organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Phenyl­prop-2-yn­yl)pyrrolidinium chloride

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: leileitaotao6666@163.com

(Received 9 September 2009; accepted 15 October 2009; online 23 October 2009)

The title compound C13H16N+·Cl, an achiral salt, was synthesized by a three-component coupling reaction in the presence of copper(I) iodide. The configuration of five-membered ring is close to an envelope conformation. The crystal structure is stabilized by inter­molecular C—H⋯Cl and N—H⋯Cl inter­actions.

Related literature

For the preparation of the title compound, see: Nilsson et al. (1992[Nilsson, B. M., Vargas, H. M., Ringdahl, B. & Hacksell, U. (1992). J. Med. Chem. 35, 285-294.]). For background to propargylamines, see: Dyker (1999[Dyker, G. (1999). Angew. Chem Int. Ed. 38, 1698-1712.]); Hattori et al. (1993[Hattori, K., Miyata, M. & Yamamoto, H. (1993). J. Am. Chem. Soc. 115, 1151-1152.]); Konishi et al. (1990[Konishi, M., Ohkuma, H., Tsuno, T., Oki, T., VanDuyne, G. D. & Clardy, J. (1990). J. Am. Chem. Soc. 112, 3715-3716.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N+·Cl

  • Mr = 221.72

  • Monoclinic, P 21 /c

  • a = 10.9504 (2) Å

  • b = 11.3553 (3) Å

  • c = 11.1951 (2) Å

  • β = 117.008 (1)°

  • V = 1240.24 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10560 measured reflections

  • 2432 independent reflections

  • 2353 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.158

  • S = 1.27

  • 2432 reflections

  • 139 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cl1i 0.93 2.81 3.726 (3) 170
C9—H9A⋯Cl1ii 0.97 2.61 3.547 (3) 164
N1—H1⋯Cl1iii 0.868 (10) 2.161 (10) 3.028 (2) 178 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) -x+1, -y+2, -z+1; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Propargylamines, which have interesting biological activities, are compounds of versatile and important synthetic intermediates. (Konishi et al., 1990; Hattori et al., 1993; Dyker et al.,1999). The reaction which a three component procedure between terminal alkynes, formaldehyde and secondary amines and give rise to the propargylamines with rapid reaction rates by the introduction of copper (I) catalysts.

Here we report the crystal structure of the title compound (Fig. 1). The length of the N1—C9 bond in this compound was found to be 1.479 Å, which is approximate with the length of ordinary N—C single bond (1.47 Å).The four carbon atoms of the five–member ring are not in the same plane, the torsion angle is 14.92 °. It was close to the envelope conformation.

X-ray analysis reveals that the crystal structure is stabilized by C—H···Cl interaction and N—H···Cl interaction.

Related literature top

For the preparation of the title compound, see: Nilsson et al. (1992). For background to propargylamines, see: Dyker (1999); Hattori et al. (1993); Konishi et al. (1990).

Experimental top

The title compound was synthesized according to the literature procedure of Nilsson et al. (1992).

Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform : methanol (20 : 1) and adding 1d HCl at room temperature.

Refinement top

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C—H = 0.97 Å) and Uiso(H) =1.2 Ueq(C) for methylene, and (C—H = 0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms.

Structure description top

Propargylamines, which have interesting biological activities, are compounds of versatile and important synthetic intermediates. (Konishi et al., 1990; Hattori et al., 1993; Dyker et al.,1999). The reaction which a three component procedure between terminal alkynes, formaldehyde and secondary amines and give rise to the propargylamines with rapid reaction rates by the introduction of copper (I) catalysts.

Here we report the crystal structure of the title compound (Fig. 1). The length of the N1—C9 bond in this compound was found to be 1.479 Å, which is approximate with the length of ordinary N—C single bond (1.47 Å).The four carbon atoms of the five–member ring are not in the same plane, the torsion angle is 14.92 °. It was close to the envelope conformation.

X-ray analysis reveals that the crystal structure is stabilized by C—H···Cl interaction and N—H···Cl interaction.

For the preparation of the title compound, see: Nilsson et al. (1992). For background to propargylamines, see: Dyker (1999); Hattori et al. (1993); Konishi et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.
1-(3-Phenylprop-2-ynyl)pyrrolidinium chloride top
Crystal data top
C13H16N+·ClF(000) = 472
Mr = 221.72Dx = 1.187 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5548 reflections
a = 10.9504 (2) Åθ = 2.7–28.1°
b = 11.3553 (3) ŵ = 0.28 mm1
c = 11.1951 (2) ÅT = 298 K
β = 117.008 (1)°Block, colorless
V = 1240.24 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2353 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
φ and ω scansh = 1313
10560 measured reflectionsk = 1414
2432 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.27 w = 1/[σ2(Fo2) + (0.053P)2 + 0.6238P]
where P = (Fo2 + 2Fc2)/3
2432 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C13H16N+·ClV = 1240.24 (4) Å3
Mr = 221.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9504 (2) ŵ = 0.28 mm1
b = 11.3553 (3) ÅT = 298 K
c = 11.1951 (2) Å0.20 × 0.10 × 0.10 mm
β = 117.008 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2353 reflections with I > 2σ(I)
10560 measured reflectionsRint = 0.054
2432 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.27Δρmax = 0.35 e Å3
2432 reflectionsΔρmin = 0.21 e Å3
139 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6296 (3)0.8606 (2)0.7343 (3)0.0493 (6)
C20.4916 (3)0.8723 (3)0.6473 (3)0.0620 (7)
H20.46360.92430.57550.074*
C30.3957 (3)0.8078 (3)0.6660 (4)0.0735 (9)
H30.30320.81620.60690.088*
C40.4359 (4)0.7315 (3)0.7707 (4)0.0774 (10)
H40.37080.68780.78310.093*
C50.5724 (4)0.7188 (3)0.8581 (4)0.0734 (9)
H50.59910.66630.92940.088*
C60.6697 (3)0.7830 (2)0.8413 (3)0.0590 (7)
H60.76200.77460.90130.071*
C70.7303 (3)0.9288 (2)0.7156 (3)0.0551 (7)
C80.8158 (3)0.9840 (2)0.7040 (3)0.0570 (7)
C90.9214 (3)1.0575 (2)0.6955 (3)0.0581 (7)
H9A0.92761.13160.74100.070*
H9B0.89521.07480.60210.070*
C101.1669 (3)1.0766 (3)0.7524 (3)0.0666 (8)
H10A1.16791.06990.66650.080*
H10B1.15131.15840.76660.080*
C111.2991 (3)1.0342 (3)0.8625 (3)0.0759 (9)
H11A1.35031.09940.91900.091*
H11B1.35450.99710.82580.091*
C121.2620 (4)0.9460 (3)0.9424 (3)0.0784 (9)
H12A1.27900.86620.92270.094*
H12B1.31530.96011.03780.094*
C131.1110 (3)0.9647 (3)0.8992 (3)0.0640 (8)
H13A1.06790.89280.90810.077*
H13B1.09671.02650.95130.077*
Cl10.03151 (7)0.70879 (6)0.07738 (7)0.0545 (2)
N11.0572 (2)0.99964 (19)0.7561 (2)0.0491 (5)
H11.051 (3)0.9386 (17)0.707 (2)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0479 (14)0.0489 (14)0.0587 (15)0.0012 (11)0.0308 (12)0.0117 (12)
C20.0534 (16)0.0660 (17)0.0676 (18)0.0029 (13)0.0284 (14)0.0021 (14)
C30.0471 (16)0.082 (2)0.090 (2)0.0070 (15)0.0306 (16)0.0131 (18)
C40.079 (2)0.075 (2)0.103 (3)0.0238 (18)0.063 (2)0.019 (2)
C50.095 (3)0.0597 (18)0.078 (2)0.0041 (16)0.051 (2)0.0032 (15)
C60.0556 (16)0.0596 (17)0.0616 (17)0.0044 (13)0.0265 (14)0.0063 (13)
C70.0528 (15)0.0557 (15)0.0642 (17)0.0009 (12)0.0329 (14)0.0069 (12)
C80.0559 (16)0.0579 (16)0.0628 (17)0.0023 (13)0.0317 (14)0.0067 (13)
C90.0617 (17)0.0524 (15)0.0664 (18)0.0038 (13)0.0345 (15)0.0002 (13)
C100.0595 (17)0.0709 (19)0.0699 (19)0.0164 (14)0.0297 (15)0.0096 (15)
C110.0622 (19)0.095 (2)0.070 (2)0.0112 (17)0.0293 (17)0.0061 (18)
C120.080 (2)0.085 (2)0.0586 (18)0.0083 (18)0.0219 (17)0.0059 (16)
C130.081 (2)0.0623 (17)0.0562 (17)0.0052 (15)0.0383 (16)0.0044 (13)
Cl10.0537 (4)0.0555 (4)0.0528 (4)0.0018 (3)0.0228 (3)0.0045 (3)
N10.0566 (13)0.0470 (12)0.0498 (12)0.0099 (10)0.0296 (11)0.0019 (9)
Geometric parameters (Å, º) top
C1—C21.383 (4)C9—H9B0.9700
C1—C61.388 (4)C10—C111.492 (5)
C1—C71.439 (4)C10—N11.501 (3)
C2—C31.372 (4)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.360 (5)C11—C121.516 (5)
C3—H30.9300C11—H11A0.9700
C4—C51.372 (5)C11—H11B0.9700
C4—H40.9300C12—C131.512 (5)
C5—C61.373 (4)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—H60.9300C13—N11.488 (3)
C7—C81.182 (4)C13—H13A0.9700
C8—C91.465 (4)C13—H13B0.9700
C9—N11.479 (4)N1—H10.868 (10)
C9—H9A0.9700
C2—C1—C6119.1 (3)N1—C10—H10A110.5
C2—C1—C7120.7 (3)C11—C10—H10B110.5
C6—C1—C7120.3 (3)N1—C10—H10B110.5
C3—C2—C1120.6 (3)H10A—C10—H10B108.7
C3—C2—H2119.7C10—C11—C12106.3 (3)
C1—C2—H2119.7C10—C11—H11A110.5
C4—C3—C2120.1 (3)C12—C11—H11A110.5
C4—C3—H3120.0C10—C11—H11B110.5
C2—C3—H3120.0C12—C11—H11B110.5
C3—C4—C5120.2 (3)H11A—C11—H11B108.7
C3—C4—H4119.9C13—C12—C11105.4 (3)
C5—C4—H4119.9C13—C12—H12A110.7
C4—C5—C6120.6 (3)C11—C12—H12A110.7
C4—C5—H5119.7C13—C12—H12B110.7
C6—C5—H5119.7C11—C12—H12B110.7
C5—C6—C1119.6 (3)H12A—C12—H12B108.8
C5—C6—H6120.2N1—C13—C12102.8 (2)
C1—C6—H6120.2N1—C13—H13A111.2
C8—C7—C1178.0 (3)C12—C13—H13A111.2
C7—C8—C9176.5 (3)N1—C13—H13B111.2
C8—C9—N1112.1 (2)C12—C13—H13B111.2
C8—C9—H9A109.2H13A—C13—H13B109.1
N1—C9—H9A109.2C9—N1—C13115.9 (2)
C8—C9—H9B109.2C9—N1—C10112.3 (2)
N1—C9—H9B109.2C13—N1—C10104.7 (2)
H9A—C9—H9B107.9C9—N1—H1107 (2)
C11—C10—N1106.1 (2)C13—N1—H1110 (2)
C11—C10—H10A110.5C10—N1—H1106.3 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl1i0.932.813.726 (3)170
C9—H9A···Cl1ii0.972.613.547 (3)164
N1—H1···Cl1iii0.87 (1)2.16 (1)3.028 (2)178 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H16N+·Cl
Mr221.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.9504 (2), 11.3553 (3), 11.1951 (2)
β (°) 117.008 (1)
V3)1240.24 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10560, 2432, 2353
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.158, 1.27
No. of reflections2432
No. of parameters139
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl1i0.932.813.726 (3)170.4
C9—H9A···Cl1ii0.972.613.547 (3)163.6
N1—H1···Cl1iii0.868 (10)2.161 (10)3.028 (2)178 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+3/2, z+1/2.
 

Acknowledgements

The author is grateful to Central China Normal University for support.

References

First citationBruker (2001). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDyker, G. (1999). Angew. Chem Int. Ed. 38, 1698–1712.  CrossRef Google Scholar
First citationHattori, K., Miyata, M. & Yamamoto, H. (1993). J. Am. Chem. Soc. 115, 1151–1152.  CrossRef CAS Web of Science Google Scholar
First citationKonishi, M., Ohkuma, H., Tsuno, T., Oki, T., VanDuyne, G. D. & Clardy, J. (1990). J. Am. Chem. Soc. 112, 3715–3716.  CSD CrossRef CAS Web of Science Google Scholar
First citationNilsson, B. M., Vargas, H. M., Ringdahl, B. & Hacksell, U. (1992). J. Med. Chem. 35, 285–294.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds