crystal packing is stabilized by ππ interactions between two phenanthroline ring systems forming a centrosymmetric dimer with a centroid···centroid distance of 3.570 Å. The second molecule is generated by the symmetry operation 1 - x, -y, 1 - z.

Related literature top

For co-crystallization experiments, see: Ton & Bolte (2005); Tutughamiarso et al. (2009).

Experimental top

The complex consisting of 1,10-phenanthroline and 2-hydroxybenzylenealcohol was obtained by to the method of isothermal vaporization. 1,10-phenanthroline and 2-hydroxybenzylenealcohol were added in an equimolar ratio (10 mmol) into a flask. Afterwards chloroform was added dropwise until the substances were completely dissolved. Then, the flask was sealed and set aside at room temperature. After two weeks crystals of the complex were obtained.

Refinement top

Hydrogen atoms were located in a difference Fourier map but those bonded to C were included in calculated positions [C—H = 0.93 - 0.99 Å] and refined as riding [Uiso(H) = 1.2Ueq(C)]. H atoms bonded to O were freely refined.

Structure description top

The aim of our research is the cocrystallization of two small organic compounds in order to examine the hydrogen bonds formed between hydrogen-bond acceptors and hydrogen-bond donors (Ton & Bolte, 2005; Tutughamiarso et al., 2009). In this work, we wanted to cocrystallize phenanthroline and 2-hydroxybenzyl alcohol. However, the cocrystal, we obtained, did not show the expected AA/DD pattern, i.e. with two O—H···N hydrogen bonds connecting the two molecules to a dimer. However, one of the hydroxy groups forms a bifurcated hydrogen bonds to both phenanthroline N atoms, whereas the other hydroxy group forms a O—H···O hydrogen bond to a symmetry equivalent 2-hydroxybenzyl alcohol molecule. In addition, the crystal packing is stabilized by ππ interactions between two phenanthroline ring systems forming a centrosymmetric dimer with a centroid···centroid distance of 3.570 Å. The second molecule is generated by the symmetry operation 1 - x, -y, 1 - z.

For co-crystallization experiments, see: Ton & Bolte (2005); Tutughamiarso et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound viewed along the c axis. Hydrogen atoms bonded to C omitted. Hydrogen bonds shown as dashed lines.
2-Hydroxybenzyl alcohol–phenanthroline (1/1) top
Crystal data top
C12H8N2·C7H8O2F(000) = 640
Mr = 304.34Dx = 1.312 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11957 reflections
a = 7.264 (1) Åθ = 3.0–25.0°
b = 20.256 (3) ŵ = 0.09 mm1
c = 11.082 (2) ÅT = 173 K
β = 109.13 (3)°Block, colourless
V = 1540.6 (4) Å30.60 × 0.50 × 0.30 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
2518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.7°, θmin = 2.8°
ω scansh = 88
20425 measured reflectionsk = 2424
2885 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2526P]
where P = (Fo2 + 2Fc2)/3
2885 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H8N2·C7H8O2V = 1540.6 (4) Å3
Mr = 304.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.264 (1) ŵ = 0.09 mm1
b = 20.256 (3) ÅT = 173 K
c = 11.082 (2) Å0.60 × 0.50 × 0.30 mm
β = 109.13 (3)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2518 reflections with I > 2σ(I)
20425 measured reflectionsRint = 0.036
2885 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
2885 reflectionsΔρmin = 0.21 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.68091 (17)0.08958 (5)0.49625 (11)0.0357 (3)
N20.89787 (17)0.03273 (5)0.72184 (11)0.0371 (3)
C10.72912 (18)0.02470 (6)0.49544 (13)0.0330 (3)
C20.5740 (2)0.11589 (7)0.38637 (14)0.0418 (3)
H20.54030.16120.38600.050*
C30.5071 (2)0.08146 (8)0.27060 (15)0.0478 (4)
H30.43030.10290.19450.057*
C40.5553 (2)0.01591 (8)0.26982 (15)0.0477 (4)
H40.51140.00870.19270.057*
C50.6694 (2)0.01440 (7)0.38328 (14)0.0398 (3)
C60.7275 (2)0.08270 (7)0.38997 (17)0.0480 (4)
H60.68810.10880.31460.058*
C70.8361 (2)0.11014 (7)0.50050 (18)0.0497 (4)
H70.87330.15520.50170.060*
C80.8973 (2)0.07275 (6)0.61706 (15)0.0406 (3)
C91.0057 (2)0.10017 (7)0.73516 (18)0.0513 (4)
H91.04370.14520.74020.062*
C101.0568 (2)0.06217 (8)0.84299 (18)0.0526 (4)
H101.12850.08030.92380.063*
C111.0001 (2)0.00436 (7)0.83078 (15)0.0459 (4)
H111.03760.03080.90570.055*
C120.84467 (19)0.00511 (6)0.61498 (13)0.0342 (3)
O10.96385 (12)0.19916 (5)0.97867 (8)0.0343 (2)
H1O0.90400.18230.89700.051*
O21.25869 (12)0.33737 (4)1.24759 (8)0.0299 (2)
H2O1.27500.36991.20060.045*
C131.16077 (16)0.20302 (6)1.00360 (11)0.0254 (3)
C141.26346 (16)0.24552 (6)1.10244 (11)0.0252 (3)
C151.46410 (17)0.25043 (6)1.13083 (12)0.0300 (3)
H151.53630.27851.19840.036*
C161.56203 (18)0.21500 (6)1.06219 (13)0.0333 (3)
H161.69920.21921.08290.040*
C171.45820 (18)0.17387 (6)0.96403 (12)0.0325 (3)
H171.52390.15010.91640.039*
C181.25733 (18)0.16711 (6)0.93473 (12)0.0293 (3)
H181.18630.13820.86820.035*
C191.15095 (17)0.28505 (6)1.17128 (11)0.0297 (3)
H19A1.03330.30371.10710.036*
H19B1.10690.25481.22650.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0415 (6)0.0277 (5)0.0471 (7)0.0037 (5)0.0269 (5)0.0039 (5)
N20.0471 (7)0.0279 (6)0.0456 (7)0.0038 (5)0.0277 (5)0.0007 (5)
C10.0352 (7)0.0267 (6)0.0486 (8)0.0082 (5)0.0295 (6)0.0070 (5)
C20.0450 (8)0.0384 (8)0.0490 (8)0.0024 (6)0.0248 (7)0.0022 (6)
C30.0454 (8)0.0580 (10)0.0469 (8)0.0112 (7)0.0244 (7)0.0013 (7)
C40.0474 (8)0.0588 (10)0.0470 (8)0.0211 (7)0.0293 (7)0.0152 (7)
C50.0415 (7)0.0374 (7)0.0552 (9)0.0164 (6)0.0356 (7)0.0155 (6)
C60.0556 (9)0.0368 (8)0.0695 (11)0.0192 (7)0.0449 (9)0.0242 (7)
C70.0539 (9)0.0247 (7)0.0892 (13)0.0095 (6)0.0490 (9)0.0169 (7)
C80.0388 (7)0.0240 (6)0.0719 (10)0.0049 (5)0.0357 (7)0.0035 (6)
C90.0459 (8)0.0278 (7)0.0909 (13)0.0019 (6)0.0371 (9)0.0081 (8)
C100.0484 (9)0.0439 (8)0.0702 (11)0.0004 (7)0.0257 (8)0.0165 (8)
C110.0534 (9)0.0402 (8)0.0509 (9)0.0057 (6)0.0263 (7)0.0027 (6)
C120.0365 (7)0.0250 (6)0.0538 (8)0.0066 (5)0.0321 (6)0.0056 (5)
O10.0208 (4)0.0510 (6)0.0310 (5)0.0017 (4)0.0083 (3)0.0068 (4)
O20.0376 (5)0.0240 (4)0.0281 (4)0.0015 (3)0.0108 (4)0.0035 (3)
C130.0224 (5)0.0288 (6)0.0254 (6)0.0018 (4)0.0084 (4)0.0058 (5)
C140.0248 (6)0.0253 (6)0.0264 (6)0.0022 (4)0.0094 (5)0.0061 (5)
C150.0254 (6)0.0291 (6)0.0349 (6)0.0022 (5)0.0090 (5)0.0024 (5)
C160.0232 (6)0.0341 (7)0.0446 (7)0.0017 (5)0.0138 (5)0.0059 (6)
C170.0323 (6)0.0325 (6)0.0380 (7)0.0079 (5)0.0188 (5)0.0061 (5)
C180.0304 (6)0.0299 (6)0.0283 (6)0.0024 (5)0.0105 (5)0.0016 (5)
C190.0263 (6)0.0326 (6)0.0311 (6)0.0018 (5)0.0104 (5)0.0024 (5)
Geometric parameters (Å, º) top
N1—C21.3230 (19)C10—C111.403 (2)
N1—C11.3609 (17)C10—H100.9500
N2—C111.3235 (19)C11—H110.9500
N2—C121.3562 (17)O1—C131.3674 (14)
C1—C51.4166 (19)O1—H1O0.9310
C1—C121.448 (2)O2—C191.4203 (15)
C2—C31.400 (2)O2—H2O0.8714
C2—H20.9500C13—C181.3980 (17)
C3—C41.374 (2)C13—C141.4006 (17)
C3—H30.9500C14—C151.3901 (17)
C4—C51.401 (2)C14—C191.5165 (16)
C4—H40.9500C15—C161.3979 (18)
C5—C61.441 (2)C15—H150.9500
C6—C71.341 (2)C16—C171.3816 (19)
C6—H60.9500C16—H160.9500
C7—C81.437 (2)C17—C181.3938 (18)
C7—H70.9500C17—H170.9500
C8—C91.402 (2)C18—H180.9500
C8—C121.4206 (18)C19—H19A0.9900
C9—C101.366 (3)C19—H19B0.9900
C9—H90.9500
C2—N1—C1117.24 (12)N2—C11—C10124.36 (15)
C11—N2—C12117.73 (12)N2—C11—H11117.8
N1—C1—C5122.70 (13)C10—C11—H11117.8
N1—C1—C12118.04 (12)N2—C12—C8122.19 (13)
C5—C1—C12119.26 (12)N2—C12—C1118.51 (11)
N1—C2—C3124.43 (14)C8—C12—C1119.30 (12)
N1—C2—H2117.8C13—O1—H1O110.0
C3—C2—H2117.8C19—O2—H2O111.4
C4—C3—C2118.34 (15)O1—C13—C18122.60 (11)
C4—C3—H3120.8O1—C13—C14116.55 (10)
C2—C3—H3120.8C18—C13—C14120.85 (11)
C3—C4—C5119.67 (14)C15—C14—C13118.11 (11)
C3—C4—H4120.2C15—C14—C19123.11 (11)
C5—C4—H4120.2C13—C14—C19118.77 (10)
C4—C5—C1117.62 (13)C14—C15—C16121.53 (12)
C4—C5—C6122.97 (14)C14—C15—H15119.2
C1—C5—C6119.42 (15)C16—C15—H15119.2
C7—C6—C5121.31 (14)C17—C16—C15119.61 (11)
C7—C6—H6119.3C17—C16—H16120.2
C5—C6—H6119.3C15—C16—H16120.2
C6—C7—C8121.26 (13)C16—C17—C18120.15 (11)
C6—C7—H7119.4C16—C17—H17119.9
C8—C7—H7119.4C18—C17—H17119.9
C9—C8—C12117.59 (14)C17—C18—C13119.73 (12)
C9—C8—C7122.96 (14)C17—C18—H18120.1
C12—C8—C7119.44 (14)C13—C18—H18120.1
C10—C9—C8120.10 (14)O2—C19—C14114.26 (10)
C10—C9—H9119.9O2—C19—H19A108.7
C8—C9—H9119.9C14—C19—H19A108.7
C9—C10—C11118.03 (16)O2—C19—H19B108.7
C9—C10—H10121.0C14—C19—H19B108.7
C11—C10—H10121.0H19A—C19—H19B107.6
C2—N1—C1—C50.08 (18)C11—N2—C12—C1178.66 (11)
C2—N1—C1—C12179.49 (11)C9—C8—C12—N20.86 (18)
C1—N1—C2—C30.4 (2)C7—C8—C12—N2179.91 (11)
N1—C2—C3—C40.2 (2)C9—C8—C12—C1178.65 (11)
C2—C3—C4—C50.3 (2)C7—C8—C12—C10.40 (18)
C3—C4—C5—C10.55 (19)N1—C1—C12—N20.52 (17)
C3—C4—C5—C6179.40 (13)C5—C1—C12—N2178.92 (10)
N1—C1—C5—C40.37 (18)N1—C1—C12—C8179.96 (11)
C12—C1—C5—C4179.04 (11)C5—C1—C12—C80.61 (17)
N1—C1—C5—C6179.58 (11)O1—C13—C14—C15179.69 (10)
C12—C1—C5—C61.02 (17)C18—C13—C14—C150.63 (17)
C4—C5—C6—C7179.66 (13)O1—C13—C14—C191.68 (15)
C1—C5—C6—C70.40 (19)C18—C13—C14—C19178.01 (11)
C5—C6—C7—C80.6 (2)C13—C14—C15—C160.95 (17)
C6—C7—C8—C9177.95 (13)C19—C14—C15—C16177.62 (11)
C6—C7—C8—C121.0 (2)C14—C15—C16—C170.24 (19)
C12—C8—C9—C100.1 (2)C15—C16—C17—C180.81 (18)
C7—C8—C9—C10178.94 (13)C16—C17—C18—C131.12 (18)
C8—C9—C10—C110.9 (2)O1—C13—C18—C17179.27 (11)
C12—N2—C11—C100.1 (2)C14—C13—C18—C170.39 (17)
C9—C10—C11—N21.0 (2)C15—C14—C19—O212.73 (16)
C11—N2—C12—C80.86 (18)C13—C14—C19—O2165.84 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.931.692.6125 (14)168
O2—H2O···N1ii0.872.293.0390 (15)144
O2—H2O···N2ii0.872.152.8663 (14)140
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H8N2·C7H8O2
Mr304.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.264 (1), 20.256 (3), 11.082 (2)
β (°) 109.13 (3)
V3)1540.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.50 × 0.30
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20425, 2885, 2518
Rint0.036
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.06
No. of reflections2885
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.21

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.931.692.6125 (14)168.4
O2—H2O···N1ii0.872.293.0390 (15)143.7
O2—H2O···N2ii0.872.152.8663 (14)139.7
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
 

References

First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTon, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406–o1407.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds