metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl­enedi­ammonium tetra­aquadi­sulfatomagnesium(II)

aLaboratoire de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, BP 802, 3018 SFAX, Tunisia, and bLaboratoire de Chimie du Solide et Inorganique Moléculaire (CNRS, UMR 6511), Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France
*Correspondence e-mail: w_rekik@alinto.com

(Received 1 October 2009; accepted 13 October 2009; online 23 October 2009)

The title compound, [NH3(CH2)2NH3][Mg(SO4)2(H2O)4], was synthesized by the slow evaporation method. Its crystal structure can be described as an alternate stacking of inorganic layers of tetra­aqua­bis(sulfato-O)magnesium [Mg(SO4)2(H2O)4]2− anions ([\overline1] symmetry) and organic layers of [NH3(CH2)2NH3]2+ cations along the crystallographic b axis. The anions, built up from tetrahedral SO4 units and octahedral Mg(H2O)4O2 units, and the cations are linked together through N—H⋯O hydrogen bonds, forming a three-dimensional network. O—H⋯O inter­actions are also present.

Related literature

For organic–inorganic hybrid solids composed of 3d transition metals, sulfate groups and protonated diamines, see: Held (2003[Held, P. (2003). Acta Cryst. E59, m197-m198.]); Naïli et al. (2006[Naïli, H., Rekik, W., Bataille, T. & Mhiri, T. (2006). Polyhedron, 25, 3543-3554.]); Rekik et al. (2005[Rekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2005). Acta Cryst. E61, m629-m631.], 2007[Rekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2007). J. Chem. Crystallogr. 37, 147-155.], 2008[Rekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2008). Mater. Res. Bull., 43, 2709-2718.], 2009[Rekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2009). J. Solid State Sci. 11, 614-621.]); Rekik, Naïli, Bataille & Mhiri (2006[Rekik, W., Naïli, H., Bataille, T. & Mhiri, T. (2006). J. Organomet. Chem. 691, 4725-4732.]); Rekik, Naïli, Bataille et al. (2006[Rekik, W., Naïli, H., Bataille, T., Roisnel, T. & Mhiri, T. (2006). Inorg. Chim. Acta, 359, 3954-3962.]); Yahyaoui et al. (2007[Yahyaoui, S., Rekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2007). J. Solid State Chem. 180, 3560-3570.]). For the isostructural manganese, iron and cobalt compounds, see: Chaabouni et al. (1996[Chaabouni, S., Kamoun, S., Daoud, A. & Jouini, T. (1996). Acta Cryst. C52, 505-506.]); Held (2003[Held, P. (2003). Acta Cryst. E59, m197-m198.]); Rekik et al. (2008[Rekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2008). Mater. Res. Bull., 43, 2709-2718.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H10N2)[Mg(SO4)2(H2O)4]

  • Mr = 350.61

  • Triclinic, [P \overline 1]

  • a = 6.7847 (4) Å

  • b = 7.0721 (4) Å

  • c = 7.2217 (4) Å

  • α = 74.909 (2)°

  • β = 72.378 (2)°

  • γ = 79.564 (3)°

  • V = 316.89 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.19 × 0.15 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.924, Tmax = 0.958

  • 3254 measured reflections

  • 1408 independent reflections

  • 1238 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.142

  • S = 1.05

  • 1408 reflections

  • 104 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond distances (Å)

Mg—OW1 2.0632 (18)
Mg—O4 2.0826 (15)
Mg—OW2 2.0833 (18)
S—O1 1.4605 (17)
S—O2 1.4688 (17)
S—O3 1.4748 (16)
S—O4 1.4844 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O4iii 0.89 1.95 2.838 (2) 174
N—H0B⋯O3iv 0.89 2.05 2.886 (3) 156
N—H0C⋯O2 0.89 1.97 2.837 (3) 163
OW1—H11⋯O2v 0.866 (19) 1.91 (2) 2.767 (2) 169 (4)
OW1—H12⋯O3vi 0.869 (18) 1.890 (19) 2.758 (3) 178 (3)
OW2—H21⋯O1vii 0.841 (19) 1.95 (2) 2.729 (2) 153 (3)
OW2—H22⋯O1viii 0.871 (19) 2.03 (2) 2.869 (2) 162 (4)
Symmetry codes: (iii) -x, -y+2, -z; (iv) x-1, y, z; (v) -x, -y+1, -z+1; (vi) x, y-1, z; (vii) -x+1, -y+1, -z; (viii) x, y, z-1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organic-inorganic hybrid materials is the subject of major interest, allowing to combines some properties of an inorganic material (or a molecule), and some properties of an organic molecule (or a polymer). This symbiosis between two worlds of chemistry too long regarded as opposites can also lead to completely new properties, and opens a wide field of investigations for the chemist. The applications of these "new" materials cover diverse areas as the properties of strength, optics, ferroelectricity and ferroelasticity, electronics and ionic solid ··· Recently, we reported some new organic-inorganic hybrid solids composed of 3d transition metal, sulfate groups and protonated diamine (Rekik et al., 2005; Naïli, et al., 2006; Rekik et al., 2007; Yahyaoui et al., 2007; Rekik et al., 2008; Rekik et al., 2009). In the field of our investigations in the organic-inorganic hybrid materials, we report here the chemical preparation and the structural characterization of a new magnesium ethylenediammonium bis(sulfate)tetrahydrate,[NH3(CH2)2NH3][Mg(SO4)2(H2O)4]. The title compound is isostructural with the manganese, iron and cobalt related phases (Chaabouni et al., 1996; Held et al., 2003; Rekik et al., 2008). As it can be seen in figure 1, the asymmetric unit of the title compound contains only one magnesium atom located at a symmetry centre, only one sulfate tetrahedron and ethylenediammonium cation lying about inversion centre. The Mg(II) central atom is octahedrally coordinated by one oxygen atom of sulfate group, two water molecules and the corresponding centrosymmetrically located atoms. Each octahedron around Mg shares two oxygen with two sulfate groups to form trimeric units, [Mg(SO4)2(H2O)4]2-. The negative charge of the inorganic part is compensated by ethylenediammonium cations which are located on inversion centres in the inorganic framework cavities. The structure cohesion and stability are assured by two types of hydrogen bonds, OW—H···O and N—H···O. Figure 2 shows that the structure can be described as an alternation between organic and inorganic layers along the crystallographic b axis.

Related literature top

For organic–inorganic hybrid solids composed of 3d transition metals, sulfate groups and protonated diamines, see: Held (2003); Naïli et al. (2006); Rekik et al. (2005, 2007, 2008, 2009); Rekik, Naïli, Bataille & Mhiri (2006); Rekik, Naïli, Bataille et al. (2006); Yahyaoui et al. (2007). For the isotructural manganese, iron and cobalt compounds, see: Chaabouni et al. (1996); Held (2003); Rekik et al. (2008).

Experimental top

Single-crystals of the title compound were grown by slow evaporation at room temperature of an aqueous solution of MgSO4.7(H2O)/C2H8N2 /H2SO4in a ratio 1:1:1. The product was filtered off and washed with a small amount of distilled water.

Refinement top

The aqua H atoms were located in difference map and refined with O—H distance restraints of 0.85 (2) Å and H—H distance restraints of 1.39 (2) Å. H atoms bonded to C and N atomswere positioned geometrically and allowed to ride on their parent atom, with C—H = 0.97 Å, N—H = 0.89 Å and Uiso = 1.2Ueq(C, N).

Structure description top

Organic-inorganic hybrid materials is the subject of major interest, allowing to combines some properties of an inorganic material (or a molecule), and some properties of an organic molecule (or a polymer). This symbiosis between two worlds of chemistry too long regarded as opposites can also lead to completely new properties, and opens a wide field of investigations for the chemist. The applications of these "new" materials cover diverse areas as the properties of strength, optics, ferroelectricity and ferroelasticity, electronics and ionic solid ··· Recently, we reported some new organic-inorganic hybrid solids composed of 3d transition metal, sulfate groups and protonated diamine (Rekik et al., 2005; Naïli, et al., 2006; Rekik et al., 2007; Yahyaoui et al., 2007; Rekik et al., 2008; Rekik et al., 2009). In the field of our investigations in the organic-inorganic hybrid materials, we report here the chemical preparation and the structural characterization of a new magnesium ethylenediammonium bis(sulfate)tetrahydrate,[NH3(CH2)2NH3][Mg(SO4)2(H2O)4]. The title compound is isostructural with the manganese, iron and cobalt related phases (Chaabouni et al., 1996; Held et al., 2003; Rekik et al., 2008). As it can be seen in figure 1, the asymmetric unit of the title compound contains only one magnesium atom located at a symmetry centre, only one sulfate tetrahedron and ethylenediammonium cation lying about inversion centre. The Mg(II) central atom is octahedrally coordinated by one oxygen atom of sulfate group, two water molecules and the corresponding centrosymmetrically located atoms. Each octahedron around Mg shares two oxygen with two sulfate groups to form trimeric units, [Mg(SO4)2(H2O)4]2-. The negative charge of the inorganic part is compensated by ethylenediammonium cations which are located on inversion centres in the inorganic framework cavities. The structure cohesion and stability are assured by two types of hydrogen bonds, OW—H···O and N—H···O. Figure 2 shows that the structure can be described as an alternation between organic and inorganic layers along the crystallographic b axis.

For organic–inorganic hybrid solids composed of 3d transition metals, sulfate groups and protonated diamines, see: Held (2003); Naïli et al. (2006); Rekik et al. (2005, 2007, 2008, 2009); Rekik, Naïli, Bataille & Mhiri (2006); Rekik, Naïli, Bataille et al. (2006); Yahyaoui et al. (2007). For the isotructural manganese, iron and cobalt compounds, see: Chaabouni et al. (1996); Held (2003); Rekik et al. (2008).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A part of the crystal structure of the title compound showing the asymmetric unit (expanded by symmetry to give complete organic cation and trimeric unit) and atom numbering. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are represented by dashed lines.[Symmetry codes: (I) -x, -y - 1, -z; (II) -x - 1, -y + 2, -z + 1.]
[Figure 2] Fig. 2. Projection of the crystal structure of the title compound along the c axis, with hydrogen bonds indicated as dashed lines.
[Figure 3] Fig. 3. The asymmetric unit of the title compound.
Magnesium ethylenediammonium bis(sulfate) tetrahydrate top
Crystal data top
(C2H10N2)[Mg(SO4)2(HO)4]Z = 1
Mr = 350.61F(000) = 184
Triclinic, P1Dx = 1.837 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7847 (4) ÅCell parameters from 3254 reflections
b = 7.0721 (4) Åθ = 3.0–27.4°
c = 7.2217 (4) ŵ = 0.53 mm1
α = 74.909 (2)°T = 293 K
β = 72.378 (2)°Prism, colourless
γ = 79.564 (3)°0.19 × 0.15 × 0.10 mm
V = 316.89 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
1408 independent reflections
Radiation source: fine-focus sealed tube1238 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.099
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 3.0°
CCD rotation images, thick slices scansh = 88
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 99
Tmin = 0.924, Tmax = 0.958l = 99
3254 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.1042P]
where P = (Fo2 + 2Fc2)/3
1408 reflections(Δ/σ)max = 0.001
104 parametersΔρmax = 0.69 e Å3
4 restraintsΔρmin = 0.58 e Å3
Crystal data top
(C2H10N2)[Mg(SO4)2(HO)4]γ = 79.564 (3)°
Mr = 350.61V = 316.89 (3) Å3
Triclinic, P1Z = 1
a = 6.7847 (4) ÅMo Kα radiation
b = 7.0721 (4) ŵ = 0.53 mm1
c = 7.2217 (4) ÅT = 293 K
α = 74.909 (2)°0.19 × 0.15 × 0.10 mm
β = 72.378 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1408 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
1238 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.958Rint = 0.099
3254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0534 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.69 e Å3
1408 reflectionsΔρmin = 0.58 e Å3
104 parameters
Special details top

Experimental. Data were corrected for Lorentz-polarization effects and an analytical absorption correction (de Meulenaer & Tompa, 1965) was applied. The structure was solved in the P -1 space group by the direct methods (Mg and S) and subsequent difference Fourier syntheses (all other atoms), with an exception for H atoms bonded to C and N atoms which are positioned geometrically.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.00000.50000.00000.0186 (3)
S0.19880 (7)0.72309 (7)0.25068 (7)0.0178 (3)
OW10.0843 (3)0.2584 (3)0.2036 (3)0.0330 (5)
OW20.2566 (3)0.4397 (3)0.2311 (3)0.0278 (4)
O10.3220 (3)0.5558 (3)0.3453 (3)0.0282 (4)
O20.0021 (3)0.7650 (3)0.3921 (2)0.0298 (4)
O30.3142 (3)0.8975 (2)0.1783 (2)0.0258 (4)
O40.1602 (3)0.6817 (2)0.0741 (2)0.0254 (4)
N0.3262 (3)1.0074 (3)0.2425 (3)0.0259 (5)
H0A0.26771.10540.14820.039*
H0B0.40850.95640.19740.039*
H0C0.22740.91450.27520.039*
C0.4508 (4)1.0834 (3)0.4201 (3)0.0246 (5)
H0D0.55821.18540.38520.029*
H0E0.36221.14060.46910.029*
H110.045 (6)0.262 (6)0.329 (3)0.053 (10)*
H120.156 (5)0.145 (3)0.193 (5)0.038 (8)*
H210.378 (3)0.444 (5)0.227 (5)0.040 (9)*
H220.255 (7)0.458 (6)0.355 (3)0.058 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0188 (5)0.0196 (5)0.0190 (5)0.0045 (4)0.0084 (4)0.0013 (4)
S0.0169 (3)0.0199 (4)0.0175 (3)0.0035 (2)0.0079 (2)0.0006 (2)
OW10.0485 (11)0.0264 (9)0.0244 (9)0.0062 (8)0.0186 (8)0.0026 (7)
OW20.0193 (8)0.0409 (10)0.0242 (8)0.0047 (7)0.0079 (7)0.0054 (7)
O10.0244 (8)0.0259 (9)0.0313 (9)0.0002 (7)0.0143 (7)0.0052 (7)
O20.0214 (8)0.0410 (10)0.0230 (8)0.0011 (7)0.0043 (7)0.0039 (7)
O30.0279 (9)0.0249 (9)0.0290 (9)0.0111 (7)0.0134 (7)0.0013 (7)
O40.0287 (9)0.0314 (9)0.0198 (8)0.0136 (7)0.0086 (7)0.0026 (7)
N0.0257 (10)0.0291 (10)0.0204 (9)0.0045 (8)0.0059 (8)0.0005 (8)
C0.0287 (11)0.0240 (12)0.0196 (10)0.0073 (9)0.0056 (9)0.0004 (9)
Geometric parameters (Å, º) top
Mg—OW12.0632 (18)OW1—H120.869 (18)
Mg—OW1i2.0632 (18)OW2—H210.841 (19)
Mg—O4i2.0826 (15)OW2—H220.871 (19)
Mg—O42.0826 (15)N—C1.479 (3)
Mg—OW22.0833 (18)N—H0A0.8900
Mg—OW2i2.0833 (18)N—H0B0.8900
S—O11.4605 (17)N—H0C0.8900
S—O21.4688 (17)C—Cii1.510 (4)
S—O31.4748 (16)C—H0D0.9700
S—O41.4844 (15)C—H0E0.9700
OW1—H110.866 (19)
OW1—Mg—OW1i180.00 (13)O3—S—O4106.73 (9)
OW1—Mg—O4i87.87 (7)Mg—OW1—H11119 (3)
OW1i—Mg—O4i92.13 (7)Mg—OW1—H12133 (2)
OW1—Mg—O492.13 (7)H11—OW1—H12108 (4)
OW1i—Mg—O487.87 (7)Mg—OW2—H21121 (2)
O4i—Mg—O4180.000 (1)Mg—OW2—H22125 (3)
OW1—Mg—OW293.30 (8)H21—OW2—H22109 (4)
OW1i—Mg—OW286.70 (8)S—O4—Mg140.66 (9)
O4i—Mg—OW288.50 (7)C—N—H0A109.5
O4—Mg—OW291.50 (7)C—N—H0B109.5
OW1—Mg—OW2i86.70 (8)H0A—N—H0B109.5
OW1i—Mg—OW2i93.30 (8)C—N—H0C109.5
O4i—Mg—OW2i91.50 (7)H0A—N—H0C109.5
O4—Mg—OW2i88.50 (7)H0B—N—H0C109.5
OW2—Mg—OW2i180.00 (8)N—C—Cii109.3 (2)
O1—S—O2110.22 (10)N—C—H0D109.8
O1—S—O3109.88 (10)Cii—C—H0D109.8
O2—S—O3110.33 (11)N—C—H0E109.8
O1—S—O4110.76 (10)Cii—C—H0E109.8
O2—S—O4108.85 (9)H0D—C—H0E108.3
Symmetry codes: (i) x, y+1, z; (ii) x1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O4iii0.891.952.838 (2)174
N—H0B···O3iv0.892.052.886 (3)156
N—H0C···O20.891.972.837 (3)163
OW1—H11···O2v0.87 (2)1.91 (2)2.767 (2)169 (4)
OW1—H12···O3vi0.87 (2)1.89 (2)2.758 (3)178 (3)
OW2—H21···O1vii0.84 (2)1.95 (2)2.729 (2)153 (3)
OW2—H22···O1viii0.87 (2)2.03 (2)2.869 (2)162 (4)
Symmetry codes: (iii) x, y+2, z; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x, y1, z; (vii) x+1, y+1, z; (viii) x, y, z1.

Experimental details

Crystal data
Chemical formula(C2H10N2)[Mg(SO4)2(HO)4]
Mr350.61
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7847 (4), 7.0721 (4), 7.2217 (4)
α, β, γ (°)74.909 (2), 72.378 (2), 79.564 (3)
V3)316.89 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.19 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.924, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
3254, 1408, 1238
Rint0.099
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 1.05
No. of reflections1408
No. of parameters104
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.58

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Mg—OW12.0632 (18)S—O11.4605 (17)
Mg—OW1i2.0632 (18)S—O21.4688 (17)
Mg—O4i2.0826 (15)S—O31.4748 (16)
Mg—O42.0826 (15)S—O41.4844 (15)
Mg—OW22.0833 (18)N—C1.479 (3)
Mg—OW2i2.0833 (18)C—Cii1.510 (4)
OW1—Mg—OW1i180.00 (13)O4i—Mg—OW2i91.50 (7)
OW1—Mg—O4i87.87 (7)O4—Mg—OW2i88.50 (7)
OW1i—Mg—O4i92.13 (7)OW2—Mg—OW2i180.00 (8)
OW1—Mg—O492.13 (7)O1—S—O2110.22 (10)
OW1i—Mg—O487.87 (7)O1—S—O3109.88 (10)
O4i—Mg—O4180.000 (1)O2—S—O3110.33 (11)
OW1—Mg—OW293.30 (8)O1—S—O4110.76 (10)
OW1i—Mg—OW286.70 (8)O2—S—O4108.85 (9)
O4i—Mg—OW288.50 (7)O3—S—O4106.73 (9)
O4—Mg—OW291.50 (7)S—O4—Mg140.66 (9)
OW1—Mg—OW2i86.70 (8)N—C—Cii109.3 (2)
OW1i—Mg—OW2i93.30 (8)
Symmetry codes: (i) x, y+1, z; (ii) x1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O4iii0.891.952.838 (2)173.9
N—H0B···O3iv0.892.052.886 (3)156.0
N—H0C···O20.891.972.837 (3)162.8
OW1—H11···O2v0.866 (19)1.91 (2)2.767 (2)169 (4)
OW1—H12···O3vi0.869 (18)1.890 (19)2.758 (3)178 (3)
OW2—H21···O1vii0.841 (19)1.95 (2)2.729 (2)153 (3)
OW2—H22···O1viii0.871 (19)2.03 (2)2.869 (2)162 (4)
Symmetry codes: (iii) x, y+2, z; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x, y1, z; (vii) x+1, y+1, z; (viii) x, y, z1.
 

Acknowledgements

Grateful thanks are expressed to Dr T. Roisnel (Centre de Diffractométrie X, Université de Rennes 1) for the X-ray data collection.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChaabouni, S., Kamoun, S., Daoud, A. & Jouini, T. (1996). Acta Cryst. C52, 505–506.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeld, P. (2003). Acta Cryst. E59, m197–m198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNaïli, H., Rekik, W., Bataille, T. & Mhiri, T. (2006). Polyhedron, 25, 3543–3554.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationRekik, W., Naïli, H., Bataille, T. & Mhiri, T. (2006). J. Organomet. Chem. 691, 4725–4732.  Web of Science CrossRef CAS Google Scholar
First citationRekik, W., Naïli, H., Bataille, T., Roisnel, T. & Mhiri, T. (2006). Inorg. Chim. Acta, 359, 3954–3962.  Web of Science CSD CrossRef CAS Google Scholar
First citationRekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2005). Acta Cryst. E61, m629–m631.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2007). J. Chem. Crystallogr. 37, 147–155.  Web of Science CSD CrossRef CAS Google Scholar
First citationRekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2008). Mater. Res. Bull., 43, 2709–2718.  Web of Science CSD CrossRef CAS Google Scholar
First citationRekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2009). J. Solid State Sci. 11, 614–621.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYahyaoui, S., Rekik, W., Naïli, H., Mhiri, T. & Bataille, T. (2007). J. Solid State Chem. 180, 3560–3570.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds