metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[aqua­(2,3-naphtho-15-crown-5)sodium] tetra­kis(thio­cyanato-κN)cobaltate(II)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 9 September 2009; accepted 24 September 2009; online 7 October 2009)

The title complex, [Na(C18H22O5)(H2O)]2[Co(NCS)4], consists of two aqua­(2,3-naphtho-15-crown-5)sodium complex cations and one [Co(NCS)4]2− complex anion, which has crystallographic [\overline 1] symmetry. In the anion, the CoII centre is coordinated by the N atoms of four NCS ligands in a distorted tetra­hedral geometry. In the complex cations, the NaI centre is coordinated by five O atoms of the 2,3-naphtho-15-crown-5 ligand and one water O atom. The complex mol­ecules form a two-dimensional network via weak O—H⋯S inter­actions between adjacent cations and anions

Related literature

For crown ether complexes, see: Pedersen (1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.]); Zhang et al. (1996[Zhang, H., Wang, X. M. & Teo, B. K. (1996). J. Am. Chem. Soc. 118, 11813-11821.]). For ππ inter­actions of the naphtho crown ether, see: Gao et al. (2005[Gao, X. K., Dou, J. M., Li, D. C., Dong, F. Y. & Wang, D. Q. (2005). J. Mol. Struct. 733, 181-186.]). For structural information on compounds with similar features, see Fan et al. (1985[Fan, Y. P., Zhou, Z. Y., Wang, X. M., Zhang, J. Z. & Han, J. F. (1985). Chin. Kexue Tongbao, 30, 107-110.]); Dou et al. (2004[Dou, J. M., Gao, X. K., Li, D. C., Dong, F. Y. & Wang, D. Q. (2004). Dalton Trans. pp. 2918-2922.]); Yu et al. (2005[Yu, H. L., Chen, H. M., & Dou, J. M. (2005). Chin. J. Spectr. Lab. 22, 556-558.]); Zhang et al. (2006[Zhang, R. F., Zhang, Q. F. & Shi, Y. (2006). J. Organomet. Chem. 691, 1668-1171.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C18H22O5)(H2O)]2[Co(NCS)4]

  • Mr = 1009.97

  • Monoclinic, C 2/c

  • a = 23.030 (5) Å

  • b = 13.170 (3) Å

  • c = 17.469 (4) Å

  • β = 115.255 (3)°

  • V = 4792.0 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 298 K

  • 0.39 × 0.36 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.796, Tmax = 0.898

  • 12300 measured reflections

  • 4232 independent reflections

  • 2150 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.110

  • S = 1.00

  • 4232 reflections

  • 285 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1⋯S2i 0.84 2.62 3.458 (3) 173
O6—H3⋯S1ii 0.84 2.57 3.389 (3) 165
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to the unusual coordination numbers and arrangements with various metal ions, crown ethers have attracted much attention (Pedersen, 1967; Zhang et al., 1996). In particular, the naphtho crown ethers play an important role in crystal engineering of supramolecular interactions, such as π···π interactions (Dou et al., 2004; Gao et al., 2005). In order to study the weak interactions of the naphtho crown ether, we have synthesized the title complex by the reaction of naphtho-15-crown-5 with CoCl2 and NaSCN. The title complex, [Na(N15C5)H2O]2[Co(NCS)4] is made up of two [Na(N15C5)H2O]+ complex cations and one [Co(NCS)4]2- complex anion. In the complex anion, the Co is coordinated by four N atoms of the NCS ligands and exhibits a distorted tetrahedral geometry. The average Co—N bond length is 1.945 (4) Å, which is consistent with that of [K(18C6)]2[Co(SCN)4](1.94 Å) (Fan et al., 1985). In the complex cation, the Na is coordinated by five O atoms of the crown ether and one O atom of the H2O, The Na—O(crown ether) distances are in the range 2.329 (3) to 2.361 (3) Å), average 2.344 (3) Å, which is shorter than that of [Na(N15C5)][Pd(SCN)4] (Dou et al., 2004). The Na—O(H2O) bond length is 2.278 (3) Å, which is comparable to that of [{Na(18C6)}2(H2O)][Ni(i-mnt)2] (Yu et al., 2005). For the neighboring complex cations and the complex anions, the distances of O(6)···S(2) and O(6)—S(1) are 3.46 (3) Å and 3.39 (4) Å respectively, which are shorter than those in the complex {[(Me3Sn)(µ-OH)][Me2Sn(µ3-SCH2CO2)]}n (Zhang et al., 2006), indicating that there are O—H···S weak interactions between the neighboring complex cations and complex anions. The title complex is assembled into two-dimensional network by virtue of O—H···S weak interactions.

Related literature top

For crown ether complexes, see: Pedersen (1967); Zhang et al. (1996). For π···π interactions of the naphtho crown ether, see: Gao et al. (2005). For structural information on compounds with similar features, see Fan et al. (1985); Dou et al. (2004); Yu et al. (2005); Zhang et al. (2006).

Experimental top

The title complex was prepared by adding 10 ml of an aqueous mixture of CoCl2 (0.032 g, 0.25 mmol) and NaSCN (0.81 g, 10 mmol) to a solution of 2,3-naphtho-15-crown-5 (0.16 g, 0.5 mmol) in 10 ml dichloromethane. The reaction mixture was stirred for 2 hrs at room temperature and filtered. The precipite was dissolved in the CH3CN, and the crystal was obtained a week later. m.p.: 470–472. Anal. Calcd (%) for C40H48CoN4Na2O12S4: C, 47.45; H, 4.82; N, 5.62. Found (%): C, 47.52; H, 4.75; N, 5.54.

Refinement top

The C—H H atoms were positioned with idealized geometry and were refined as isotropic with Uiso(H) = 1.2 Ueq(C, O) for all H atoms using a riding model with C—H = 0.93 Å for aromatic H, and C—H = 0.97 Å for CH2. The S2 atom was refined using an approximately isotropic model (ISOR in SHELXL).

Structure description top

Due to the unusual coordination numbers and arrangements with various metal ions, crown ethers have attracted much attention (Pedersen, 1967; Zhang et al., 1996). In particular, the naphtho crown ethers play an important role in crystal engineering of supramolecular interactions, such as π···π interactions (Dou et al., 2004; Gao et al., 2005). In order to study the weak interactions of the naphtho crown ether, we have synthesized the title complex by the reaction of naphtho-15-crown-5 with CoCl2 and NaSCN. The title complex, [Na(N15C5)H2O]2[Co(NCS)4] is made up of two [Na(N15C5)H2O]+ complex cations and one [Co(NCS)4]2- complex anion. In the complex anion, the Co is coordinated by four N atoms of the NCS ligands and exhibits a distorted tetrahedral geometry. The average Co—N bond length is 1.945 (4) Å, which is consistent with that of [K(18C6)]2[Co(SCN)4](1.94 Å) (Fan et al., 1985). In the complex cation, the Na is coordinated by five O atoms of the crown ether and one O atom of the H2O, The Na—O(crown ether) distances are in the range 2.329 (3) to 2.361 (3) Å), average 2.344 (3) Å, which is shorter than that of [Na(N15C5)][Pd(SCN)4] (Dou et al., 2004). The Na—O(H2O) bond length is 2.278 (3) Å, which is comparable to that of [{Na(18C6)}2(H2O)][Ni(i-mnt)2] (Yu et al., 2005). For the neighboring complex cations and the complex anions, the distances of O(6)···S(2) and O(6)—S(1) are 3.46 (3) Å and 3.39 (4) Å respectively, which are shorter than those in the complex {[(Me3Sn)(µ-OH)][Me2Sn(µ3-SCH2CO2)]}n (Zhang et al., 2006), indicating that there are O—H···S weak interactions between the neighboring complex cations and complex anions. The title complex is assembled into two-dimensional network by virtue of O—H···S weak interactions.

For crown ether complexes, see: Pedersen (1967); Zhang et al. (1996). For π···π interactions of the naphtho crown ether, see: Gao et al. (2005). For structural information on compounds with similar features, see Fan et al. (1985); Dou et al. (2004); Yu et al. (2005); Zhang et al. (2006).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the two-dimensional network structure in the crystal structure of the title complex. Intermolecular O—H···S are shown. H atoms have been omitted.
Bis[aqua(2,3-naphtho-15-crown-5)sodium] tetrakis(thiocyanato-κN)cobaltate(II) top
Crystal data top
[Na(C18H22O5)(H2O)]2[Co(NCS)4]F(000) = 2100
Mr = 1009.97Dx = 1.400 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1972 reflections
a = 23.030 (5) Åθ = 2.5–21.9°
b = 13.170 (3) ŵ = 0.61 mm1
c = 17.469 (4) ÅT = 298 K
β = 115.255 (3)°Block, red
V = 4792.0 (18) Å30.39 × 0.36 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4232 independent reflections
Radiation source: fine-focus sealed tube2150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and φ scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2327
Tmin = 0.796, Tmax = 0.898k = 1510
12300 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0212P)2 + 7.4253P]
where P = (Fo2 + 2Fc2)/3
4232 reflections(Δ/σ)max = 0.001
285 parametersΔρmax = 0.25 e Å3
6 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Na(C18H22O5)(H2O)]2[Co(NCS)4]V = 4792.0 (18) Å3
Mr = 1009.97Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.030 (5) ŵ = 0.61 mm1
b = 13.170 (3) ÅT = 298 K
c = 17.469 (4) Å0.39 × 0.36 × 0.18 mm
β = 115.255 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4232 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2150 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.898Rint = 0.050
12300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0466 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
4232 reflectionsΔρmin = 0.28 e Å3
285 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.51700 (7)0.75000.0623 (3)
Na10.81291 (7)0.28279 (13)0.32041 (10)0.0657 (5)
N10.57146 (16)0.4339 (3)0.8270 (2)0.0680 (10)
N20.53079 (17)0.5994 (3)0.6834 (3)0.0808 (12)
O10.80689 (12)0.1597 (2)0.41499 (16)0.0580 (7)
O20.73752 (11)0.3173 (2)0.37301 (15)0.0534 (7)
O30.77894 (13)0.4521 (2)0.28951 (16)0.0632 (8)
O40.90108 (13)0.3783 (2)0.32829 (17)0.0680 (8)
O50.90001 (12)0.1712 (2)0.36137 (18)0.0690 (8)
O60.75231 (14)0.2494 (2)0.18076 (19)0.0952 (11)
H10.71310.26360.15640.114*
H30.76490.23810.14270.114*
S10.67314 (6)0.32131 (10)0.94135 (7)0.0739 (4)
S20.58936 (6)0.70155 (14)0.59663 (10)0.1164 (6)
C10.74760 (18)0.1464 (3)0.4142 (2)0.0472 (10)
C20.72491 (19)0.0597 (3)0.4328 (2)0.0558 (11)
H20.75060.00200.44800.067*
C30.6622 (2)0.0558 (3)0.4292 (2)0.0580 (11)
C40.6371 (2)0.0332 (4)0.4494 (3)0.0766 (14)
H40.66170.09200.46470.092*
C50.5771 (3)0.0328 (5)0.4463 (3)0.0969 (18)
H50.56130.09160.46010.116*
C60.5395 (3)0.0523 (6)0.4234 (3)0.1004 (19)
H60.49880.05080.42210.121*
C70.5614 (2)0.1392 (4)0.4024 (3)0.0862 (15)
H70.53520.19630.38610.103*
C80.62357 (19)0.1435 (4)0.4052 (3)0.0596 (11)
C90.64775 (18)0.2321 (3)0.3848 (2)0.0579 (11)
H90.62200.28980.36780.070*
C100.70851 (18)0.2349 (3)0.3896 (2)0.0459 (9)
C110.69937 (19)0.4050 (3)0.3348 (3)0.0606 (11)
H11A0.67620.42630.36720.073*
H11B0.66840.38910.27770.073*
C120.7428 (2)0.4878 (3)0.3330 (3)0.0668 (12)
H12A0.71770.54670.30420.080*
H12B0.77150.50730.39030.080*
C130.8307 (2)0.5175 (4)0.2980 (3)0.0770 (14)
H13A0.85410.53860.35640.092*
H13B0.81450.57770.26320.092*
C140.8738 (2)0.4593 (4)0.2697 (3)0.0778 (14)
H14A0.84950.43260.21320.093*
H14B0.90740.50310.26880.093*
C150.9376 (2)0.3071 (4)0.3053 (3)0.0813 (15)
H15A0.97540.33980.30550.098*
H15B0.91210.28080.24900.098*
C160.9568 (2)0.2230 (4)0.3686 (3)0.0842 (15)
H16A0.98510.17610.35800.101*
H16B0.97960.25020.42530.101*
C170.91031 (19)0.1114 (4)0.4336 (3)0.0762 (14)
H17A0.93020.15220.48450.091*
H17B0.93870.05510.43780.091*
C180.84685 (19)0.0722 (3)0.4251 (3)0.0689 (13)
H18A0.82790.02790.37620.083*
H18B0.85200.03430.47520.083*
C190.61400 (19)0.3861 (3)0.8744 (3)0.0535 (11)
C200.55531 (19)0.6421 (4)0.6479 (3)0.0719 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0459 (5)0.0642 (6)0.0740 (6)0.0000.0228 (4)0.000
Na10.0605 (10)0.0661 (12)0.0759 (11)0.0079 (8)0.0344 (9)0.0094 (9)
N10.052 (2)0.066 (3)0.084 (3)0.0012 (19)0.027 (2)0.006 (2)
N20.059 (2)0.090 (3)0.091 (3)0.008 (2)0.030 (2)0.013 (2)
O10.0525 (17)0.0562 (19)0.0705 (19)0.0140 (14)0.0311 (14)0.0077 (14)
O20.0524 (16)0.0422 (17)0.0665 (18)0.0095 (13)0.0263 (14)0.0088 (14)
O30.0724 (19)0.056 (2)0.0596 (18)0.0050 (15)0.0268 (16)0.0006 (14)
O40.0646 (18)0.088 (2)0.0551 (18)0.0045 (17)0.0291 (15)0.0010 (17)
O50.0531 (18)0.083 (2)0.072 (2)0.0075 (16)0.0281 (15)0.0001 (17)
O60.088 (2)0.099 (3)0.084 (2)0.0186 (19)0.0222 (19)0.0222 (19)
S10.0733 (8)0.0708 (9)0.0714 (8)0.0126 (6)0.0250 (6)0.0094 (6)
S20.0666 (9)0.1589 (17)0.1127 (12)0.0027 (9)0.0277 (8)0.0643 (11)
C10.051 (2)0.044 (3)0.045 (2)0.006 (2)0.0192 (19)0.0018 (19)
C20.067 (3)0.043 (3)0.051 (3)0.004 (2)0.019 (2)0.001 (2)
C30.071 (3)0.057 (3)0.047 (3)0.016 (2)0.026 (2)0.012 (2)
C40.089 (4)0.074 (4)0.058 (3)0.025 (3)0.022 (3)0.006 (2)
C50.097 (5)0.116 (6)0.076 (4)0.052 (4)0.035 (3)0.005 (4)
C60.071 (4)0.139 (6)0.092 (4)0.034 (4)0.036 (3)0.014 (4)
C70.063 (3)0.103 (5)0.098 (4)0.013 (3)0.039 (3)0.011 (3)
C80.057 (3)0.065 (3)0.061 (3)0.012 (2)0.029 (2)0.010 (2)
C90.052 (3)0.057 (3)0.062 (3)0.006 (2)0.021 (2)0.008 (2)
C100.053 (2)0.039 (2)0.046 (2)0.001 (2)0.0214 (19)0.0018 (19)
C110.063 (3)0.043 (3)0.072 (3)0.011 (2)0.025 (2)0.004 (2)
C120.089 (3)0.043 (3)0.066 (3)0.006 (2)0.031 (3)0.002 (2)
C130.099 (4)0.064 (3)0.068 (3)0.013 (3)0.035 (3)0.009 (3)
C140.085 (3)0.090 (4)0.059 (3)0.019 (3)0.031 (3)0.013 (3)
C150.063 (3)0.114 (5)0.079 (4)0.009 (3)0.042 (3)0.011 (3)
C160.056 (3)0.105 (4)0.097 (4)0.007 (3)0.038 (3)0.009 (3)
C170.053 (3)0.081 (4)0.090 (4)0.024 (2)0.026 (3)0.013 (3)
C180.067 (3)0.063 (3)0.077 (3)0.025 (2)0.031 (2)0.015 (2)
C190.053 (3)0.049 (3)0.069 (3)0.010 (2)0.035 (2)0.006 (2)
C200.041 (3)0.085 (4)0.071 (3)0.003 (2)0.005 (2)0.010 (3)
Geometric parameters (Å, º) top
Co1—N21.934 (4)C4—C51.360 (6)
Co1—N2i1.934 (4)C4—H40.9300
Co1—N1i1.956 (4)C5—C61.367 (7)
Co1—N11.956 (4)C5—H50.9300
Na1—O62.278 (3)C6—C71.363 (7)
Na1—O22.329 (3)C6—H60.9300
Na1—O52.339 (3)C7—C81.412 (5)
Na1—O42.343 (3)C7—H70.9300
Na1—O32.348 (3)C8—C91.404 (5)
Na1—O12.361 (3)C9—C101.366 (5)
N1—C191.162 (5)C9—H90.9300
N2—C201.147 (5)C11—C121.488 (5)
O1—C11.371 (4)C11—H11A0.9700
O1—C181.438 (4)C11—H11B0.9700
O2—C101.369 (4)C12—H12A0.9700
O2—C111.432 (4)C12—H12B0.9700
O3—C121.425 (4)C13—C141.494 (6)
O3—C131.427 (5)C13—H13A0.9700
O4—C141.425 (5)C13—H13B0.9700
O4—C151.427 (5)C14—H14A0.9700
O5—C171.420 (5)C14—H14B0.9700
O5—C161.432 (5)C15—C161.493 (6)
O6—H10.8393C15—H15A0.9700
O6—H30.8435C15—H15B0.9700
S1—C191.610 (5)C16—H16A0.9700
S2—C201.622 (5)C16—H16B0.9700
C1—C21.351 (5)C17—C181.496 (5)
C1—C101.423 (5)C17—H17A0.9700
C2—C31.420 (5)C17—H17B0.9700
C2—H20.9300C18—H18A0.9700
C3—C81.407 (6)C18—H18B0.9700
C3—C41.416 (6)
N2—Co1—N2i111.7 (3)C8—C7—H7119.7
N2—Co1—N1i108.47 (16)C9—C8—C3119.3 (4)
N2i—Co1—N1i108.11 (15)C9—C8—C7122.0 (5)
N2—Co1—N1108.11 (15)C3—C8—C7118.7 (5)
N2i—Co1—N1108.47 (16)C10—C9—C8120.9 (4)
N1i—Co1—N1112.0 (2)C10—C9—H9119.5
O6—Na1—O2103.94 (11)C8—C9—H9119.5
O6—Na1—O5105.07 (12)C9—C10—O2126.0 (4)
O2—Na1—O5133.49 (12)C9—C10—C1119.7 (4)
O6—Na1—O4106.64 (12)O2—C10—C1114.2 (3)
O2—Na1—O4130.18 (12)O2—C11—C12108.4 (3)
O5—Na1—O473.18 (12)O2—C11—H11A110.0
O6—Na1—O386.87 (11)C12—C11—H11A110.0
O2—Na1—O370.98 (10)O2—C11—H11B110.0
O5—Na1—O3145.58 (12)C12—C11—H11B110.0
O4—Na1—O372.47 (11)H11A—C11—H11B108.4
O6—Na1—O1115.14 (13)O3—C12—C11108.7 (3)
O2—Na1—O165.28 (9)O3—C12—H12A110.0
O5—Na1—O169.71 (11)C11—C12—H12A110.0
O4—Na1—O1129.50 (12)O3—C12—H12B110.0
O3—Na1—O1134.41 (11)C11—C12—H12B110.0
C19—N1—Co1178.3 (4)H12A—C12—H12B108.3
C20—N2—Co1172.3 (4)O3—C13—C14107.4 (4)
C1—O1—C18118.8 (3)O3—C13—H13A110.2
C1—O1—Na1115.9 (2)C14—C13—H13A110.2
C18—O1—Na1114.2 (2)O3—C13—H13B110.2
C10—O2—C11118.7 (3)C14—C13—H13B110.2
C10—O2—Na1116.3 (2)H13A—C13—H13B108.5
C11—O2—Na1112.7 (2)O4—C14—C13107.4 (3)
C12—O3—C13113.5 (3)O4—C14—H14A110.2
C12—O3—Na1113.8 (2)C13—C14—H14A110.2
C13—O3—Na1111.6 (2)O4—C14—H14B110.2
C14—O4—C15115.0 (3)C13—C14—H14B110.2
C14—O4—Na1104.7 (2)H14A—C14—H14B108.5
C15—O4—Na1103.3 (3)O4—C15—C16107.7 (4)
C17—O5—C16112.7 (3)O4—C15—H15A110.2
C17—O5—Na1114.6 (2)C16—C15—H15A110.2
C16—O5—Na1111.1 (3)O4—C15—H15B110.2
Na1—O6—H1122.3C16—C15—H15B110.2
Na1—O6—H3128.2H15A—C15—H15B108.5
H1—O6—H3107.3O5—C16—C15108.5 (4)
C2—C1—O1126.3 (4)O5—C16—H16A110.0
C2—C1—C10120.3 (4)C15—C16—H16A110.0
O1—C1—C10113.4 (4)O5—C16—H16B110.0
C1—C2—C3120.7 (4)C15—C16—H16B110.0
C1—C2—H2119.7H16A—C16—H16B108.4
C3—C2—H2119.7O5—C17—C18108.5 (3)
C8—C3—C4118.7 (4)O5—C17—H17A110.0
C8—C3—C2119.0 (4)C18—C17—H17A110.0
C4—C3—C2122.3 (4)O5—C17—H17B110.0
C5—C4—C3120.2 (5)C18—C17—H17B110.0
C5—C4—H4119.9H17A—C17—H17B108.4
C3—C4—H4119.9O1—C18—C17106.4 (3)
C4—C5—C6121.3 (6)O1—C18—H18A110.4
C4—C5—H5119.3C17—C18—H18A110.4
C6—C5—H5119.3O1—C18—H18B110.4
C7—C6—C5120.5 (5)C17—C18—H18B110.4
C7—C6—H6119.8H18A—C18—H18B108.6
C5—C6—H6119.8N1—C19—S1178.9 (4)
C6—C7—C8120.6 (5)N2—C20—S2179.2 (5)
C6—C7—H7119.7
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1···S2ii0.842.623.458 (3)173
O6—H3···S1iii0.842.573.389 (3)165
Symmetry codes: (ii) x, y+1, z1/2; (iii) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Na(C18H22O5)(H2O)]2[Co(NCS)4]
Mr1009.97
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)23.030 (5), 13.170 (3), 17.469 (4)
β (°) 115.255 (3)
V3)4792.0 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.39 × 0.36 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.796, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
12300, 4232, 2150
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.110, 1.00
No. of reflections4232
No. of parameters285
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1···S2i0.842.623.458 (3)172.9
O6—H3···S1ii0.842.573.389 (3)164.9
Symmetry codes: (i) x, y+1, z1/2; (ii) x+3/2, y+1/2, z+1.
 

Acknowledgements

We acknowledge the Science Foundation of Liaocheng University, for financial support.

References

First citationDou, J. M., Gao, X. K., Li, D. C., Dong, F. Y. & Wang, D. Q. (2004). Dalton Trans. pp. 2918–2922.  Web of Science CSD CrossRef Google Scholar
First citationFan, Y. P., Zhou, Z. Y., Wang, X. M., Zhang, J. Z. & Han, J. F. (1985). Chin. Kexue Tongbao, 30, 107–110.  Google Scholar
First citationGao, X. K., Dou, J. M., Li, D. C., Dong, F. Y. & Wang, D. Q. (2005). J. Mol. Struct. 733, 181–186.  Web of Science CrossRef CAS Google Scholar
First citationPedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017–7036.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYu, H. L., Chen, H. M., & Dou, J. M. (2005). Chin. J. Spectr. Lab. 22, 556–558.  CAS Google Scholar
First citationZhang, H., Wang, X. M. & Teo, B. K. (1996). J. Am. Chem. Soc. 118, 11813–11821.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, R. F., Zhang, Q. F. & Shi, Y. (2006). J. Organomet. Chem. 691, 1668–1171.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds